diff options
Diffstat (limited to 'libm/double/asin.c')
-rw-r--r-- | libm/double/asin.c | 324 |
1 files changed, 0 insertions, 324 deletions
diff --git a/libm/double/asin.c b/libm/double/asin.c deleted file mode 100644 index 1f83eccc8..000000000 --- a/libm/double/asin.c +++ /dev/null @@ -1,324 +0,0 @@ -/* asin.c - * - * Inverse circular sine - * - * - * - * SYNOPSIS: - * - * double x, y, asin(); - * - * y = asin( x ); - * - * - * - * DESCRIPTION: - * - * Returns radian angle between -pi/2 and +pi/2 whose sine is x. - * - * A rational function of the form x + x**3 P(x**2)/Q(x**2) - * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is - * transformed by the identity - * - * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -1, 1 40000 2.6e-17 7.1e-18 - * IEEE -1, 1 10^6 1.9e-16 5.4e-17 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * asin domain |x| > 1 NAN - * - */ -/* acos() - * - * Inverse circular cosine - * - * - * - * SYNOPSIS: - * - * double x, y, acos(); - * - * y = acos( x ); - * - * - * - * DESCRIPTION: - * - * Returns radian angle between 0 and pi whose cosine - * is x. - * - * Analytically, acos(x) = pi/2 - asin(x). However if |x| is - * near 1, there is cancellation error in subtracting asin(x) - * from pi/2. Hence if x < -0.5, - * - * acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) ); - * - * or if x > +0.5, - * - * acos(x) = 2.0 * asin( sqrt((1-x)/2) ). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC -1, 1 50000 3.3e-17 8.2e-18 - * IEEE -1, 1 10^6 2.2e-16 6.5e-17 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * asin domain |x| > 1 NAN - */ - -/* asin.c */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1984, 1995, 2000 by Stephen L. Moshier -*/ - -#include <math.h> - -/* arcsin(x) = x + x^3 P(x^2)/Q(x^2) - 0 <= x <= 0.625 - Peak relative error = 1.2e-18 */ -#if UNK -static double P[6] = { - 4.253011369004428248960E-3, --6.019598008014123785661E-1, - 5.444622390564711410273E0, --1.626247967210700244449E1, - 1.956261983317594739197E1, --8.198089802484824371615E0, -}; -static double Q[5] = { -/* 1.000000000000000000000E0, */ --1.474091372988853791896E1, - 7.049610280856842141659E1, --1.471791292232726029859E2, - 1.395105614657485689735E2, --4.918853881490881290097E1, -}; -#endif -#if DEC -static short P[24] = { -0036213,0056330,0057244,0053234, -0140032,0015011,0114762,0160255, -0040656,0035130,0136121,0067313, -0141202,0014616,0170474,0101731, -0041234,0100076,0151674,0111310, -0141003,0025540,0033165,0077246, -}; -static short Q[20] = { -/* 0040200,0000000,0000000,0000000, */ -0141153,0155310,0055360,0072530, -0041614,0177001,0027764,0101237, -0142023,0026733,0064653,0133266, -0042013,0101264,0023775,0176351, -0141504,0140420,0050660,0036543, -}; -#endif -#if IBMPC -static short P[24] = { -0x8ad3,0x0bd4,0x6b9b,0x3f71, -0x5c16,0x333e,0x4341,0xbfe3, -0x2dd9,0x178a,0xc74b,0x4015, -0x907b,0xde27,0x4331,0xc030, -0x9259,0xda77,0x9007,0x4033, -0xafd5,0x06ce,0x656c,0xc020, -}; -static short Q[20] = { -/* 0x0000,0x0000,0x0000,0x3ff0, */ -0x0eab,0x0b5e,0x7b59,0xc02d, -0x9054,0x25fe,0x9fc0,0x4051, -0x76d7,0x6d35,0x65bb,0xc062, -0xbf9d,0x84ff,0x7056,0x4061, -0x07ac,0x0a36,0x9822,0xc048, -}; -#endif -#if MIEEE -static short