diff options
Diffstat (limited to 'libm/double/j0.c')
-rw-r--r-- | libm/double/j0.c | 543 |
1 files changed, 0 insertions, 543 deletions
diff --git a/libm/double/j0.c b/libm/double/j0.c deleted file mode 100644 index c0f1bd4b8..000000000 --- a/libm/double/j0.c +++ /dev/null @@ -1,543 +0,0 @@ -/* j0.c - * - * Bessel function of order zero - * - * - * - * SYNOPSIS: - * - * double x, y, j0(); - * - * y = j0( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of order zero of the argument. - * - * The domain is divided into the intervals [0, 5] and - * (5, infinity). In the first interval the following rational - * approximation is used: - * - * - * 2 2 - * (w - r ) (w - r ) P (w) / Q (w) - * 1 2 3 8 - * - * 2 - * where w = x and the two r's are zeros of the function. - * - * In the second interval, the Hankel asymptotic expansion - * is employed with two rational functions of degree 6/6 - * and 7/7. - * - * - * - * ACCURACY: - * - * Absolute error: - * arithmetic domain # trials peak rms - * DEC 0, 30 10000 4.4e-17 6.3e-18 - * IEEE 0, 30 60000 4.2e-16 1.1e-16 - * - */ -/* y0.c - * - * Bessel function of the second kind, order zero - * - * - * - * SYNOPSIS: - * - * double x, y, y0(); - * - * y = y0( x ); - * - * - * - * DESCRIPTION: - * - * Returns Bessel function of the second kind, of order - * zero, of the argument. - * - * The domain is divided into the intervals [0, 5] and - * (5, infinity). In the first interval a rational approximation - * R(x) is employed to compute - * y0(x) = R(x) + 2 * log(x) * j0(x) / PI. - * Thus a call to j0() is required. - * - * In the second interval, the Hankel asymptotic expansion - * is employed with two rational functions of degree 6/6 - * and 7/7. - * - * - * - * ACCURACY: - * - * Absolute error, when y0(x) < 1; else relative error: - * - * arithmetic domain # trials peak rms - * DEC 0, 30 9400 7.0e-17 7.9e-18 - * IEEE 0, 30 30000 1.3e-15 1.6e-16 - * - */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier -*/ - -/* Note: all coefficients satisfy the relative error criterion - * except YP, YQ which are designed for absolute error. */ - -#include <math.h> - -#ifdef UNK -static double PP[7] = { - 7.96936729297347051624E-4, - 8.28352392107440799803E-2, - 1.23953371646414299388E0, - 5.44725003058768775090E0, - 8.74716500199817011941E0, - 5.30324038235394892183E0, - 9.99999999999999997821E-1, -}; -static double PQ[7] = { - 9.24408810558863637013E-4, - 8.56288474354474431428E-2, - 1.25352743901058953537E0, - 5.47097740330417105182E0, - 8.76190883237069594232E0, - 5.30605288235394617618E0, - 1.00000000000000000218E0, -}; -#endif -#ifdef DEC -static unsigned short