diff options
Diffstat (limited to 'libm/double/sincos.c')
-rw-r--r-- | libm/double/sincos.c | 364 |
1 files changed, 364 insertions, 0 deletions
diff --git a/libm/double/sincos.c b/libm/double/sincos.c new file mode 100644 index 000000000..8a4a3784c --- /dev/null +++ b/libm/double/sincos.c @@ -0,0 +1,364 @@ +/* sincos.c + * + * Circular sine and cosine of argument in degrees + * Table lookup and interpolation algorithm + * + * + * + * SYNOPSIS: + * + * double x, sine, cosine, flg, sincos(); + * + * sincos( x, &sine, &cosine, flg ); + * + * + * + * DESCRIPTION: + * + * Returns both the sine and the cosine of the argument x. + * Several different compile time options and minimax + * approximations are supplied to permit tailoring the + * tradeoff between computation speed and accuracy. + * + * Since range reduction is time consuming, the reduction + * of x modulo 360 degrees is also made optional. + * + * sin(i) is internally tabulated for 0 <= i <= 90 degrees. + * Approximation polynomials, ranging from linear interpolation + * to cubics in (x-i)**2, compute the sine and cosine + * of the residual x-i which is between -0.5 and +0.5 degree. + * In the case of the high accuracy options, the residual + * and the tabulated values are combined using the trigonometry + * formulas for sin(A+B) and cos(A+B). + * + * Compile time options are supplied for 5, 11, or 17 decimal + * relative accuracy (ACC5, ACC11, ACC17 respectively). + * A subroutine flag argument "flg" chooses betwen this + * accuracy and table lookup only (peak absolute error + * = 0.0087). + * + * If the argument flg = 1, then the tabulated value is + * returned for the nearest whole number of degrees. The + * approximation polynomials are not computed. At + * x = 0.5 deg, the absolute error is then sin(0.5) = 0.0087. + * + * An intermediate speed and precision can be obtained using + * the compile time option LINTERP and flg = 1. This yields + * a linear interpolation using a slope estimated from the sine + * or cosine at the nearest integer argument. The peak absolute + * error with this option is 3.8e-5. Relative error at small + * angles is about 1e-5. + * + * If flg = 0, then the approximation polynomials are computed + * and applied. + * + * + * + * SPEED: + * + * Relative speed comparisons follow for 6MHz IBM AT clone + * and Microsoft C version 4.0. These figures include + * software overhead of do loop and function calls. + * Since system hardware and software vary widely, the + * numbers should be taken as representative only. + * + * flg=0 flg=0 flg=1 flg=1 + * ACC11 ACC5 LINTERP Lookup only + * In-line 8087 (/FPi) + * sin(), cos() 1.0 1.0 1.0 1.0 + * + * In-line 8087 (/FPi) + * sincos() 1.1 1.4 1.9 3.0 + * + * Software (/FPa) + * sin(), cos() 0.19 0.19 0.19 0.19 + * + * Software (/FPa) + * sincos() 0.39 0.50 0.73 1.7 + * + * + * + * ACCURACY: + * + * The accurate approximations are designed with a relative error + * criterion. The absolute error is greatest at x = 0.5 degree. + * It decreases from a local maximum at i+0.5 degrees to full + * machine precision at each integer i degrees. With the + * ACC5 option, the relative error of 6.3e-6 is equivalent to + * an absolute angular error of 0.01 arc second in the argument + * at x = i+0.5 degrees. For small angles < 0.5 deg, the ACC5 + * accuracy is 6.3e-6 (.00063%) of reading; i.e., the absolute + * error decreases in proportion to the argument. This is true + * for both the sine and cosine approximations, since the latter + * is for the function 1 - cos(x). + * + * If absolute error is of most concern, use the compile time + * option ABSERR to obtain an absolute error of 2.7e-8 for ACC5 + * precision. This is about half the absolute error of the + * relative precision option. In this case the relative error + * for small angles will increase to 9.5e-6 -- a reasonable + * tradeoff. + */ + + +#include <math.h> + +/* Define one of the following to be 1: + */ +#define ACC5 1 +#define ACC11 0 +#define ACC17 0 + +/* Option for linear interpolation when flg = 1 + */ +#define LINTERP 1 + +/* Option for absolute error criterion + */ +#define ABSERR 1 + +/* Option to include modulo 360 function: + */ +#define MOD360 0 + +/* +Cephes Math Library Release 2.1 +Copyright 1987 by Stephen L. Moshier +Direct inquiries to 30 Frost Street, Cambridge, MA 02140 +*/ + + +/* Table of sin(i degrees) + * for 0 <= i <= 90 + */ +static double sintbl[92] = { + 0.00000000000000000000E0, + 1.74524064372835128194E-2, + 3.48994967025009716460E-2, + 5.23359562429438327221E-2, + 6.97564737441253007760E-2, + 8.71557427476581735581E-2, + 1.04528463267653471400E-1, + 1.21869343405147481113E-1, + 1.39173100960065444112E-1, + 1.56434465040230869010E-1, + 1.73648177666930348852E-1, + 