diff options
Diffstat (limited to 'libm/double/igam.c')
-rw-r--r-- | libm/double/igam.c | 210 |
1 files changed, 0 insertions, 210 deletions
diff --git a/libm/double/igam.c b/libm/double/igam.c deleted file mode 100644 index a1d0bab36..000000000 --- a/libm/double/igam.c +++ /dev/null @@ -1,210 +0,0 @@ -/* igam.c - * - * Incomplete gamma integral - * - * - * - * SYNOPSIS: - * - * double a, x, y, igam(); - * - * y = igam( a, x ); - * - * DESCRIPTION: - * - * The function is defined by - * - * x - * - - * 1 | | -t a-1 - * igam(a,x) = ----- | e t dt. - * - | | - * | (a) - - * 0 - * - * - * In this implementation both arguments must be positive. - * The integral is evaluated by either a power series or - * continued fraction expansion, depending on the relative - * values of a and x. - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,30 200000 3.6e-14 2.9e-15 - * IEEE 0,100 300000 9.9e-14 1.5e-14 - */ -/* igamc() - * - * Complemented incomplete gamma integral - * - * - * - * SYNOPSIS: - * - * double a, x, y, igamc(); - * - * y = igamc( a, x ); - * - * DESCRIPTION: - * - * The function is defined by - * - * - * igamc(a,x) = 1 - igam(a,x) - * - * inf. - * - - * 1 | | -t a-1 - * = ----- | e t dt. - * - | | - * | (a) - - * x - * - * - * In this implementation both arguments must be positive. - * The integral is evaluated by either a power series or - * continued fraction expansion, depending on the relative - * values of a and x. - * - * ACCURACY: - * - * Tested at random a, x. - * a x Relative error: - * arithmetic domain domain # trials peak rms - * IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 - * IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 - */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1985, 1987, 2000 by Stephen L. Moshier -*/ - -#include <math.h> -#ifdef ANSIPROT -extern double lgam ( double ); -extern double exp ( double ); -extern double log ( double ); -extern double fabs ( double ); -extern double igam ( double, double ); -extern double igamc ( double, double ); -#else -double lgam(), exp(), log(), fabs(), igam(), igamc(); -#endif - -extern double MACHEP, MAXLOG; -static double big = 4.503599627370496e15; -static double biginv = 2.22044604925031308085e-16; - -double igamc( a, x ) -double a, x; -{ -double ans, ax, c, yc, r, t, y, z; -double pk, pkm1, pkm2, qk, qkm1, qkm2; - -if( (x <= 0) || ( a <= 0) ) - return( 1.0 ); - -if( (x < 1.0) || (x < a) ) - return( 1.0 - igam(a,x) ); - -ax = a * log(x) - x - lgam(a); -if( ax < -MAXLOG ) - { - mtherr( "igamc", UNDERFLOW ); - return( 0.0 ); - } -ax = exp(ax); - -/* continued fraction */ -y = 1.0 - a; -z = x + y + 1.0; -c = 0.0; -pkm2 = 1.0; -qkm2 = x; -pkm1 = x + 1.0; -qkm1 = z * x; -ans = pkm1/qkm1; - -do - { - c += 1.0; - y += 1.0; - z += 2.0; - yc = y * c; - pk = pkm1 * z - pkm2 * yc; - qk = qkm1 * z - qkm2 * yc; - if( qk != 0 ) - { - r = pk/qk; - t = fabs( (ans - r)/r ); - ans = r; - } - else - t = 1.0; - pkm2 = pkm1; - pkm1 = pk; - qkm2 = qkm1; - qkm1 = qk; - if( fabs(pk) > big ) - { - pkm2 *= biginv; - pkm1 *= biginv; - qkm2 *= biginv; - qkm1 *= biginv; - } - } -while( t > MACHEP ); - -return( ans * ax ); -} - - - -/* left tail of incomplete gamma function: - * - * inf. k - * a -x - x - * x e > ---------- - * - - - * k=0 | (a+k+1) - * - */ - -double igam( a, x ) -double a, x; -{ -double ans, ax, c, r; - -if( (x <= 0) || ( a <= 0) ) - return( 0.0 ); - -if( (x > 1.0) && (x > a ) ) - return( 1.0 - igamc(a,x) ); - -/* Compute x**a * exp(-x) / gamma(a) */ -ax = a * log(x) - x - lgam(a); -if( ax < -MAXLOG ) - { - mtherr( "igam", UNDERFLOW ); - return( 0.0 ); - } -ax = exp(ax); - -/* power series */ -r = a; -c = 1.0; -ans = 1.0; - -do - { - r += 1.0; - c *= x/r; - ans += c; - } -while( c/ans > MACHEP ); - -return( ans * ax/a ); -} |