diff options
Diffstat (limited to 'libm/double/incbi.c')
-rw-r--r-- | libm/double/incbi.c | 313 |
1 files changed, 313 insertions, 0 deletions
diff --git a/libm/double/incbi.c b/libm/double/incbi.c new file mode 100644 index 000000000..817219c4a --- /dev/null +++ b/libm/double/incbi.c @@ -0,0 +1,313 @@ +/* incbi() + * + * Inverse of imcomplete beta integral + * + * + * + * SYNOPSIS: + * + * double a, b, x, y, incbi(); + * + * x = incbi( a, b, y ); + * + * + * + * DESCRIPTION: + * + * Given y, the function finds x such that + * + * incbet( a, b, x ) = y . + * + * The routine performs interval halving or Newton iterations to find the + * root of incbet(a,b,x) - y = 0. + * + * + * ACCURACY: + * + * Relative error: + * x a,b + * arithmetic domain domain # trials peak rms + * IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13 + * IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15 + * IEEE 0,1 0,5 50000 1.1e-12 5.5e-15 + * VAX 0,1 .5,100 25000 3.5e-14 1.1e-15 + * With a and b constrained to half-integer or integer values: + * IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13 + * IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16 + * With a = .5, b constrained to half-integer or integer values: + * IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11 + */ + + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1996, 2000 by Stephen L. Moshier +*/ + +#include <math.h> + +extern double MACHEP, MAXNUM, MAXLOG, MINLOG; +#ifdef ANSIPROT +extern double ndtri ( double ); +extern double exp ( double ); +extern double fabs ( double ); +extern double log ( double ); +extern double sqrt ( double ); +extern double lgam ( double ); +extern double incbet ( double, double, double ); +#else +double ndtri(), exp(), fabs(), log(), sqrt(), lgam(), incbet(); +#endif + +double incbi( aa, bb, yy0 ) +double aa, bb, yy0; +{ +double a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt; +int i, rflg, dir, nflg; + + +i = 0; +if( yy0 <= 0 ) + return(0.0); +if( yy0 >= 1.0 ) + return(1.0); +x0 = 0.0; +yl = 0.0; +x1 = 1.0; +yh = 1.0; +nflg = 0; + +if( aa <= 1.0 || bb <= 1.0 ) + { + dithresh = 1.0e-6; + rflg = 0; + a = aa; + b = bb; + y0 = yy0; + x = a/(a+b); + y = incbet( a, b, x ); + goto ihalve; + } +else + { + dithresh = 1.0e-4; + } +/* approximation to inverse function */ + +yp = -ndtri(yy0); + +if( yy0 > 0.5 ) + { + rflg = 1; + a = bb; + b = aa; + y0 = 1.0 - yy0; + yp = -yp; + } +else + { + rflg = 0; + a = aa; + b = bb; + y0 = yy0; + } + +lgm = (yp * yp - 3.0)/6.0; +x = 2.0/( 1.0/(2.0*a-1.0) + 1.0/(2.0*b-1.0) ); +d = yp * sqrt( x + lgm ) / x + - ( 1.0/(2.0*b-1.0) - 1.0/(2.0*a-1.0) ) + * (lgm + 5.0/6.0 - 2.0/(3.0*x)); +d = 2.0 * d; +if( d < MINLOG ) + { + x = 1.0; + goto under; + } +x = a/( a + b * exp(d) ); +y = incbet( a, b, x ); +yp = (y - y0)/y0; +if( fabs(yp) < 0.2 ) + goto newt; + +/* Resort to interval halving if not close enough. */ +ihalve: + +dir = 0; +di = 0.5; +for( i=0; i<100; i++ ) + { + if( i != 0 ) + { + x = x0 + di * (x1 - x0); + if( x == 1.0 ) + x = 1.0 - MACHEP; + if( x == 0.0 ) + { + di = 0.5; + x = x0 + di * (x1 - x0); + if( x == 0.0 ) + goto under; + } + y = incbet( a, b, x ); + yp = (x1 - x0)/(x1 + x0); + if( fabs(yp) < dithresh ) + goto newt; + yp = (y-y0)/y0; + if( fabs(yp) < dithresh ) + goto newt; + } + if( y < y0 ) + { + x0 = x; + yl = y; + if( dir < 0 ) + { + dir = 0; + di = 0.5; + } + else if( dir > 3 ) + di = 1.0 - (1.0 - di) * (1.0 - di); + else if( dir > 1 ) + di = 0.5 * di + 0.5; + else + di = (y0 - y)/(yh - yl); + dir += 1; + if( x0 > 0.75 ) + { + if( rflg == 1 ) + { + rflg = 0; + a = aa; + b = bb; + y0 = yy0; + } + else + { + rflg = 1; + a = bb; + b = aa; + y0 = 1.0 - yy0; + } + x = 1.0 - x; + y = incbet( a, b, x ); + x0 = 0.0; + yl = 0.0; + x1 = 1.0; + yh = 1.0; + goto ihalve; + } + } + else + { + x1 = x; + if( rflg == 1 && x1 < MACHEP ) + { + x = 0.0; + goto done; + } + yh = y; + if( dir > 0 ) + { + dir = 0; + di = 0.5; + } + else if( dir < -3 ) + di = di * di; + else if( dir < -1 ) + di = 0.5 * di; + else + di = (y - y0)/(yh - yl); + dir -= 1; + } + } +mtherr( "incbi", PLOSS ); +if( x0 >= 1.0 ) + { + x = 1.0 - MACHEP; + goto done; + } +if( x <= 0.0 ) + { +under: + mtherr( "incbi", UNDERFLOW ); + x = 0.0; + goto done; + } + +newt: + +if( nflg ) + goto done; +nflg = 1; +lgm = lgam(a+b) - lgam(a) - lgam(b); + +for( i=0; i<8; i++ ) + { + /* Compute the function at this point. */ + if( i != 0 ) + y = incbet(a,b,x); + if( y < yl ) + { + x = x0; + y = yl; + } + else if( y > yh ) + { + x = x1; + y = yh; + } + else if( y < y0 ) + { + x0 = x; + yl = y; + } + else + { + x1 = x; + yh = y; + } + if( x == 1.0 || x == 0.0 ) + break; + /* Compute the derivative of the function at this point. */ + d = (a - 1.0) * log(x) + (b - 1.0) * log(1.0-x) + lgm; + if( d < MINLOG ) + goto done; + if( d > MAXLOG ) + break; + d = exp(d); + /* Compute the step to the next approximation of x. */ + d = (y - y0)/d; + xt = x - d; + if( xt <= x0 ) + { + y = (x - x0) / (x1 - x0); + xt = x0 + 0.5 * y * (x - x0); + if( xt <= 0.0 ) + break; + } + if( xt >= x1 ) + { + y = (x1 - x) / (x1 - x0); + xt = x1 - 0.5 * y * (x1 - x); + if( xt >= 1.0 ) + break; + } + x = xt; + if( fabs(d/x) < 128.0 * MACHEP ) + goto done; + } +/* Did not converge. */ +dithresh = 256.0 * MACHEP; +goto ihalve; + +done: + +if( rflg ) + { + if( x <= MACHEP ) + x = 1.0 - MACHEP; + else + x = 1.0 - x; + } +return( x ); +} |