summaryrefslogtreecommitdiff
path: root/include/tgmath.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/tgmath.h')
-rw-r--r--include/tgmath.h430
1 files changed, 430 insertions, 0 deletions
diff --git a/include/tgmath.h b/include/tgmath.h
new file mode 100644
index 000000000..5fb683fef
--- /dev/null
+++ b/include/tgmath.h
@@ -0,0 +1,430 @@
+/* Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
+ This file is part of the GNU C Library.
+
+ The GNU C Library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Lesser General Public
+ License as published by the Free Software Foundation; either
+ version 2.1 of the License, or (at your option) any later version.
+
+ The GNU C Library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ Lesser General Public License for more details.
+
+ You should have received a copy of the GNU Lesser General Public
+ License along with the GNU C Library; if not, write to the Free
+ Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
+ 02111-1307 USA. */
+
+/*
+ * ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
+ */
+
+#ifndef _TGMATH_H
+#define _TGMATH_H 1
+
+/* Include the needed headers. */
+#include <math.h>
+#include <complex.h>
+
+
+/* Since `complex' is currently not really implemented in most C compilers
+ and if it is implemented, the implementations differ. This makes it
+ quite difficult to write a generic implementation of this header. We
+ do not try this for now and instead concentrate only on GNU CC. Once
+ we have more information support for other compilers might follow. */
+
+#if __GNUC_PREREQ (2, 7)
+
+# ifdef __NO_LONG_DOUBLE_MATH
+# define __tgml(fct) fct
+# else
+# define __tgml(fct) fct ## l
+# endif
+
+/* This is ugly but unless gcc gets appropriate builtins we have to do
+ something like this. Don't ask how it works. */
+
+/* 1 if 'type' is a floating type, 0 if 'type' is an integer type.
+ Allows for _Bool. Expands to an integer constant expression. */
+# define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1))
+
+/* The tgmath real type for T, where E is 0 if T is an integer type and
+ 1 for a floating type. */
+# define __tgmath_real_type_sub(T, E) \
+ __typeof__(*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
+ : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
+
+/* The tgmath real type of EXPR. */
+# define __tgmath_real_type(expr) \
+ __tgmath_real_type_sub(__typeof__(expr), __floating_type(__typeof__(expr)))
+
+
+/* We have two kinds of generic macros: to support functions which are
+ only defined on real valued parameters and those which are defined
+ for complex functions as well. */
+# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
+ (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
+ if (sizeof (Val) == sizeof (double) \
+ || __builtin_classify_type (Val) != 8) \
+ __tgmres = Fct (Val); \
+ else if (sizeof (Val) == sizeof (float)) \
+ __tgmres = Fct##f (Val); \
+ else \
+ __tgmres = __tgml(Fct) (Val); \
+ __tgmres; }))
+
+# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
+ (__extension__ ({ __tgmath_real_type (Val1) __tgmres; \
+ if (sizeof (Val1) == sizeof (double) \
+ || __builtin_classify_type (Val1) != 8) \
+ __tgmres = Fct (Val1, Val2); \
+ else if (sizeof (Val1) == sizeof (float)) \
+ __tgmres = Fct##f (Val1, Val2); \
+ else \
+ __tgmres = __tgml(Fct) (Val1, Val2); \
+ __tgmres; }))
+
+# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
+ (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
+ if ((sizeof (Val1) > sizeof (double) \
+ || sizeof (Val2) > sizeof (double)) \
+ && __builtin_classify_type ((Val1) + (Val2)) == 8) \
+ __tgmres = __tgml(Fct) (Val1, Val2); \
+ else if (sizeof (Val1) == sizeof (double) \
+ || sizeof (Val2) == sizeof (double) \
+ || __builtin_classify_type (Val1) != 8 \
+ || __builtin_classify_type (Val2) != 8) \
+ __tgmres = Fct (Val1, Val2); \
+ else \
+ __tgmres = Fct##f (Val1, Val2); \
+ __tgmres; }))
+
+# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
+ (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
