summaryrefslogtreecommitdiff
path: root/libm/double/polylog.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/double/polylog.c')
-rw-r--r--libm/double/polylog.c467
1 files changed, 467 insertions, 0 deletions
diff --git a/libm/double/polylog.c b/libm/double/polylog.c
new file mode 100644
index 000000000..c21e04449
--- /dev/null
+++ b/libm/double/polylog.c
@@ -0,0 +1,467 @@
+/* polylog.c
+ *
+ * Polylogarithms
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double x, y, polylog();
+ * int n;
+ *
+ * y = polylog( n, x );
+ *
+ *
+ * The polylogarithm of order n is defined by the series
+ *
+ *
+ * inf k
+ * - x
+ * Li (x) = > --- .
+ * n - n
+ * k=1 k
+ *
+ *
+ * For x = 1,
+ *
+ * inf
+ * - 1
+ * Li (1) = > --- = Riemann zeta function (n) .
+ * n - n
+ * k=1 k
+ *
+ *
+ * When n = 2, the function is the dilogarithm, related to Spence's integral:
+ *
+ * x 1-x
+ * - -
+ * | | -ln(1-t) | | ln t
+ * Li (x) = | -------- dt = | ------ dt = spence(1-x) .
+ * 2 | | t | | 1 - t
+ * - -
+ * 0 1
+ *
+ *
+ * See also the program cpolylog.c for the complex polylogarithm,
+ * whose definition is extended to x > 1.
+ *
+ * References:
+ *
+ * Lewin, L., _Polylogarithms and Associated Functions_,
+ * North Holland, 1981.
+ *
+ * Lewin, L., ed., _Structural Properties of Polylogarithms_,
+ * American Mathematical Society, 1991.
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain n # trials peak rms
+ * IEEE 0, 1 2 50000 6.2e-16 8.0e-17
+ * IEEE 0, 1 3 100000 2.5e-16 6.6e-17
+ * IEEE 0, 1 4 30000 1.7e-16 4.9e-17
+ * IEEE 0, 1 5 30000 5.1e-16 7.8e-17
+ *
+ */
+
+/*
+Cephes Math Library Release 2.8: July, 1999
+Copyright 1999 by Stephen L. Moshier
+*/
+
+#include <math.h>
+extern double PI;
+
+/* polylog(4, 1-x) = zeta(4) - x zeta(3) + x^2 A4(x)/B4(x)
+ 0 <= x <= 0.125
+ Theoretical peak absolute error 4.5e-18 */
+#if UNK
+static double A4[13] = {
+ 3.056144922089490701751E-2,
+ 3.243086484162581557457E-1,
+ 2.877847281461875922565E-1,
+ 7.091267785886180663385E-2,
+ 6.466460072456621248630E-3,
+ 2.450233019296542883275E-4,
+ 4.031655364627704957049E-6,
+ 2.884169163909467997099E-8,
+ 8.680067002466594858347E-11,
+ 1.025983405866370985438E-13,
+ 4.233468313538272640380E-17,
+ 4.959422035066206902317E-21,
+ 1.059365867585275714599E-25,
+};
+static double B4[12] = {
+ /* 1.000000000000000000000E0, */
+ 2.821262403600310974875E0,
+ 1.780221124881327022033E0,
+ 3.778888211867875721773E-1,
+ 3.193887040074337940323E-2,
+ 1.161252418498096498304E-3,
+ 1.867362374829870620091E-5,
+ 1.319022779715294371091E-7,
+ 3.942755256555603046095E-10,
+ 4.644326968986396928092E-13,
+ 1.913336021014307074861E-16,
+ 2.240041814626069927477E-20,
+ 4.784036597230791011855E-25,
+};
+#endif
+#if DEC
+static short A4[52] = {
+0036772,0056001,0016601,0164507,
+0037646,0005710,0076603,0176456,
+0037623,0054205,0013532,0026476,
+0037221,0035252,0101064,0065407,
+0036323,0162231,0042033,0107244,
+0035200,0073170,0106141,0136543,
+0033607,0043647,0163672,0055340,
+0031767,0137614,0173376,0072313,
+0027676,0160156,0161276,0034203,
+0025347,0003752,0123106,0064266,
+0022503,0035770,0160173,0177501,
+0017273,0056226,0033704,0132530,
+0013403,0022244,0175205,0052161,
+};
+static short B4[48] = {
+ /*0040200,0000000,0000000,0000000, */
+0040464,0107620,0027471,0071672,
+0040343,0157111,0025601,0137255,
