diff options
Diffstat (limited to 'libm/double/ellpk.c')
-rw-r--r-- | libm/double/ellpk.c | 234 |
1 files changed, 234 insertions, 0 deletions
diff --git a/libm/double/ellpk.c b/libm/double/ellpk.c new file mode 100644 index 000000000..8b36690e2 --- /dev/null +++ b/libm/double/ellpk.c @@ -0,0 +1,234 @@ +/* ellpk.c + * + * Complete elliptic integral of the first kind + * + * + * + * SYNOPSIS: + * + * double m1, y, ellpk(); + * + * y = ellpk( m1 ); + * + * + * + * DESCRIPTION: + * + * Approximates the integral + * + * + * + * pi/2 + * - + * | | + * | dt + * K(m) = | ------------------ + * | 2 + * | | sqrt( 1 - m sin t ) + * - + * 0 + * + * where m = 1 - m1, using the approximation + * + * P(x) - log x Q(x). + * + * The argument m1 is used rather than m so that the logarithmic + * singularity at m = 1 will be shifted to the origin; this + * preserves maximum accuracy. + * + * K(0) = pi/2. + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC 0,1 16000 3.5e-17 1.1e-17 + * IEEE 0,1 30000 2.5e-16 6.8e-17 + * + * ERROR MESSAGES: + * + * message condition value returned + * ellpk domain x<0, x>1 0.0 + * + */ + +/* ellpk.c */ + + +/* +Cephes Math Library, Release 2.8: June, 2000 +Copyright 1984, 1987, 2000 by Stephen L. Moshier +*/ + +#include <math.h> + +#ifdef DEC +static unsigned short P[] = +{ +0035020,0127576,0040430,0051544, +0036025,0070136,0042703,0153716, +0036402,0122614,0062555,0077777, +0036441,0102130,0072334,0025172, +0036341,0043320,0117242,0172076, +0036312,0146456,0077242,0154141, +0036420,0003467,0013727,0035407, +0036564,0137263,0110651,0020237, +0036775,0001330,0144056,0020305, +0037305,0144137,0157521,0141734, +0040261,0071027,0173721,0147572 +}; +static unsigned short Q[] = +{ +0034366,0130371,0103453,0077633, +0035557,0122745,0173515,0113016, +0036302,0124470,0167304,0074473, +0036575,0132403,0117226,0117576, +0036703,0156271,0047124,0147733, +0036766,0137465,0002053,0157312, +0037031,0014423,0154274,0176515, +0037107,0177747,0143216,0016145, +0037217,0177777,0172621,0074000, +0037377,0177777,0177776,0156435, +0040000,0000000,0000000,0000000 +}; +static unsigned short ac1[] = {0040261,0071027,0173721,0147572}; +#define C1 (*(double *)ac1) +#endif + +#ifdef IBMPC +static unsigned short P[] = +{ +0x0a6d,0xc823,0x15ef,0x3f22, +0x7afa,0xc8b8,0xae0b,0x3f62, +0xb000,0x8cad,0x54b1,0x3f80, +0x854f,0x0e9b,0x308b,0x3f84, +0x5e88,0x13d4,0x28da,0x3f7c, +0x5b0c,0xcfd4,0x59a5,0x3f79, +0xe761,0xe2fa,0x00e6,0x3f82, +0x2414,0x7235,0x97d6,0x3f8e, +0xc419,0x1905,0xa05b,0x3f9f, +0x387c,0xfbea,0xb90b,0x3fb8, +0x39ef,0xfefa,0x2e42,0x3ff6 +}; +static unsigned short Q[] = +{ +0x6ff3,0x30e5,0xd61f,0x3efe, +0xb2c2,0xbee9,0xf4bc,0x3f4d, +0x8f27,0x1dd8,0x5527,0x3f78, +0xd3f0,0x73d2,0xb6a0,0x3f8f, +0x99fb,0x29ca,0x7b97,0x3f98, +0x7bd9,0xa085,0xd7e6,0x3f9e, +0x9faa,0x7b17,0x2322,0x3fa3, +0xc38d,0xf8d1,0xfffc,0x3fa8, +0x2f00,0xfeb2,0xffff,0x3fb1, +0xdba4,0xffff,0xffff,0x3fbf, +0x0000,0x0000,0x0000,0x3fe0 +}; +static unsigned short ac1[] = {0x39ef,0xfefa,0x2e42,0x3ff6}; +#define C1 (*(double *)ac1) +#endif + +#ifdef MIEEE +static unsigned short P[] = +{ +0x3f22,0x15ef,0xc823,0x0a6d, +0x3f62,0xae0b,0xc8b8,0x7afa, +0x3f80,0x54b1,0x8cad,0xb000, +0x3f84,0x308b,0x0e9b,0x854f, +0x3f7c,0x28da,0x13d4,0x5e88, +0x3f79,0x59a5,0xcfd4,0x5b0c, +0x3f82,0x00e6,0xe2fa,0xe761, +0x3f8e,0x97d6,0x7235,0x2414, +0x3f9f,0xa05b,0x1905,0xc419, +0x3fb8,0xb90b,0xfbea,0x387c, +0x3ff6,0x2e42,0xfefa,0x39ef +}; +static unsigned short Q[] = +{ +0x3efe,0xd61f,0x30e5,0x6ff3, +0x3f4d,0xf4bc,0xbee9,0xb2c2, +0x3f78,0x5527,0x1dd8,0x8f27, +0x3f8f,0xb6a0,0x73d2,0xd3f0, +0x3f98,0x7b97,0x29ca,0x99fb, +0x3f9e,0xd7e6,0xa085,0x7bd9, +0x3fa3,0x2322,0x7b17,0x9faa, +0x3fa8,0xfffc,0xf8d1,0xc38d, +0x3fb1,0xffff,0xfeb2,0x2f00, +0x3fbf,0xffff,0xffff,0xdba4, +0x3fe0,0x0000,0x0000,0x0000 +}; +static unsigned short ac1[] = { +0x3ff6,0x2e42,0xfefa,0x39ef +}; +#define C1 (*(double *)ac1) +#endif + +#ifdef UNK +static double P[] = +{ + 1.37982864606273237150E-4, + 2.28025724005875567385E-3, + 7.97404013220415179367E-3, + 9.85821379021226008714E-3, + 6.87489687449949877925E-3, + 6.18901033637687613229E-3, + 8.79078273952743772254E-3, + 1.49380448916805252718E-2, + 3.08851465246711995998E-2, + 9.65735902811690126535E-2, + 1.38629436111989062502E0 +}; + +static double Q[] = +{ + 2.94078955048598507511E-5, + 9.14184723865917226571E-4, + 5.94058303753167793257E-3, + 1.54850516649762399335E-2, + 2.39089602715924892727E-2, + 3.01204715227604046988E-2, + 3.73774314173823228969E-2, + 4.88280347570998239232E-2, + 7.03124996963957469739E-2, + 1.24999999999870820058E-1, + 4.99999999999999999821E-1 +}; +static double C1 = 1.3862943611198906188E0; /* log(4) */ +#endif + +#ifdef ANSIPROT +extern double polevl ( double, void *, int ); +extern double p1evl ( double, void *, int ); +extern double log ( double ); +#else +double polevl(), p1evl(), log(); +#endif +extern double MACHEP, MAXNUM; + +double ellpk(x) +double x; +{ + +if( (x < 0.0) || (x > 1.0) ) + { + mtherr( "ellpk", DOMAIN ); + return( 0.0 ); + } + +if( x > MACHEP ) + { + return( polevl(x,P,10) - log(x) * polevl(x,Q,10) ); + } +else + { + if( x == 0.0 ) + { + mtherr( "ellpk", SING ); + return( MAXNUM ); + } + else + { + return( C1 - 0.5 * log(x) ); + } + } +} |