diff options
Diffstat (limited to 'libm/double/ellie.c')
-rw-r--r-- | libm/double/ellie.c | 148 |
1 files changed, 148 insertions, 0 deletions
diff --git a/libm/double/ellie.c b/libm/double/ellie.c new file mode 100644 index 000000000..4f3379aa6 --- /dev/null +++ b/libm/double/ellie.c @@ -0,0 +1,148 @@ +/* ellie.c + * + * Incomplete elliptic integral of the second kind + * + * + * + * SYNOPSIS: + * + * double phi, m, y, ellie(); + * + * y = ellie( phi, m ); + * + * + * + * DESCRIPTION: + * + * Approximates the integral + * + * + * phi + * - + * | | + * | 2 + * E(phi_\m) = | sqrt( 1 - m sin t ) dt + * | + * | | + * - + * 0 + * + * of amplitude phi and modulus m, using the arithmetic - + * geometric mean algorithm. + * + * + * + * ACCURACY: + * + * Tested at random arguments with phi in [-10, 10] and m in + * [0, 1]. + * Relative error: + * arithmetic domain # trials peak rms + * DEC 0,2 2000 1.9e-16 3.4e-17 + * IEEE -10,10 150000 3.3e-15 1.4e-16 + * + * + */ + + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier +*/ + +/* Incomplete elliptic integral of second kind */ +#include <math.h> +extern double PI, PIO2, MACHEP; +#ifdef ANSIPROT +extern double sqrt ( double ); +extern double fabs ( double ); +extern double log ( double ); +extern double sin ( double x ); +extern double tan ( double x ); +extern double atan ( double ); +extern double floor ( double ); +extern double ellpe ( double ); +extern double ellpk ( double ); +double ellie ( double, double ); +#else +double sqrt(), fabs(), log(), sin(), tan(), atan(), floor(); +double ellpe(), ellpk(), ellie(); +#endif + +double ellie( phi, m ) +double phi, m; +{ +double a, b, c, e, temp; +double lphi, t, E; +int d, mod, npio2, sign; + +if( m == 0.0 ) + return( phi ); +lphi = phi; +npio2 = floor( lphi/PIO2 ); +if( npio2 & 1 ) + npio2 += 1; +lphi = lphi - npio2 * PIO2; +if( lphi < 0.0 ) + { + lphi = -lphi; + sign = -1; + } +else + { + sign = 1; + } +a = 1.0 - m; +E = ellpe( a ); +if( a == 0.0 ) + { + temp = sin( lphi ); + goto done; + } +t = tan( lphi ); +b = sqrt(a); +/* Thanks to Brian Fitzgerald <fitzgb@mml0.meche.rpi.edu> + for pointing out an instability near odd multiples of pi/2. */ +if( fabs(t) > 10.0 ) + { + /* Transform the amplitude */ + e = 1.0/(b*t); + /* ... but avoid multiple recursions. */ + if( fabs(e) < 10.0 ) + { + e = atan(e); + temp = E + m * sin( lphi ) * sin( e ) - ellie( e, m ); + goto done; + } + } +c = sqrt(m); +a = 1.0; +d = 1; +e = 0.0; +mod = 0; + +while( fabs(c/a) > MACHEP ) + { + temp = b/a; + lphi = lphi + atan(t*temp) + mod * PI; + mod = (lphi + PIO2)/PI; + t = t * ( 1.0 + temp )/( 1.0 - temp * t * t ); + c = ( a - b )/2.0; + temp = sqrt( a * b ); + a = ( a + b )/2.0; + b = temp; + d += d; + e += c * sin(lphi); + } + +temp = E / ellpk( 1.0 - m ); +temp *= (atan(t) + mod * PI)/(d * a); +temp += e; + +done: + +if( sign < 0 ) + temp = -temp; +temp += npio2 * E; +return( temp ); +} |