+0037701,0075244,0140412,0160220,
+0037002,0151125,0036572,0057163,
+0035630,0032452,0050727,0161653,
+0034234,0122515,0034323,0172615,
+0032415,0120405,0123660,0003160,
+0030330,0140530,0161045,0150177,
+0026002,0134747,0014542,0002510,
+0023134,0113666,0035730,0035732,
+0017723,0110343,0041217,0007764,
+0014024,0007412,0175575,0160230,
+};
+#endif
+#if IBMPC
+static short A4[52] = {
+0x3d29,0x23b0,0x4b80,0x3f9f,
+0x7fa6,0x0fb0,0xc179,0x3fd4,
+0x45a8,0xa2eb,0x6b10,0x3fd2,
+0x8d61,0x5046,0x2755,0x3fb2,
+0x71d4,0x2883,0x7c93,0x3f7a,
+0x37ac,0x118c,0x0ecf,0x3f30,
+0x4b5c,0xfcf7,0xe8f4,0x3ed0,
+0xce99,0x9edf,0xf7f1,0x3e5e,
+0xc710,0xdc57,0xdc0d,0x3dd7,
+0xcd17,0x54c8,0xe0fd,0x3d3c,
+0x7fe8,0x1c0f,0x677f,0x3c88,
+0x96ab,0xc6f8,0x6b92,0x3bb7,
+0xaa8e,0x9f50,0x6494,0x3ac0,
+};
+static short B4[48] = {
+ /*0x0000,0x0000,0x0000,0x3ff0,*/
+0x2e77,0x05e7,0x91f2,0x4006,
+0x37d6,0x2570,0x7bc9,0x3ffc,
+0x5c12,0x9821,0x2f54,0x3fd8,
+0x4bce,0xa7af,0x5a4a,0x3fa0,
+0xfc75,0x4a3a,0x06a5,0x3f53,
+0x7eb2,0xa71a,0x94a9,0x3ef3,
+0x00ce,0xb4f6,0xb420,0x3e81,
+0xba10,0x1c44,0x182b,0x3dfb,
+0x40a9,0xe32c,0x573c,0x3d60,
+0x077b,0xc77b,0x92f6,0x3cab,
+0xe1fe,0x6851,0x721c,0x3bda,
+0xbc13,0x5f6f,0x81e1,0x3ae2,
+};
+#endif
+#if MIEEE
+static short A4[52] = {
+0x3f9f,0x4b80,0x23b0,0x3d29,
+0x3fd4,0xc179,0x0fb0,0x7fa6,
+0x3fd2,0x6b10,0xa2eb,0x45a8,
+0x3fb2,0x2755,0x5046,0x8d61,
+0x3f7a,0x7c93,0x2883,0x71d4,
+0x3f30,0x0ecf,0x118c,0x37ac,
+0x3ed0,0xe8f4,0xfcf7,0x4b5c,
+0x3e5e,0xf7f1,0x9edf,0xce99,
+0x3dd7,0xdc0d,0xdc57,0xc710,
+0x3d3c,0xe0fd,0x54c8,0xcd17,
+0x3c88,0x677f,0x1c0f,0x7fe8,
+0x3bb7,0x6b92,0xc6f8,0x96ab,
+0x3ac0,0x6494,0x9f50,0xaa8e,
+};
+static short B4[48] = {
+ /*0x3ff0,0x0000,0x0000,0x0000,*/
+0x4006,0x91f2,0x05e7,0x2e77,
+0x3ffc,0x7bc9,0x2570,0x37d6,
+0x3fd8,0x2f54,0x9821,0x5c12,
+0x3fa0,0x5a4a,0xa7af,0x4bce,
+0x3f53,0x06a5,0x4a3a,0xfc75,
+0x3ef3,0x94a9,0xa71a,0x7eb2,
+0x3e81,0xb420,0xb4f6,0x00ce,
+0x3dfb,0x182b,0x1c44,0xba10,
+0x3d60,0x573c,0xe32c,0x40a9,
+0x3cab,0x92f6,0xc77b,0x077b,
+0x3bda,0x721c,0x6851,0xe1fe,
+0x3ae2,0x81e1,0x5f6f,0xbc13,
+};
+#endif
+
+#ifdef ANSIPROT
+extern double spence ( double );
+extern double polevl ( double, void *, int );
+extern double p1evl ( double, void *, int );
+extern double zetac ( double );
+extern double pow ( double, double );
+extern double powi ( double, int );
+extern double log ( double );
+extern double fac ( int i );
+extern double fabs (double);
+double polylog (int, double);
+#else
+extern double spence(), polevl(), p1evl(), zetac();
+extern double pow(), powi(), log();
+extern double fac(); /* factorial */
+extern double fabs();
+double polylog();
+#endif
+extern double MACHEP;
+
+double
+polylog (n, x)
+ int n;
+ double x;
+{
+ double h, k, p, s, t, u, xc, z;
+ int i, j;
+
+/* This recurrence provides formulas for n < 2.
+
+ d 1
+ -- Li (x) = --- Li (x) .
+ dx n x n-1
+
+*/
+
+ if (n == -1)
+ {
+ p = 1.0 - x;
+ u = x / p;
+ s = u * u + u;
+ return s;
+ }
+
+ if (n == 0)
+ {
+ s = x / (1.0 - x);
+ return s;
+ }
+
+ /* Not implemented for n < -1.
+ Not defined for x > 1. Use cpolylog if you need that. */
+ if (x > 1.0 || n < -1)
+ {
+ mtherr("polylog", DOMAIN);
+ return 0.0;
+ }
+
+ if (n == 1)
+ {
+ s = -log (1.0 - x);
+ return s;
+ }
+
+ /* Argument +1 */
+ if (x == 1.0 && n > 1)
+ {
+ s = zetac ((double) n) + 1.0;
+ return s;
+ }
+
+ /* Argument -1.
