summaryrefslogtreecommitdiff
path: root/libm/double/incbet.c
diff options
context:
space:
mode:
Diffstat (limited to 'libm/double/incbet.c')
-rw-r--r--libm/double/incbet.c409
1 files changed, 409 insertions, 0 deletions
diff --git a/libm/double/incbet.c b/libm/double/incbet.c
new file mode 100644
index 000000000..ec236747d
--- /dev/null
+++ b/libm/double/incbet.c
@@ -0,0 +1,409 @@
+/* incbet.c
+ *
+ * Incomplete beta integral
+ *
+ *
+ * SYNOPSIS:
+ *
+ * double a, b, x, y, incbet();
+ *
+ * y = incbet( a, b, x );
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns incomplete beta integral of the arguments, evaluated
+ * from zero to x. The function is defined as
+ *
+ * x
+ * - -
+ * | (a+b) | | a-1 b-1
+ * ----------- | t (1-t) dt.
+ * - - | |
+ * | (a) | (b) -
+ * 0
+ *
+ * The domain of definition is 0 <= x <= 1. In this
+ * implementation a and b are restricted to positive values.
+ * The integral from x to 1 may be obtained by the symmetry
+ * relation
+ *
+ * 1 - incbet( a, b, x ) = incbet( b, a, 1-x ).
+ *
+ * The integral is evaluated by a continued fraction expansion
+ * or, when b*x is small, by a power series.
+ *
+ * ACCURACY:
+ *
+ * Tested at uniformly distributed random points (a,b,x) with a and b
+ * in "domain" and x between 0 and 1.
+ * Relative error
+ * arithmetic domain # trials peak rms
+ * IEEE 0,5 10000 6.9e-15 4.5e-16
+ * IEEE 0,85 250000 2.2e-13 1.7e-14
+ * IEEE 0,1000 30000 5.3e-12 6.3e-13
+ * IEEE 0,10000 250000 9.3e-11 7.1e-12
+ * IEEE 0,100000 10000 8.7e-10 4.8e-11
+ * Outputs smaller than the IEEE gradual underflow threshold
+ * were excluded from these statistics.
+ *
+ * ERROR MESSAGES:
+ * message condition value returned
+ * incbet domain x<0, x>1 0.0
+ * incbet underflow 0.0
+ */
+
+
+/*
+Cephes Math Library, Release 2.8: June, 2000
+Copyright 1984, 1995, 2000 by Stephen L. Moshier
+*/
+
+#include <math.h>
+
+#ifdef DEC
+#define MAXGAM 34.84425627277176174
+#else
+#define MAXGAM 171.624376956302725
+#endif
+
+extern double MACHEP, MINLOG, MAXLOG;
+#ifdef ANSIPROT
+extern double gamma ( double );
+extern double lgam ( double );
+extern double exp ( double );
+extern double log ( double );
+extern double pow ( double, double );
+extern double fabs ( double );
+static double incbcf(double, double, double);
+static double incbd(double, double, double);
+static double pseries(double, double, double);
+#else
+double gamma(), lgam(), exp(), log(), pow(), fabs();
+static double incbcf(), incbd(), pseries();
+#endif
+
+static double big = 4.503599627370496e15;
+static double biginv = 2.22044604925031308085e-16;
+
+
+double incbet( aa, bb, xx )
+double aa, bb, xx;
+{
+double a, b, t, x, xc, w, y;
+int flag;
+
+if( aa <= 0.0 || bb <= 0.0 )
+ goto domerr;
+
+if( (xx <= 0.0) || ( xx >= 1.0) )
+ {
+ if( xx == 0.0 )
+ return(0.0);
+ if( xx == 1.0 )
+ return( 1.0 );
+domerr:
+ mtherr( "incbet", DOMAIN );
+ return( 0.0 );
+ }
+
+flag = 0;
+if( (bb * xx) <= 1.0 && xx <= 0.95)
+ {
+ t = pseries(aa, bb, xx);
+ goto done;
+ }
+
+w = 1.0 - xx;
+
+/* Reverse a and b if x is greater than the mean. */
+if( xx > (aa/(aa+bb)) )
+ {
+ flag = 1;
+ a = bb;
+ b = aa;
+ xc = xx;
+ x = w;
+ }
+else
+ {
+ a = aa;
+ b = bb;
+ xc = w;
+ x = xx;
+ }
+
+if( flag == 1 && (b * x) <= 1.0 && x <= 0.95)
+ {
+ t = pseries(a, b, x);
+ goto done;
+ }
+
+/* Choose expansion for better convergence. */
+y = x * (a+b-2.0) - (a-1.0);
+if( y < 0.0 )
+ w = incbcf( a, b, x );
+else
+ w = incbd( a, b, x ) / xc;
+
+/* Multiply w by the factor
+ a b _ _ _
+ x (1-x) | (a+b) / ( a | (a) | (b) ) . */
+
+y = a * log(x);
+t = b * log(xc);
