diff options
Diffstat (limited to 'libc/sysdeps/linux/microblaze/fixdfsi.c')
-rw-r--r-- | libc/sysdeps/linux/microblaze/fixdfsi.c | 85 |
1 files changed, 0 insertions, 85 deletions
diff --git a/libc/sysdeps/linux/microblaze/fixdfsi.c b/libc/sysdeps/linux/microblaze/fixdfsi.c deleted file mode 100644 index 1611176aa..000000000 --- a/libc/sysdeps/linux/microblaze/fixdfsi.c +++ /dev/null @@ -1,85 +0,0 @@ -/* -** libgcc support for software floating point. -** Copyright (C) 1991 by Pipeline Associates, Inc. All rights reserved. -** Permission is granted to do *anything* you want with this file, -** commercial or otherwise, provided this message remains intact. So there! -** I would appreciate receiving any updates/patches/changes that anyone -** makes, and am willing to be the repository for said changes (am I -** making a big mistake?). - -Warning! Only single-precision is actually implemented. This file -won't really be much use until double-precision is supported. - -However, once that is done, this file might eventually become a -replacement for libgcc1.c. It might also make possible -cross-compilation for an IEEE target machine from a non-IEEE -host such as a VAX. - -If you'd like to work on completing this, please talk to rms@gnu.ai.mit.edu. - ---> Double precision floating support added by James Carlson on 20 April 1998. - -** -** Pat Wood -** Pipeline Associates, Inc. -** pipeline!phw@motown.com or -** sun!pipeline!phw or -** uunet!motown!pipeline!phw -** -** 05/01/91 -- V1.0 -- first release to gcc mailing lists -** 05/04/91 -- V1.1 -- added float and double prototypes and return values -** -- fixed problems with adding and subtracting zero -** -- fixed rounding in truncdfsf2 -** -- fixed SWAP define and tested on 386 -*/ - -/* -** The following are routines that replace the libgcc soft floating point -** routines that are called automatically when -msoft-float is selected. -** The support single and double precision IEEE format, with provisions -** for byte-swapped machines (tested on 386). Some of the double-precision -** routines work at full precision, but most of the hard ones simply punt -** and call the single precision routines, producing a loss of accuracy. -** long long support is not assumed or included. -** Overall accuracy is close to IEEE (actually 68882) for single-precision -** arithmetic. I think there may still be a 1 in 1000 chance of a bit -** being rounded the wrong way during a multiply. I'm not fussy enough to -** bother with it, but if anyone is, knock yourself out. -** -** Efficiency has only been addressed where it was obvious that something -** would make a big difference. Anyone who wants to do this right for -** best speed should go in and rewrite in assembler. -** -** I have tested this only on a 68030 workstation and 386/ix integrated -** in with -msoft-float. -*/ - -#include "floatlib.h" - -/* convert double to int */ -long -__fixdfsi (double a1) -{ - register union double_long dl1; - register int exp; - register long l; - - dl1.d = a1; - - if (!dl1.l.upper && !dl1.l.lower) - return (0); - - exp = EXPD (dl1) - EXCESSD - 31; - l = MANTD (dl1); - - if (exp > 0) - return SIGND(dl1) ? (1<<31) : ((1ul<<31)-1); - - /* shift down until exp = 0 or l = 0 */ - if (exp < 0 && exp > -32 && l) - l >>= -exp; - else - return (0); - - return (SIGND (dl1) ? -l : l); -} |