+ 1-n
+ Li (-z) = - (1 - 2 ) Li (z)
+ n n
+ */
+ if (x == -1.0 && n > 1)
+ {
+ /* Li_n(1) = zeta(n) */
+ s = zetac ((double) n) + 1.0;
+ s = s * (powi (2.0, 1 - n) - 1.0);
+ return s;
+ }
+
+/* Inversion formula:
+ * [n/2] n-2r
+ * n 1 n - log (z)
+ * Li (-z) + (-1) Li (-1/z) = - --- log (z) + 2 > ----------- Li (-1)
+ * n n n! - (n - 2r)! 2r
+ * r=1
+ */
+ if (x < -1.0 && n > 1)
+ {
+ double q, w;
+ int r;
+
+ w = log (-x);
+ s = 0.0;
+ for (r = 1; r <= n / 2; r++)
+ {
+ j = 2 * r;
+ p = polylog (j, -1.0);
+ j = n - j;
+ if (j == 0)
+ {
+ s = s + p;
+ break;
+ }
+ q = (double) j;
+ q = pow (w, q) * p / fac (j);
+ s = s + q;
+ }
+ s = 2.0 * s;
+ q = polylog (n, 1.0 / x);
+ if (n & 1)
+ q = -q;
+ s = s - q;
+ s = s - pow (w, (double) n) / fac (n);
+ return s;
+ }
+
+ if (n == 2)
+ {
+ if (x < 0.0 || x > 1.0)
+ return (spence (1.0 - x));
+ }
+
+
+
+ /* The power series converges slowly when x is near 1. For n = 3, this
+ identity helps:
+
+ Li (-x/(1-x)) + Li (1-x) + Li (x)
+ 3 3 3
+ 2 2 3
+ = Li (1) + (pi /6) log(1-x) - (1/2) log(x) log (1-x) + (1/6) log (1-x)
+ 3
+ */
+
+ if (n == 3)
+ {
+ p = x * x * x;
+ if (x > 0.8)
+ {
+ u = log(x);
+ s = p / 6.0;
+ xc = 1.0 - x;
+ s = s - 0.5 * u * u * log(xc);
+ s = s + PI * PI * u / 6.0;
+ s = s - polylog (3, -xc/x);
+ s = s - polylog (3, xc);
+ s = s + zetac(3.0);
+ s = s + 1.0;
+ return s;
+ }
+ /* Power series */
+ t = p / 27.0;
+ t = t + .125 * x * x;
+ t = t + x;
+
+ s = 0.0;
+ k = 4.0;
+ do
+ {
+ p = p * x;
+ h = p / (k * k * k);
+ s = s + h;
+ k += 1.0;
+ }
+ while (fabs(h/s) > 1.1e-16);
+ return (s + t);
+ }
+
+if (n == 4)
+ {
+ if (x >= 0.875)
+ {
+ u = 1.0 - x;
+ s = polevl(u, A4, 12) / p1evl(u, B4, 12);
+ s = s * u * u - 1.202056903159594285400 * u;
+ s += 1.0823232337111381915160;
+ return s;
+ }
+ goto pseries;
+ }
+
+
+ if (x < 0.75)
+ goto pseries;
+
+
+/* This expansion in powers of log(x) is especially useful when
+ x is near 1.
+
+ See also the pari gp calculator.
+
+ inf j
+ - z(n-j) (log(x))
+ polylog(n,x) = > -----------------
+ - j!
+ j=0
+
+ where
+
+ z(j) = Riemann zeta function (j), j != 1
+
+ n-1
+ -
+ z(1) = -log(-log(x)) + > 1/k
+ -
+ k=1
+ */
+
+ z = log(x);
+ h = -log(-z);
+ for (i = 1; i < n; i++)
+ h = h + 1.0/i;
+ p = 1.0;
+ s = zetac((double)n) + 1.0;
+ for (j=1; j<=n+1; j++)
+ {
+ p = p * z / j;
+ if (j == n-1)
+ s = s + h * p;
+ else
+ s = s + (zetac((double)(n-j)) + 1.0) * p;
+ }
+ j = n + 3;
+ z = z * z;
+ for(;;)
+ {
+ p = p * z / ((j-1)*j);
+ h = (zetac((double)(n-j)) + 1.0);
+ h = h * p;
+ s = s + h;
+ if (fabs(h/s) < MACHEP)
+ break;
+ j += 2;
+ }
+ return s;
+
+
+pseries:
+
+ p = x * x * x;
+ k = 3.0;
+ s = 0.0;
+ do
+ {
+ p = p * x;
+ k += 1.0;
+ h = p / powi(k, n);
+ s = s + h;
+ }
+ while (fabs(h/s) > MACHEP);
+ s += x * x * x / powi(3.0,n);
+ s += x * x / powi(2.0,n);
+ s += x;
+ return s;
+}