PP[28] = { -0035520,0164604,0140733,0054470, -0037251,0122605,0115356,0107170, -0040236,0124412,0071500,0056303, -0040656,0047737,0045720,0045263, -0041013,0172143,0045004,0142103, -0040651,0132045,0026241,0026406, -0040200,0000000,0000000,0000000, -}; -static unsigned short PQ[28] = { -0035562,0052006,0070034,0134666, -0037257,0057055,0055242,0123424, -0040240,0071626,0046630,0032371, -0040657,0011077,0032013,0012731, -0041014,0030307,0050331,0006414, -0040651,0145457,0065021,0150304, -0040200,0000000,0000000,0000000, -}; -#endif -#ifdef IBMPC -static unsigned short PP[28] = { -0x6b27,0x983b,0x1d30,0x3f4a, -0xd1cf,0xb35d,0x34b0,0x3fb5, -0x0b98,0x4e68,0xd521,0x3ff3, -0x0956,0xe97a,0xc9fb,0x4015, -0x9888,0x6940,0x7e8c,0x4021, -0x25a1,0xa594,0x3684,0x4015, -0x0000,0x0000,0x0000,0x3ff0, -}; -static unsigned short PQ[28] = { -0x9737,0xce03,0x4a80,0x3f4e, -0x54e3,0xab54,0xebc5,0x3fb5, -0x069f,0xc9b3,0x0e72,0x3ff4, -0x62bb,0xe681,0xe247,0x4015, -0x21a1,0xea1b,0x8618,0x4021, -0x3a19,0xed42,0x3965,0x4015, -0x0000,0x0000,0x0000,0x3ff0, -}; -#endif -#ifdef MIEEE -static unsigned short PP[28] = { -0x3f4a,0x1d30,0x983b,0x6b27, -0x3fb5,0x34b0,0xb35d,0xd1cf, -0x3ff3,0xd521,0x4e68,0x0b98, -0x4015,0xc9fb,0xe97a,0x0956, -0x4021,0x7e8c,0x6940,0x9888, -0x4015,0x3684,0xa594,0x25a1, -0x3ff0,0x0000,0x0000,0x0000, -}; -static unsigned short PQ[28] = { -0x3f4e,0x4a80,0xce03,0x9737, -0x3fb5,0xebc5,0xab54,0x54e3, -0x3ff4,0x0e72,0xc9b3,0x069f, -0x4015,0xe247,0xe681,0x62bb, -0x4021,0x8618,0xea1b,0x21a1, -0x4015,0x3965,0xed42,0x3a19, -0x3ff0,0x0000,0x0000,0x0000, -}; -#endif - -#ifdef UNK -static double QP[8] = { --1.13663838898469149931E-2, --1.28252718670509318512E0, --1.95539544257735972385E1, --9.32060152123768231369E1, --1.77681167980488050595E2, --1.47077505154951170175E2, --5.14105326766599330220E1, --6.05014350600728481186E0, -}; -static double QQ[7] = { -/* 1.00000000000000000000E0,*/ - 6.43178256118178023184E1, - 8.56430025976980587198E2, - 3.88240183605401609683E3, - 7.24046774195652478189E3, - 5.93072701187316984827E3, - 2.06209331660327847417E3, - 2.42005740240291393179E2, -}; -#endif -#ifdef DEC -static unsigned short QP[32] = { -0136472,0035021,0142451,0141115, -0140244,0024731,0150620,0105642, -0141234,0067177,0124161,0060141, -0141672,0064572,0151557,0043036, -0142061,0127141,0003127,0043517, -0142023,0011727,0060271,0144544, -0141515,0122142,0126620,0143150, -0140701,0115306,0106715,0007344, -}; -static unsigned short QQ[28] = { -/*0040200,0000000,0000000,0000000,*/ -0041600,0121272,0004741,0026544, -0042526,0015605,0105654,0161771, -0043162,0123155,0165644,0062645, -0043342,0041675,0167576,0130756, -0043271,0052720,0165631,0154214, -0043000,0160576,0034614,0172024, -0042162,0000570,0030500,0051235, -}; -#endif -#ifdef IBMPC -static unsigned short QP[32] = { -0x384a,0x38a5,0x4742,0xbf87, -0x1174,0x3a32,0x853b,0xbff4, -0x2c0c,0xf50e,0x8dcf,0xc033, -0xe8c4,0x5a6d,0x4d2f,0xc057, -0xe8ea,0x20ca,0x35cc,0xc066, -0x392d,0xec17,0x627a,0xc062, -0x18cd,0x55b2,0xb48c,0xc049, -0xa1dd,0xd1b9,0x3358,0xc018, -}; -static unsigned short QQ[28] = { -/*0x0000,0x0000,0x0000,0x3ff0,*/ -0x25ac,0x413c,0x1457,0x4050, -0x9c7f,0xb175,0xc370,0x408a, -0x8cb5,0xbd74,0x54cd,0x40ae, -0xd63e,0xbdef,0x4877,0x40bc, -0x3b11,0x1d73,0x2aba,0x40b7, -0x9e82,0xc731,0x1c2f,0x40a0, -0x0a54,0x0628,0x402f,0x406e, -}; -#endif -#ifdef MIEEE -static unsigned short QP[32] = { -0xbf87,0x4742,0x38a5,0x384a, -0xbff4,0x853b,0x3a32,0x1174, -0xc033,0x8dcf,0xf50e,0x2c0c, -0xc057,0x4d2f,0x5a6d,0xe8c4, -0xc066,0x35cc,0x20ca,0xe8ea, -0xc062,0x627a,0xec17,0x392d, -0xc049,0xb48c,0x55b2,0x18cd, -0xc018,0x3358,0xd1b9,0xa1dd, -}; -static unsigned short QQ[28] = { -/*0x3ff0,0x0000,0x0000,0x0000,*/ -0x4050,0x1457,0x413c,0x25ac, -0x408a,0xc370,0xb175,0x9c7f, -0x40ae,0x54cd,0xbd74,0x8cb5, -0x40bc,0x4877,0xbdef,0xd63e, -0x40b7,0x2aba,0x1d73,0x3b11, -0x40a0,0x1c2f,0xc731,0x9e82, -0x406e,0x402f,0x0628,0x0a54, -}; -#endif - - -#ifdef UNK -static double YP[8] = { - 1.55924367855235737965E4, --1.46639295903971606143E7, - 5.43526477051876500413E9, --9.82136065717911466409E11, - 8.75906394395366999549E13, --3.46628303384729719441E15, - 4.42733268572569800351E16, --1.84950800436986690637E16, -}; -static double YQ[7] = { -/* 1.00000000000000000000E0,*/ - 1.04128353664259848412E3, - 6.26107330137134956842E5, - 2.68919633393814121987E8, - 8.64002487103935000337E10, - 2.02979612750105546709E13, - 3.17157752842975028269E15, - 2.50596256172653059228E17, -}; -#endif -#ifdef DEC -static unsigned short YP[32] = { -0043563,0120677,0042264,0046166, -0146137,0140371,0113444,0042260, -0050241,0175707,0100502,0063344, -0152144,0125737,0007265,0164526, -0053637,0051621,0163035,0060546, -0155105,0004416,0107306,0060023, -0056035,0045133,0030132,0000024, -0155603,0065132,0144061,0131732, -}; -static unsigned short YQ[28] = { -/*0040200,0000000,0000000,0000000,*/ -0042602,0024422,0135557,0162663, -0045030,0155665,0044075,0160135, -0047200,0035432,0105446,0104005, -0051240,0167331,0056063,0022743, -0053223,0127746,0025764,0012160, -0055064,0044206,0177532,0145545, -0056536,0111375,0163715,0127201, -}; -#endif -#ifdef IBMPC -static unsigned short YP[32] = { -0x898f,0xe896,0x7437,0x40ce, -0x8896,0x32e4,0xf81f,0xc16b, -0x4cdd,0xf028,0x3f78,0x41f4, -0xbd2b,0xe1d6,0x957b,0xc26c, -0xac2d,0x3cc3,0xea72,0x42d3, -0xcc02,0xd1d8,0xa121,0xc328, -0x4003,0x660b,0xa94b,0x4363, -0x367b,0x5906,0x6d4b,0xc350, -}; -static