P[24] = { -0x3f71,0x6b9b,0x0bd4,0x8ad3, -0xbfe3,0x4341,0x333e,0x5c16, -0x4015,0xc74b,0x178a,0x2dd9, -0xc030,0x4331,0xde27,0x907b, -0x4033,0x9007,0xda77,0x9259, -0xc020,0x656c,0x06ce,0xafd5, -}; -static short Q[20] = { -/* 0x3ff0,0x0000,0x0000,0x0000, */ -0xc02d,0x7b59,0x0b5e,0x0eab, -0x4051,0x9fc0,0x25fe,0x9054, -0xc062,0x65bb,0x6d35,0x76d7, -0x4061,0x7056,0x84ff,0xbf9d, -0xc048,0x9822,0x0a36,0x07ac, -}; -#endif - -/* arcsin(1-x) = pi/2 - sqrt(2x)(1+R(x)) - 0 <= x <= 0.5 - Peak relative error = 4.2e-18 */ -#if UNK -static double R[5] = { - 2.967721961301243206100E-3, --5.634242780008963776856E-1, - 6.968710824104713396794E0, --2.556901049652824852289E1, - 2.853665548261061424989E1, -}; -static double S[4] = { -/* 1.000000000000000000000E0, */ --2.194779531642920639778E1, - 1.470656354026814941758E2, --3.838770957603691357202E2, - 3.424398657913078477438E2, -}; -#endif -#if DEC -static short R[20] = { -0036102,0077034,0142164,0174103, -0140020,0036222,0147711,0044173, -0040736,0177655,0153631,0171523, -0141314,0106525,0060015,0055474, -0041344,0045422,0003630,0040344, -}; -static short S[16] = { -/* 0040200,0000000,0000000,0000000, */ -0141257,0112425,0132772,0166136, -0042023,0010315,0075523,0175020, -0142277,0170104,0126203,0017563, -0042253,0034115,0102662,0022757, -}; -#endif -#if IBMPC -static short R[20] = { -0x9f08,0x988e,0x4fc3,0x3f68, -0x290f,0x59f9,0x0792,0xbfe2, -0x3e6a,0xbaf3,0xdff5,0x401b, -0xab68,0xac01,0x91aa,0xc039, -0x081d,0x40f3,0x8962,0x403c, -}; -static short S[16] = { -/* 0x0000,0x0000,0x0000,0x3ff0, */ -0x5d8c,0xb6bf,0xf2a2,0xc035, -0x7f42,0xaf6a,0x6219,0x4062, -0x63ee,0x9590,0xfe08,0xc077, -0x44be,0xb0b6,0x6709,0x4075, -}; -#endif -#if MIEEE -static short R[20] = { -0x3f68,0x4fc3,0x988e,0x9f08, -0xbfe2,0x0792,0x59f9,0x290f, -0x401b,0xdff5,0xbaf3,0x3e6a, -0xc039,0x91aa,0xac01,0xab68, -0x403c,0x8962,0x40f3,0x081d, -}; -static short S[16] = { -/* 0x3ff0,0x0000,0x0000,0x0000, */ -0xc035,0xf2a2,0xb6bf,0x5d8c, -0x4062,0x6219,0xaf6a,0x7f42, -0xc077,0xfe08,0x9590,0x63ee, -0x4075,0x6709,0xb0b6,0x44be, -}; -#endif - -/* pi/2 = PIO2 + MOREBITS. */ -#ifdef DEC -#define MOREBITS 5.721188726109831840122E-18 -#else -#define MOREBITS 6.123233995736765886130E-17 -#endif - -#ifdef ANSIPROT -extern double polevl ( double, void *, int ); -extern double p1evl ( double, void *, int ); -extern double sqrt ( double ); -double asin ( double ); -#else -double sqrt(), polevl(), p1evl(); -double asin(); -#endif -extern double PIO2, PIO4, NAN; - -double asin(x) -double x; -{ -double a, p, z, zz; -short sign; - -if( x > 0 ) - { - sign = 1; - a = x; - } -else - { - sign = -1; - a = -x; - } - -if( a > 1.0 ) - { - mtherr( "asin", DOMAIN ); - return( NAN ); - } - -if( a > 0.625 ) - { - /* arcsin(1-x) = pi/2 - sqrt(2x)(1+R(x)) */ - zz = 1.0 - a; - p = zz * polevl( zz, R, 4)/p1evl( zz, S, 4); - zz = sqrt(zz+zz); - z = PIO4 - zz; - zz = zz * p - MOREBITS; - z = z - zz; - z = z + PIO4; - } -else - { - if( a < 1.0e-8 ) - { - return(x); - } - zz = a * a; - z = zz * polevl( zz, P, 5)/p1evl( zz, Q, 5); - z = a * z + a; - } -if( sign < 0 ) - z = -z; -return(z); -} - - - -double acos(x) -double x; -{ -double z; - -if( (x < -1.0) || (x > 1.0) ) - { - mtherr( "acos", DOMAIN ); - return( NAN ); - } -if( x > 0.5 ) - { - return( 2.0 * asin( sqrt(0.5 - 0.5*x) ) ); - } -z = PIO4 - asin(x); -z = z + MOREBITS; -z = z + PIO4; -return( z ); -} |