+ if ((sizeof (Val1) > sizeof (double) \
+ || sizeof (Val2) > sizeof (double)) \
+ && __builtin_classify_type ((Val1) + (Val2)) == 8) \
+ __tgmres = __tgml(Fct) (Val1, Val2, Val3); \
+ else if (sizeof (Val1) == sizeof (double) \
+ || sizeof (Val2) == sizeof (double) \
+ || __builtin_classify_type (Val1) != 8 \
+ || __builtin_classify_type (Val2) != 8) \
+ __tgmres = Fct (Val1, Val2, Val3); \
+ else \
+ __tgmres = Fct##f (Val1, Val2, Val3); \
+ __tgmres; }))
+
+# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
+ (__extension__ ({ __tgmath_real_type ((Val1) + (Val2) + (Val3)) __tgmres;\
+ if ((sizeof (Val1) > sizeof (double) \
+ || sizeof (Val2) > sizeof (double) \
+ || sizeof (Val3) > sizeof (double)) \
+ && __builtin_classify_type ((Val1) + (Val2) \
+ + (Val3)) == 8) \
+ __tgmres = __tgml(Fct) (Val1, Val2, Val3); \
+ else if (sizeof (Val1) == sizeof (double) \
+ || sizeof (Val2) == sizeof (double) \
+ || sizeof (Val3) == sizeof (double) \
+ || __builtin_classify_type (Val1) != 8 \
+ || __builtin_classify_type (Val2) != 8 \
+ || __builtin_classify_type (Val3) != 8) \
+ __tgmres = Fct (Val1, Val2, Val3); \
+ else \
+ __tgmres = Fct##f (Val1, Val2, Val3); \
+ __tgmres; }))
+
+/* XXX This definition has to be changed as soon as the compiler understands
+ the imaginary keyword. */
+# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
+ (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
+ if (sizeof (__real__ (Val)) > sizeof (double) \
+ && __builtin_classify_type (__real__ (Val)) == 8) \
+ { \
+ if (sizeof (__real__ (Val)) == sizeof (Val)) \
+ __tgmres = __tgml(Fct) (Val); \
+ else \
+ __tgmres = __tgml(Cfct) (Val); \
+ } \
+ else if (sizeof (__real__ (Val)) == sizeof (double) \
+ || __builtin_classify_type (__real__ (Val)) \
+ != 8) \
+ { \
+ if (sizeof (__real__ (Val)) == sizeof (Val)) \
+ __tgmres = Fct (Val); \
+ else \
+ __tgmres = Cfct (Val); \
+ } \
+ else \
+ { \
+ if (sizeof (__real__ (Val)) == sizeof (Val)) \
+ __tgmres = Fct##f (Val); \
+ else \
+ __tgmres = Cfct##f (Val); \
+ } \
+ __tgmres; }))
+
+/* XXX This definition has to be changed as soon as the compiler understands
+ the imaginary keyword. */
+# define __TGMATH_UNARY_IMAG_ONLY(Val, Fct) \
+ (__extension__ ({ __tgmath_real_type (Val) __tgmres; \
+ if (sizeof (Val) == sizeof (__complex__ double) \
+ || __builtin_classify_type (__real__ (Val)) != 8) \
+ __tgmres = Fct (Val); \
+ else if (sizeof (Val) == sizeof (__complex__ float)) \
+ __tgmres = Fct##f (Val); \
+ else \
+ __tgmres = __tgml(Fct) (Val); \
+ __tgmres; }))
+
+/* XXX This definition has to be changed as soon as the compiler understands
+ the imaginary keyword. */
+# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
+ (__extension__ ({ __tgmath_real_type ((Val1) + (Val2)) __tgmres; \
+ if ((sizeof (__real__ (Val1)) > sizeof (double) \
+ || sizeof (__real__ (Val2)) > sizeof (double)) \
+ && __builtin_classify_type (__real__ (Val1) \
+ + __real__ (Val2)) \
+ == 8) \
+ { \
+ if (sizeof (__real__ (Val1)) == sizeof (Val1) \
+ && sizeof (__real__ (Val2)) == sizeof (Val2)) \
+ __tgmres = __tgml(Fct) (Val1, Val2); \
+ else \
+ __tgmres = __tgml(Cfct) (Val1, Val2); \
+ } \
+ else if (sizeof (__real__ (Val1)) == sizeof (double) \
+ || sizeof (__real__ (Val2)) == sizeof(double) \
+ || (__builtin_classify_type (__real__ (Val1)) \
+ != 8) \
+ || (__builtin_classify_type (__real__ (Val2)) \
+ != 8)) \
+ { \
+ if (sizeof (__real__ (Val1)) == sizeof (Val1) \
+ && sizeof (__real__ (Val2)) == sizeof (Val2)) \
+ __tgmres = Fct (Val1, Val2); \
+ else \
+ __tgmres = Cfct (Val1, Val2); \
+ } \
+ else \
+ { \
+ if (sizeof (__real__ (Val1)) == sizeof (Val1) \
+ && sizeof (__real__ (Val2)) == sizeof (Val2)) \
+ __tgmres = Fct##f (Val1, Val2); \
+ else \
+ __tgmres = Cfct##f (Val1, Val2); \
+ } \
+ __tgmres; }))
+#else
+# error "Unsupported compiler; you cannot use <tgmath.h>"
+#endif
+
+
+/* Unary functions defined for real and complex values. */
+
+
+/* Trigonometric functions. */
+
+/* Arc cosine of X. */
+#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
+/* Arc sine of X. */
