diff options
Diffstat (limited to 'libm/double/exp.c')
-rw-r--r-- | libm/double/exp.c | 203 |
1 files changed, 0 insertions, 203 deletions
diff --git a/libm/double/exp.c b/libm/double/exp.c deleted file mode 100644 index 6d0a8a872..000000000 --- a/libm/double/exp.c +++ /dev/null @@ -1,203 +0,0 @@ -/* exp.c - * - * Exponential function - * - * - * - * SYNOPSIS: - * - * double x, y, exp(); - * - * y = exp( x ); - * - * - * - * DESCRIPTION: - * - * Returns e (2.71828...) raised to the x power. - * - * Range reduction is accomplished by separating the argument - * into an integer k and fraction f such that - * - * x k f - * e = 2 e. - * - * A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) - * of degree 2/3 is used to approximate exp(f) in the basic - * interval [-0.5, 0.5]. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC +- 88 50000 2.8e-17 7.0e-18 - * IEEE +- 708 40000 2.0e-16 5.6e-17 - * - * - * Error amplification in the exponential function can be - * a serious matter. The error propagation involves - * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), - * which shows that a 1 lsb error in representing X produces - * a relative error of X times 1 lsb in the function. - * While the routine gives an accurate result for arguments - * that are exactly represented by a double precision - * computer number, the result contains amplified roundoff - * error for large arguments not exactly represented. - * - * - * ERROR MESSAGES: - * - * message condition value returned - * exp underflow x < MINLOG 0.0 - * exp overflow x > MAXLOG INFINITY - * - */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1995, 2000 by Stephen L. Moshier -*/ - - -/* Exponential function */ - -#include <math.h> - -#ifdef UNK - -static double P[] = { - 1.26177193074810590878E-4, - 3.02994407707441961300E-2, - 9.99999999999999999910E-1, -}; -static double Q[] = { - 3.00198505138664455042E-6, - 2.52448340349684104192E-3, - 2.27265548208155028766E-1, - 2.00000000000000000009E0, -}; -static double C1 = 6.93145751953125E-1; -static double C2 = 1.42860682030941723212E-6; -#endif - -#ifdef DEC -static unsigned short P[] = { -0035004,0047156,0127442,0057502, -0036770,0033210,0063121,0061764, -0040200,0000000,0000000,0000000, -}; -static unsigned short Q[] = { -0033511,0072665,0160662,0176377, -0036045,0070715,0124105,0132777, -0037550,0134114,0142077,0001637, -0040400,0000000,0000000,0000000, -}; -static unsigned short sc1[] = {0040061,0071000,0000000,0000000}; -#define C1 (*(double *)sc1) -static unsigned short sc2[] = {0033277,0137216,0075715,0057117}; -#define C2 (*(double *)sc2) -#endif - -#ifdef IBMPC -static unsigned short P[] = { -0x4be8,0xd5e4,0x89cd,0x3f20, -0x2c7e,0x0cca,0x06d1,0x3f9f, -0x0000,0x0000,0x0000,0x3ff0, -}; -static unsigned short Q[] = { -0x5fa0,0xbc36,0x2eb6,0x3ec9, -0xb6c0,0xb508,0xae39,0x3f64, -0xe074,0x9887,0x1709,0x3fcd, -0x0000,0x0000,0x0000,0x4000, -}; -static unsigned short sc1[] = {0x0000,0x0000,0x2e40,0x3fe6}; -#define C1 (*(double *)sc1) -static unsigned short sc2[] = {0xabca,0xcf79,0xf7d1,0x3eb7}; -#define C2 (*(double *)sc2) -#endif - -#ifdef MIEEE -static unsigned short P[] = { -0x3f20,0x89cd,0xd5e4,0x4be8, -0x3f9f,0x06d1,0x0cca,0x2c7e, -0x3ff0,0x0000,0x0000,0x0000, -}; -static unsigned short Q[] = { -0x3ec9,0x2eb6,0xbc36,0x5fa0, -0x3f64,0xae39,0xb508,0xb6c0, -0x3fcd,0x1709,0x9887,0xe074, -0x4000,0x0000,0x0000,0x0000, -}; -static unsigned short sc1[] = {0x3fe6,0x2e40,0x0000,0x0000}; -#define C1 (*(double *)sc1) -static unsigned short sc2[] = {0x3eb7,0xf7d1,0xcf79,0xabca}; -#define C2 (*(double *)sc2) -#endif - -#ifdef ANSIPROT -extern double polevl ( double, void *, int ); -extern double p1evl ( double, void *, int ); -extern double floor ( double ); -extern double ldexp ( double, int ); -extern int isnan ( double ); -extern int isfinite ( double ); -#else -double polevl(), p1evl(), floor(), ldexp(); -int isnan(), isfinite(); -#endif -extern double LOGE2, LOG2E, MAXLOG, MINLOG, MAXNUM; -#ifdef INFINITIES -extern double INFINITY; -#endif - -double exp(x) -double x; -{ -double px, xx; -int n; - -#ifdef NANS -if( isnan(x) ) - return(x); -#endif -if( x > MAXLOG) - { -#ifdef INFINITIES - return( INFINITY ); -#else - mtherr( "exp", OVERFLOW ); - return( MAXNUM ); -#endif - } - -if( x < MINLOG ) - { -#ifndef INFINITIES - mtherr( "exp", UNDERFLOW ); -#endif - return(0.0); - } - -/* Express e**x = e**g 2**n - * = e**g e**( n loge(2) ) - * = e**( g + n loge(2) ) - */ -px = floor( LOG2E * x + 0.5 ); /* floor() truncates toward -infinity. */ -n = px; -x -= px * C1; -x -= px * C2; - -/* rational approximation for exponential - * of the fractional part: - * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) - */ -xx = x * x; -px = x * polevl( xx, P, 2 ); -x = px/( polevl( xx, Q, 3 ) - px ); -x = 1.0 + 2.0 * x; - -/* multiply by power of 2 */ -x = ldexp( x, n ); -return(x); -} |