summaryrefslogtreecommitdiff
path: root/libm/double/polylog.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/double/polylog.c')
-rw-r--r--libm/double/polylog.c467
1 files changed, 0 insertions, 467 deletions
diff --git a/libm/double/polylog.c b/libm/double/polylog.c
deleted file mode 100644
index c21e04449..000000000
--- a/libm/double/polylog.c
+++ /dev/null
@@ -1,467 +0,0 @@
-/* polylog.c
- *
- * Polylogarithms
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, polylog();
- * int n;
- *
- * y = polylog( n, x );
- *
- *
- * The polylogarithm of order n is defined by the series
- *
- *
- * inf k
- * - x
- * Li (x) = > --- .
- * n - n
- * k=1 k
- *
- *
- * For x = 1,
- *
- * inf
- * - 1
- * Li (1) = > --- = Riemann zeta function (n) .
- * n - n
- * k=1 k
- *
- *
- * When n = 2, the function is the dilogarithm, related to Spence's integral:
- *
- * x 1-x
- * - -
- * | | -ln(1-t) | | ln t
- * Li (x) = | -------- dt = | ------ dt = spence(1-x) .
- * 2 | | t | | 1 - t
- * - -
- * 0 1
- *
- *
- * See also the program cpolylog.c for the complex polylogarithm,
- * whose definition is extended to x > 1.
- *
- * References:
- *
- * Lewin, L., _Polylogarithms and Associated Functions_,
- * North Holland, 1981.
- *
- * Lewin, L., ed., _Structural Properties of Polylogarithms_,
- * American Mathematical Society, 1991.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain n # trials peak rms
- * IEEE 0, 1 2 50000 6.2e-16 8.0e-17
- * IEEE 0, 1 3 100000 2.5e-16 6.6e-17
- * IEEE 0, 1 4 30000 1.7e-16 4.9e-17
- * IEEE 0, 1 5 30000 5.1e-16 7.8e-17
- *
- */
-
-/*
-Cephes Math Library Release 2.8: July, 1999
-Copyright 1999 by Stephen L. Moshier
-*/
-
-#include <math.h>
-extern double PI;
-
-/* polylog(4, 1-x) = zeta(4) - x zeta(3) + x^2 A4(x)/B4(x)
- 0 <= x <= 0.125
- Theoretical peak absolute error 4.5e-18 */
-#if UNK
-static double A4[13] = {
- 3.056144922089490701751E-2,
- 3.243086484162581557457E-1,
- 2.877847281461875922565E-1,
- 7.091267785886180663385E-2,
- 6.466460072456621248630E-3,
- 2.450233019296542883275E-4,
- 4.031655364627704957049E-6,
- 2.884169163909467997099E-8,
- 8.680067002466594858347E-11,
- 1.025983405866370985438E-13,
- 4.233468313538272640380E-17,
- 4.959422035066206902317E-21,
- 1.059365867585275714599E-25,
-};
-static double B4[12] = {
- /* 1.000000000000000000000E0, */
- 2.821262403600310974875E0,
- 1.780221124881327022033E0,
- 3.778888211867875721773E-1,
- 3.193887040074337940323E-2,
- 1.161252418498096498304E-3,
- 1.867362374829870620091E-5,
- 1.319022779715294371091E-7,
- 3.942755256555603046095E-10,
- 4.644326968986396928092E-13,
- 1.913336021014307074861E-16,
- 2.240041814626069927477E-20,
- 4.784036597230791011855E-25,
-};
-#endif
-#if DEC
-static short A4[52] = {
-0036772,0056001,0016601,0164507,
-0037646,0005710,0076603,0176456,
-0037623,0054205,0013532,0026476,
-0037221,0035252,0101064,0065407,
-0036323,0162231,0042033,0107244,
-0035200,0073170,0106141,0136543,
-0033607,0043647,0163672,0055340,
-0031767,0137614,0173376,0072313,
-0027676,0160156,0161276,0034203,
-0025347,0003752,0123106,0064266,
-0022503,0035770,0160173,0177501,
-0017273,0056226,0033704,0132530,
-0013403,0022244,0175205,0052161,
-};
