diff options
Diffstat (limited to 'libm/double/ellpj.c')
-rw-r--r-- | libm/double/ellpj.c | 171 |
1 files changed, 171 insertions, 0 deletions
diff --git a/libm/double/ellpj.c b/libm/double/ellpj.c new file mode 100644 index 000000000..327fc56e8 --- /dev/null +++ b/libm/double/ellpj.c @@ -0,0 +1,171 @@ +/* ellpj.c + * + * Jacobian Elliptic Functions + * + * + * + * SYNOPSIS: + * + * double u, m, sn, cn, dn, phi; + * int ellpj(); + * + * ellpj( u, m, _&sn, _&cn, _&dn, _&phi ); + * + * + * + * DESCRIPTION: + * + * + * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), + * and dn(u|m) of parameter m between 0 and 1, and real + * argument u. + * + * These functions are periodic, with quarter-period on the + * real axis equal to the complete elliptic integral + * ellpk(1.0-m). + * + * Relation to incomplete elliptic integral: + * If u = ellik(phi,m), then sn(u|m) = sin(phi), + * and cn(u|m) = cos(phi). Phi is called the amplitude of u. + * + * Computation is by means of the arithmetic-geometric mean + * algorithm, except when m is within 1e-9 of 0 or 1. In the + * latter case with m close to 1, the approximation applies + * only for phi < pi/2. + * + * ACCURACY: + * + * Tested at random points with u between 0 and 10, m between + * 0 and 1. + * + * Absolute error (* = relative error): + * arithmetic function # trials peak rms + * DEC sn 1800 4.5e-16 8.7e-17 + * IEEE phi 10000 9.2e-16* 1.4e-16* + * IEEE sn 50000 4.1e-15 4.6e-16 + * IEEE cn 40000 3.6e-15 4.4e-16 + * IEEE dn 10000 1.3e-12 1.8e-14 + * + * Peak error observed in consistency check using addition + * theorem for sn(u+v) was 4e-16 (absolute). Also tested by + * the above relation to the incomplete elliptic integral. + * Accuracy deteriorates when u is large. + * + */ + +/* ellpj.c */ + + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1987, 2000 by Stephen L. Moshier +*/ + +#include <math.h> +#ifdef ANSIPROT +extern double sqrt ( double ); +extern double fabs ( double ); +extern double sin ( double ); +extern double cos ( double ); +extern double asin ( double ); +extern double tanh ( double ); +extern double sinh ( double ); +extern double cosh ( double ); +extern double atan ( double ); +extern double exp ( double ); +#else +double sqrt(), fabs(), sin(), cos(), asin(), tanh(); +double sinh(), cosh(), atan(), exp(); +#endif +extern double PIO2, MACHEP; + +int ellpj( u, m, sn, cn, dn, ph ) +double u, m; +double *sn, *cn, *dn, *ph; +{ +double ai, b, phi, t, twon; +double a[9], c[9]; +int i; + + +/* Check for special cases */ + +if( m < 0.0 || m > 1.0 ) + { + mtherr( "ellpj", DOMAIN ); + *sn = 0.0; + *cn = 0.0; + *ph = 0.0; + *dn = 0.0; + return(-1); + } +if( m < 1.0e-9 ) + { + t = sin(u); + b = cos(u); + ai = 0.25 * m * (u - t*b); + *sn = t - ai*b; + *cn = b + ai*t; + *ph = u - ai; + *dn = 1.0 - 0.5*m*t*t; + return(0); + } + +if( m >= 0.9999999999 ) + { + ai = 0.25 * (1.0-m); + b = cosh(u); + t = tanh(u); + phi = 1.0/b; + twon = b * sinh(u); + *sn = t + ai * (twon - u)/(b*b); + *ph = 2.0*atan(exp(u)) - PIO2 + ai*(twon - u)/b; + ai *= t * phi; + *cn = phi - ai * (twon - u); + *dn = phi + ai * (twon + u); + return(0); + } + + +/* A. G. M. scale */ +a[0] = 1.0; +b = sqrt(1.0 - m); +c[0] = sqrt(m); +twon = 1.0; +i = 0; + +while( fabs(c[i]/a[i]) > MACHEP ) + { + if( i > 7 ) + { + mtherr( "ellpj", OVERFLOW ); + goto done; + } + ai = a[i]; + ++i; + c[i] = ( ai - b )/2.0; + t = sqrt( ai * b ); + a[i] = ( ai + b )/2.0; + b = t; + twon *= 2.0; + } + +done: + +/* backward recurrence */ +phi = twon * a[i] * u; +do + { + t = c[i] * sin(phi) / a[i]; + b = phi; + phi = (asin(t) + phi)/2.0; + } +while( --i ); + +*sn = sin(phi); +t = cos(phi); +*cn = t; +*dn = t/cos(phi-b); +*ph = phi; +return(0); +} |