1.90808995376544812405E-1, + 2.07911690817759337102E-1, + 2.24951054343864998051E-1, + 2.41921895599667722560E-1, + 2.58819045102520762349E-1, + 2.75637355816999185650E-1, + 2.92371704722736728097E-1, + 3.09016994374947424102E-1, + 3.25568154457156668714E-1, + 3.42020143325668733044E-1, + 3.58367949545300273484E-1, + 3.74606593415912035415E-1, + 3.90731128489273755062E-1, + 4.06736643075800207754E-1, + 4.22618261740699436187E-1, + 4.38371146789077417453E-1, + 4.53990499739546791560E-1, + 4.69471562785890775959E-1, + 4.84809620246337029075E-1, + 5.00000000000000000000E-1, + 5.15038074910054210082E-1, + 5.29919264233204954047E-1, + 5.44639035015027082224E-1, + 5.59192903470746830160E-1, + 5.73576436351046096108E-1, + 5.87785252292473129169E-1, + 6.01815023152048279918E-1, + 6.15661475325658279669E-1, + 6.29320391049837452706E-1, + 6.42787609686539326323E-1, + 6.56059028990507284782E-1, + 6.69130606358858213826E-1, + 6.81998360062498500442E-1, + 6.94658370458997286656E-1, + 7.07106781186547524401E-1, + 7.19339800338651139356E-1, + 7.31353701619170483288E-1, + 7.43144825477394235015E-1, + 7.54709580222771997943E-1, + 7.66044443118978035202E-1, + 7.77145961456970879980E-1, + 7.88010753606721956694E-1, + 7.98635510047292846284E-1, + 8.09016994374947424102E-1, + 8.19152044288991789684E-1, + 8.29037572555041692006E-1, + 8.38670567945424029638E-1, + 8.48048096156425970386E-1, + 8.57167300702112287465E-1, + 8.66025403784438646764E-1, + 8.74619707139395800285E-1, + 8.82947592858926942032E-1, + 8.91006524188367862360E-1, + 8.98794046299166992782E-1, + 9.06307787036649963243E-1, + 9.13545457642600895502E-1, + 9.20504853452440327397E-1, + 9.27183854566787400806E-1, + 9.33580426497201748990E-1, + 9.39692620785908384054E-1, + 9.45518575599316810348E-1, + 9.51056516295153572116E-1, + 9.56304755963035481339E-1, + 9.61261695938318861916E-1, + 9.65925826289068286750E-1, + 9.70295726275996472306E-1, + 9.74370064785235228540E-1, + 9.78147600733805637929E-1, + 9.81627183447663953497E-1, + 9.84807753012208059367E-1, + 9.87688340595137726190E-1, + 9.90268068741570315084E-1, + 9.92546151641322034980E-1, + 9.94521895368273336923E-1, + 9.96194698091745532295E-1, + 9.97564050259824247613E-1, + 9.98629534754573873784E-1, + 9.99390827019095730006E-1, + 9.99847695156391239157E-1, + 1.00000000000000000000E0, + 9.99847695156391239157E-1, +}; + +#ifdef ANSIPROT +double floor ( double ); +#else +double floor(); +#endif + +int sincos(x, s, c, flg) +double x; +double *s, *c; +int flg; +{ +int ix, ssign, csign, xsign; +double y, z, sx, sz, cx, cz; + +/* Make argument nonnegative. + */ +xsign = 1; +if( x < 0.0 ) + { + xsign = -1; + x = -x; + } + + +#if MOD360 +x = x - 360.0 * floor( x/360.0 ); +#endif + +/* Find nearest integer to x. + * Note there should be a domain error test here, + * but this is omitted to gain speed. + */ +ix = x + 0.5; +z = x - ix; /* the residual */ + +/* Look up the sine and cosine of the integer. + */ +if( ix <= 180 ) + { + ssign = 1; + csign = 1; + } +else + { + ssign = -1; + csign = -1; + ix -= 180; + } + +if( ix > 90 ) + { + csign = -csign; + ix = 180 - ix; + } + +sx = sintbl[ix]; +if( ssign < 0 ) + sx = -sx; +cx = sintbl[ 90-ix ]; +if( csign < 0 ) + cx = -cx; + +/* If the flag argument is set, then just return + * the tabulated values for arg to the nearest whole degree. + */ +if( flg ) + { +#if LINTERP + y = sx + 1.74531263774940077459e-2 * z * cx; + cx -= 1.74531263774940077459e-2 * z * sx; + sx = y; +#endif + if( xsign < 0 ) + sx = -sx; + *s = sx; /* sine */ + *c = cx; /* cosine */ + return 0; + } + + +if( ssign < 0 ) + sx = -sx; +if( csign < 0 ) + cx = -cx; + +/* Find sine and cosine + * of the residual angle between -0.5 and +0.5 degree. + */ +#if ACC5 +#if ABSERR +/* absolute error = 2.769e-8: */ +sz = 1.74531263774940077459e-2 * z; +/* absolute error = 4.146e-11: */ +cz = 1.0 - 1.52307909153324666207e-4 * z * z; +#else +/* relative error = 6.346e-6: */ +sz = 1.74531817576426662296e-2 * z; +/* relative error = 3.173e-6: */ +cz = 1.0 - 1.52308226602566149927e-4 * z * z; +#endif +#else +y = z * z; +#endif + + +#if ACC11 +sz = ( -8.86092781698004819918e-7 * y + + 1.74532925198378577601e-2 ) * z; + +cz = 1.0 - ( -3.86631403698859047896e-9 * y + + 1.52308709893047593702e-4 ) * y; +#endif + + +#if ACC17 +sz = (( 1.34959795251974073996e-11 * y + - 8.86096155697856783296e-7 ) * y + + 1.74532925199432957214e-2 ) * z; + +cz = 1.0 - (( 3.92582397764340914444e-14 * y + - 3.86632385155548605680e-9 ) * y + + 1.52308709893354299569e-4 ) * y; +#endif + + +/* Combine the tabulated part and the calculated part + * by trigonometry. + */ +y = sx * cz + cx * sz; +if( xsign < 0 ) + y = - y; +*s = y; /* sine */ + +*c = cx * cz - sx * sz; /* cosine */ +return 0; +} |