-static short B4[48] = {
- /*0040200,0000000,0000000,0000000, */
-0040464,0107620,0027471,0071672,
-0040343,0157111,0025601,0137255,
-0037701,0075244,0140412,0160220,
-0037002,0151125,0036572,0057163,
-0035630,0032452,0050727,0161653,
-0034234,0122515,0034323,0172615,
-0032415,0120405,0123660,0003160,
-0030330,0140530,0161045,0150177,
-0026002,0134747,0014542,0002510,
-0023134,0113666,0035730,0035732,
-0017723,0110343,0041217,0007764,
-0014024,0007412,0175575,0160230,
-};
-#endif
-#if IBMPC
-static short A4[52] = {
-0x3d29,0x23b0,0x4b80,0x3f9f,
-0x7fa6,0x0fb0,0xc179,0x3fd4,
-0x45a8,0xa2eb,0x6b10,0x3fd2,
-0x8d61,0x5046,0x2755,0x3fb2,
-0x71d4,0x2883,0x7c93,0x3f7a,
-0x37ac,0x118c,0x0ecf,0x3f30,
-0x4b5c,0xfcf7,0xe8f4,0x3ed0,
-0xce99,0x9edf,0xf7f1,0x3e5e,
-0xc710,0xdc57,0xdc0d,0x3dd7,
-0xcd17,0x54c8,0xe0fd,0x3d3c,
-0x7fe8,0x1c0f,0x677f,0x3c88,
-0x96ab,0xc6f8,0x6b92,0x3bb7,
-0xaa8e,0x9f50,0x6494,0x3ac0,
-};
-static short B4[48] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
-0x2e77,0x05e7,0x91f2,0x4006,
-0x37d6,0x2570,0x7bc9,0x3ffc,
-0x5c12,0x9821,0x2f54,0x3fd8,
-0x4bce,0xa7af,0x5a4a,0x3fa0,
-0xfc75,0x4a3a,0x06a5,0x3f53,
-0x7eb2,0xa71a,0x94a9,0x3ef3,
-0x00ce,0xb4f6,0xb420,0x3e81,
-0xba10,0x1c44,0x182b,0x3dfb,
-0x40a9,0xe32c,0x573c,0x3d60,
-0x077b,0xc77b,0x92f6,0x3cab,
-0xe1fe,0x6851,0x721c,0x3bda,
-0xbc13,0x5f6f,0x81e1,0x3ae2,
-};
-#endif
-#if MIEEE
-static short A4[52] = {
-0x3f9f,0x4b80,0x23b0,0x3d29,
-0x3fd4,0xc179,0x0fb0,0x7fa6,
-0x3fd2,0x6b10,0xa2eb,0x45a8,
-0x3fb2,0x2755,0x5046,0x8d61,
-0x3f7a,0x7c93,0x2883,0x71d4,
-0x3f30,0x0ecf,0x118c,0x37ac,
-0x3ed0,0xe8f4,0xfcf7,0x4b5c,
-0x3e5e,0xf7f1,0x9edf,0xce99,
-0x3dd7,0xdc0d,0xdc57,0xc710,
-0x3d3c,0xe0fd,0x54c8,0xcd17,
-0x3c88,0x677f,0x1c0f,0x7fe8,
-0x3bb7,0x6b92,0xc6f8,0x96ab,
-0x3ac0,0x6494,0x9f50,0xaa8e,
-};
-static short B4[48] = {
- /*0x3ff0,0x0000,0x0000,0x0000,*/
-0x4006,0x91f2,0x05e7,0x2e77,
-0x3ffc,0x7bc9,0x2570,0x37d6,
-0x3fd8,0x2f54,0x9821,0x5c12,
-0x3fa0,0x5a4a,0xa7af,0x4bce,
-0x3f53,0x06a5,0x4a3a,0xfc75,
-0x3ef3,0x94a9,0xa71a,0x7eb2,
-0x3e81,0xb420,0xb4f6,0x00ce,
-0x3dfb,0x182b,0x1c44,0xba10,
-0x3d60,0x573c,0xe32c,0x40a9,
-0x3cab,0x92f6,0xc77b,0x077b,
-0x3bda,0x721c,0x6851,0xe1fe,
-0x3ae2,0x81e1,0x5f6f,0xbc13,
-};
-#endif
-
-#ifdef ANSIPROT
-extern double spence ( double );
-extern double polevl ( double, void *, int );
-extern double p1evl ( double, void *, int );
-extern double zetac ( double );
-extern double pow ( double, double );
-extern double powi ( double, int );
-extern double log ( double );
-extern double fac ( int i );
-extern double fabs (double);
-double polylog (int, double);
-#else
-extern double spence(), polevl(), p1evl(), zetac();
-extern double pow(), powi(), log();
-extern double fac(); /* factorial */
-extern double fabs();
-double polylog();
-#endif
-extern double MACHEP;
-
-double
-polylog (n, x)
- int n;
- double x;
-{
- double h, k, p, s, t, u, xc, z;
- int i, j;
-
-/* This recurrence provides formulas for n < 2.
-
- d 1
- -- Li (x) = --- Li (x) .
- dx n x n-1
-
-*/
-
- if (n == -1)
- {
- p = 1.0 - x;
- u = x / p;
- s = u * u + u;
- return s;
- }
-
- if (n == 0)
- {
- s = x / (1.0 - x);
- return s;
- }
-
- /* Not implemented for n < -1.