unsigned short YQ[28] = { -/*0x0000,0x0000,0x0000,0x3ff0,*/ -0xfcb6,0x576d,0x4522,0x4090, -0xbc0c,0xa907,0x1b76,0x4123, -0xd101,0x5164,0x0763,0x41b0, -0x64bc,0x2b86,0x1ddb,0x4234, -0x828e,0xc57e,0x75fc,0x42b2, -0x596d,0xdfeb,0x8910,0x4326, -0xb5d0,0xbcf9,0xd25f,0x438b, -}; -#endif -#ifdef MIEEE -static unsigned short YP[32] = { -0x40ce,0x7437,0xe896,0x898f, -0xc16b,0xf81f,0x32e4,0x8896, -0x41f4,0x3f78,0xf028,0x4cdd, -0xc26c,0x957b,0xe1d6,0xbd2b, -0x42d3,0xea72,0x3cc3,0xac2d, -0xc328,0xa121,0xd1d8,0xcc02, -0x4363,0xa94b,0x660b,0x4003, -0xc350,0x6d4b,0x5906,0x367b, -}; -static unsigned short YQ[28] = { -/*0x3ff0,0x0000,0x0000,0x0000,*/ -0x4090,0x4522,0x576d,0xfcb6, -0x4123,0x1b76,0xa907,0xbc0c, -0x41b0,0x0763,0x5164,0xd101, -0x4234,0x1ddb,0x2b86,0x64bc, -0x42b2,0x75fc,0xc57e,0x828e, -0x4326,0x8910,0xdfeb,0x596d, -0x438b,0xd25f,0xbcf9,0xb5d0, -}; -#endif - -#ifdef UNK -/* 5.783185962946784521175995758455807035071 */ -static double DR1 = 5.78318596294678452118E0; -/* 30.47126234366208639907816317502275584842 */ -static double DR2 = 3.04712623436620863991E1; -#endif - -#ifdef DEC -static unsigned short R1[] = {0040671,0007734,0001061,0056734}; -#define DR1 *(double *)R1 -static unsigned short R2[] = {0041363,0142445,0030416,0165567}; -#define DR2 *(double *)R2 -#endif - -#ifdef IBMPC -static unsigned short R1[] = {0x2bbb,0x8046,0x21fb,0x4017}; -#define DR1 *(double *)R1 -static unsigned short R2[] = {0xdd6f,0xa621,0x78a4,0x403e}; -#define DR2 *(double *)R2 -#endif - -#ifdef MIEEE -static unsigned short R1[] = {0x4017,0x21fb,0x8046,0x2bbb}; -#define DR1 *(double *)R1 -static unsigned short R2[] = {0x403e,0x78a4,0xa621,0xdd6f}; -#define DR2 *(double *)R2 -#endif - -#ifdef UNK -static double RP[4] = { --4.79443220978201773821E9, - 1.95617491946556577543E12, --2.49248344360967716204E14, - 9.70862251047306323952E15, -}; -static double RQ[8] = { -/* 1.00000000000000000000E0,*/ - 4.99563147152651017219E2, - 1.73785401676374683123E5, - 4.84409658339962045305E7, - 1.11855537045356834862E10, - 2.11277520115489217587E12, - 3.10518229857422583814E14, - 3.18121955943204943306E16, - 1.71086294081043136091E18, -}; -#endif -#ifdef DEC -static unsigned short RP[16] = { -0150216,0161235,0064344,0014450, -0052343,0135216,0035624,0144153, -0154142,0130247,0003310,0003667, -0055411,0173703,0047772,0176635, -}; -static unsigned short RQ[32] = { -/*0040200,0000000,0000000,0000000,*/ -0042371,0144025,0032265,0136137, -0044451,0133131,0132420,0151466, -0046470,0144641,0072540,0030636, -0050446,0126600,0045042,0044243, -0052365,0172633,0110301,0071063, -0054215,0032424,0062272,0043513, -0055742,0005013,0171731,0072335, -0057275,0170646,0036663,0013134, -}; -#endif -#ifdef IBMPC -static unsigned short RP[16] = { -0x8325,0xad1c,0xdc53,0xc1f1, -0x990d,0xc772,0x7751,0x427c, -0x00f7,0xe0d9,0x5614,0xc2ec, -0x5fb4,0x69ff,0x3ef8,0x4341, -}; -static unsigned short RQ[32] = { -/*0x0000,0x0000,0x0000,0x3ff0,*/ -0xb78c,0xa696,0x3902,0x407f, -0x1a67,0x36a2,0x36cb,0x4105, -0x0634,0x2eac,0x1934,0x4187, -0x4914,0x0944,0xd5b0,0x4204, -0x2e46,0x7218,0xbeb3,0x427e, -0x48e9,0x8c97,0xa6a2,0x42f1, -0x2e9c,0x7e7b,0x4141,0x435c, -0x62cc,0xc7b6,0xbe34,0x43b7, -}; -#endif -#ifdef MIEEE -static unsigned short RP[16] = { -0xc1f1,0xdc53,0xad1c,0x8325, -0x427c,0x7751,0xc772,0x990d, -0xc2ec,0x5614,0xe0d9,0x00f7, -0x4341,0x3ef8,0x69ff,0x5fb4, -}; -static unsigned short RQ[32] = { -/*0x3ff0,0x0000,0x0000,0x0000,*/ -0x407f,0x3902,0xa696,0xb78c, -0x4105,0x36cb,0x36a2,0x1a67, -0x4187,0x1934,0x2eac,0x0634, -0x4204,0xd5b0,0x0944,0x4914, -0x427e,0xbeb3,0x7218,0x2e46, -0x42f1,0xa6a2,0x8c97,0x48e9, -0x435c,0x4141,0x7e7b,0x2e9c, -0x43b7,0xbe34,0xc7b6,0x62cc, -}; -#endif - -#ifdef ANSIPROT -extern double polevl ( double, void *, int ); -extern double p1evl ( double, void *, int ); -extern double log ( double ); -extern double sin ( double ); -extern double cos ( double ); -extern double sqrt ( double ); -double j0 ( double ); -#else -double polevl(), p1evl(), log(), sin(), cos(), sqrt(); -double j0(); -#endif -extern double TWOOPI, SQ2OPI, PIO4; - -double j0(x) -double x; -{ -double w, z, p, q, xn; - -if( x < 0 ) - x = -x; - -if( x <= 5.0 ) - { - z = x * x; - if( x < 1.0e-5 ) - return( 1.0 - z/4.0 ); - - p = (z - DR1) * (z - DR2); - p = p * polevl( z, RP, 3)/p1evl( z, RQ, 8 ); - return( p ); - } - -w = 5.0/x; -q = 25.0/(x*x); -p = polevl( q, PP, 6)/polevl( q, PQ, 6 ); -q = polevl( q, QP, 7)/p1evl( q, QQ, 7 ); -xn = x - PIO4; -p = p * cos(xn) - w * q * sin(xn); -return( p * SQ2OPI / sqrt(x) ); -} - -/* y0() 2 */ -/* Bessel function of second kind, order zero */ - -/* Rational approximation coefficients YP[], YQ[] are used here. - * The function computed is y0(x) - 2 * log(x) * j0(x) / PI, - * whose value at x = 0 is 2 * ( log(0.5) + EUL ) / PI - * = 0.073804295108687225. - */ - -/* -#define PIO4 .78539816339744830962 -#define SQ2OPI .79788456080286535588 -*/ -extern double MAXNUM; - -double y0(x) -double x; -{ -double w, z, p, q, xn; - -if( x <= 5.0 ) - { - if( x <= 0.0 ) - { - mtherr( "y0", DOMAIN ); - return( -MAXNUM ); - } - z = x * x; - w = polevl( z, YP, 7) / p1evl( z, YQ, 7 ); - w += TWOOPI * log(x) * j0(x); - return( w ); - } - -w = 5.0/x; -z = 25.0 / (x * x); -p = polevl( z, PP, 6)/polevl( z, PQ, 6 ); -q = polevl( z, QP, 7)/p1evl( z, QQ, 7 ); -xn = x - PIO4; -p = p * sin(xn) + w * q * cos(xn); -return( p * SQ2OPI / sqrt(x) ); -} |