+if( (a+b) < MAXGAM && fabs(y) < MAXLOG && fabs(t) < MAXLOG )
+ {
+ t = pow(xc,b);
+ t *= pow(x,a);
+ t /= a;
+ t *= w;
+ t *= gamma(a+b) / (gamma(a) * gamma(b));
+ goto done;
+ }
+/* Resort to logarithms. */
+y += t + lgam(a+b) - lgam(a) - lgam(b);
+y += log(w/a);
+if( y < MINLOG )
+ t = 0.0;
+else
+ t = exp(y);
+
+done:
+
+if( flag == 1 )
+ {
+ if( t <= MACHEP )
+ t = 1.0 - MACHEP;
+ else
+ t = 1.0 - t;
+ }
+return( t );
+}
+
+/* Continued fraction expansion #1
+ * for incomplete beta integral
+ */
+
+static double incbcf( a, b, x )
+double a, b, x;
+{
+double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
+double k1, k2, k3, k4, k5, k6, k7, k8;
+double r, t, ans, thresh;
+int n;
+
+k1 = a;
+k2 = a + b;
+k3 = a;
+k4 = a + 1.0;
+k5 = 1.0;
+k6 = b - 1.0;
+k7 = k4;
+k8 = a + 2.0;
+
+pkm2 = 0.0;
+qkm2 = 1.0;
+pkm1 = 1.0;
+qkm1 = 1.0;
+ans = 1.0;
+r = 1.0;
+n = 0;
+thresh = 3.0 * MACHEP;
+do
+ {
+
+ xk = -( x * k1 * k2 )/( k3 * k4 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ xk = ( x * k5 * k6 )/( k7 * k8 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ if( qk != 0 )
+ r = pk/qk;
+ if( r != 0 )
+ {
+ t = fabs( (ans - r)/r );
+ ans = r;
+ }
+ else
+ t = 1.0;
+
+ if( t < thresh )
+ goto cdone;
+
+ k1 += 1.0;
+ k2 += 1.0;
+ k3 += 2.0;
+ k4 += 2.0;
+ k5 += 1.0;
+ k6 -= 1.0;
+ k7 += 2.0;
+ k8 += 2.0;
+
+ if( (fabs(qk) + fabs(pk)) > big )
+ {
+ pkm2 *= biginv;
+ pkm1 *= biginv;
+ qkm2 *= biginv;
+ qkm1 *= biginv;
+ }
+ if( (fabs(qk) < biginv) || (fabs(pk) < biginv) )
+ {
+ pkm2 *= big;
+ pkm1 *= big;
+ qkm2 *= big;
+ qkm1 *= big;
+ }
+ }
+while( ++n < 300 );
+
+cdone:
+return(ans);
+}
+
+
+/* Continued fraction expansion #2
+ * for incomplete beta integral
+ */
+
+static double incbd( a, b, x )
+double a, b, x;
+{
+double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
+double k1, k2, k3, k4, k5, k6, k7, k8;
+double r, t, ans, z, thresh;
+int n;
+
+k1 = a;
+k2 = b - 1.0;
+k3 = a;
+k4 = a + 1.0;
+k5 = 1.0;
+k6 = a + b;
+k7 = a + 1.0;;
+k8 = a + 2.0;
+
+pkm2 = 0.0;
+qkm2 = 1.0;
+pkm1 = 1.0;
+qkm1 = 1.0;
+z = x / (1.0-x);
+ans = 1.0;
+r = 1.0;
+n = 0;
+thresh = 3.0 * MACHEP;
+do
+ {
+
+ xk = -( z * k1 * k2 )/( k3 * k4 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ xk = ( z * k5 * k6 )/( k7 * k8 );
+ pk = pkm1 + pkm2 * xk;
+ qk = qkm1 + qkm2 * xk;
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ if( qk != 0 )
+ r = pk/qk;
+ if( r != 0 )
+ {
+ t = fabs( (ans - r)/r );
+ ans = r;
+ }
+ else
+ t = 1.0;
+
+ if( t < thresh )
+ goto cdone;
+
+ k1 += 1.0;
+ k2 -= 1.0;
+ k3 += 2.0;
+ k4 += 2.0;
+ k5 += 1.0;
+ k6 += 1.0;
+ k7 += 2.0;
+ k8 += 2.0;
+
+ if( (fabs(qk) + fabs(pk)) > big )
+ {
+ pkm2 *= biginv;
+ pkm1 *= biginv;
+ qkm2 *= biginv;
+ qkm1 *= biginv;
+ }
+ if( (fabs(qk) < biginv) || (fabs(pk) < biginv) )
+ {
+ pkm2 *= big;
+ pkm1 *= big;
+ qkm2 *= big;
+ qkm1 *= big;
+ }
+ }
+while( ++n < 300 );
+cdone:
+return(ans);
+}
+
+/* Power series for incomplete beta integral.
+ Use when b*x is small and x not too close to 1. */
+
+static double pseries( a, b, x )
+double a, b, x;
+{
+double s, t, u, v, n, t1, z, ai;
+
+ai = 1.0 / a;
+u = (1.0 - b) * x;
+v = u / (a + 1.0);
+t1 = v;
+t = u;
+n = 2.0;
+s = 0.0;
+z = MACHEP * ai;
+while( fabs(v) > z )
+ {
+ u = (n - b) * x / n;
+ t *= u;
+ v = t / (a + n);
+ s += v;
+ n += 1.0;
+ }
+s += t1;
+s += ai;
+
+u = a * log(x);
+if( (a+b) < MAXGAM && fabs(u) < MAXLOG )
+ {
+ t = gamma(a+b)/(gamma(a)*gamma(b));
+ s = s * t * pow(x,a);
+ }
+else
+ {
+ t = lgam(a+b) - lgam(a) - lgam(b) + u + log(s);
+ if( t < MINLOG )
+ s = 0.0;
+ else
+ s = exp(t);
+ }
+return(s);
+}