- Not defined for x > 1. Use cpolylog if you need that. */
- if (x > 1.0 || n < -1)
- {
- mtherr("polylog", DOMAIN);
- return 0.0;
- }
-
- if (n == 1)
- {
- s = -log (1.0 - x);
- return s;
- }
-
- /* Argument +1 */
- if (x == 1.0 && n > 1)
- {
- s = zetac ((double) n) + 1.0;
- return s;
- }
-
- /* Argument -1.
- 1-n
- Li (-z) = - (1 - 2 ) Li (z)
- n n
- */
- if (x == -1.0 && n > 1)
- {
- /* Li_n(1) = zeta(n) */
- s = zetac ((double) n) + 1.0;
- s = s * (powi (2.0, 1 - n) - 1.0);
- return s;
- }
-
-/* Inversion formula:
- * [n/2] n-2r
- * n 1 n - log (z)
- * Li (-z) + (-1) Li (-1/z) = - --- log (z) + 2 > ----------- Li (-1)
- * n n n! - (n - 2r)! 2r
- * r=1
- */
- if (x < -1.0 && n > 1)
- {
- double q, w;
- int r;
-
- w = log (-x);
- s = 0.0;
- for (r = 1; r <= n / 2; r++)
- {
- j = 2 * r;
- p = polylog (j, -1.0);
- j = n - j;
- if (j == 0)
- {
- s = s + p;
- break;
- }
- q = (double) j;
- q = pow (w, q) * p / fac (j);
- s = s + q;
- }
- s = 2.0 * s;
- q = polylog (n, 1.0 / x);
- if (n & 1)
- q = -q;
- s = s - q;
- s = s - pow (w, (double) n) / fac (n);
- return s;
- }
-
- if (n == 2)
- {
- if (x < 0.0 || x > 1.0)
- return (spence (1.0 - x));
- }
-
-
-
- /* The power series converges slowly when x is near 1. For n = 3, this
- identity helps:
-
- Li (-x/(1-x)) + Li (1-x) + Li (x)
- 3 3 3
- 2 2 3
- = Li (1) + (pi /6) log(1-x) - (1/2) log(x) log (1-x) + (1/6) log (1-x)
- 3
- */
-
- if (n == 3)
- {
- p = x * x * x;
- if (x > 0.8)
- {
- u = log(x);
- s = p / 6.0;
- xc = 1.0 - x;
- s = s - 0.5 * u * u * log(xc);
- s = s + PI * PI * u / 6.0;
- s = s - polylog (3, -xc/x);
- s = s - polylog (3, xc);
- s = s + zetac(3.0);
- s = s + 1.0;
- return s;
- }
- /* Power series */
- t = p / 27.0;
- t = t + .125 * x * x;
- t = t + x;
-
- s = 0.0;
- k = 4.0;
- do
- {
- p = p * x;
- h = p / (k * k * k);
- s = s + h;
- k += 1.0;
- }
- while (fabs(h/s) > 1.1e-16);
- return (s + t);
- }
-
-if (n == 4)
- {
- if (x >= 0.875)
- {
- u = 1.0 - x;
- s = polevl(u, A4, 12) / p1evl(u, B4, 12);
- s = s * u * u - 1.202056903159594285400 * u;
- s += 1.0823232337111381915160;
- return s;
- }
- goto pseries;
- }
-
-
- if (x < 0.75)
- goto pseries;
-
-
-/* This expansion in powers of log(x) is especially useful when
- x is near 1.
-
- See also the pari gp calculator.
-
- inf j
- - z(n-j) (log(x))
- polylog(n,x) = > -----------------
- - j!
- j=0
-
- where
-
- z(j) = Riemann zeta function (j), j != 1
-
- n-1
- -
- z(1) = -log(-log(x)) + > 1/k
- -
- k=1
- */
-
- z = log(x);
- h = -log(-z);
- for (i = 1; i < n; i++)
- h = h + 1.0/i;
- p = 1.0;
- s = zetac((double)n) + 1.0;
- for (j=1; j<=n+1; j++)
- {
- p = p * z / j;
- if (j == n-1)
- s = s + h * p;
- else
- s = s + (zetac((double)(n-j)) + 1.0) * p;
- }
- j = n + 3;
- z = z * z;
- for(;;)
- {
- p = p * z / ((j-1)*j);
- h = (zetac((double)(n-j)) + 1.0);
- h = h * p;
- s = s + h;
- if (fabs(h/s) < MACHEP)
- break;
- j += 2;
- }
- return s;
-
-
-pseries:
-
- p = x * x * x;
- k = 3.0;
- s = 0.0;
- do
- {
- p = p * x;
- k += 1.0;
- h = p / powi(k, n);
- s = s + h;
- }
- while (fabs(h/s) > MACHEP);
- s += x * x * x / powi(3.0,n);
- s += x * x / powi(2.0,n);
- s += x;
- return s;
-}