+#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
+/* Arc tangent of X. */
+#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
+/* Arc tangent of Y/X. */
+#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
+
+/* Cosine of X. */
+#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
+/* Sine of X. */
+#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
+/* Tangent of X. */
+#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
+
+
+/* Hyperbolic functions. */
+
+/* Hyperbolic arc cosine of X. */
+#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
+/* Hyperbolic arc sine of X. */
+#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
+/* Hyperbolic arc tangent of X. */
+#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
+
+/* Hyperbolic cosine of X. */
+#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
+/* Hyperbolic sine of X. */
+#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
+/* Hyperbolic tangent of X. */
+#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
+
+
+/* Exponential and logarithmic functions. */
+
+/* Exponential function of X. */
+#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
+
+/* Break VALUE into a normalized fraction and an integral power of 2. */
+#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
+
+/* X times (two to the EXP power). */
+#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
+
+/* Natural logarithm of X. */
+#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
+
+/* Base-ten logarithm of X. */
+#ifdef __USE_GNU
+# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10)
+#else
+# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
+#endif
+
+/* Return exp(X) - 1. */
+#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
+
+/* Return log(1 + X). */
+#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
+
+/* Return the base 2 signed integral exponent of X. */
+#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
+
+/* Compute base-2 exponential of X. */
+#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
+
+/* Compute base-2 logarithm of X. */
+#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
+
+
+/* Power functions. */
+
+/* Return X to the Y power. */
+#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
+
+/* Return the square root of X. */
+#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
+
+/* Return `sqrt(X*X + Y*Y)'. */
+#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
+
+/* Return the cube root of X. */
+#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
+
+
+/* Nearest integer, absolute value, and remainder functions. */
+
+/* Smallest integral value not less than X. */
+#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
+
+/* Absolute value of X. */
+#define fabs(Val) __TGMATH_UNARY_REAL_IMAG (Val, fabs, cabs)
+
+/* Largest integer not greater than X. */
+#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
+
+/* Floating-point modulo remainder of X/Y. */
+#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
+
+/* Round X to integral valuein floating-point format using current
+ rounding direction, but do not raise inexact exception. */
+#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
+
+/* Round X to nearest integral value, rounding halfway cases away from
+ zero. */
+#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
+
+/* Round X to the integral value in floating-point format nearest but
+ not larger in magnitude. */
+#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
+
+/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
+ and magnitude congruent `mod 2^n' to the magnitude of the integral
+ quotient x/y, with n >= 3. */
+#define remquo(Val1, Val2, Val3) \
+ __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
+
+/* Round X to nearest integral value according to current rounding
+ direction. */
+#define lrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, lrint)
+#define llrint(Val) __TGMATH_UNARY_REAL_ONLY (Val, llrint)
+
+/* Round X to nearest integral value, rounding halfway cases away from
+ zero. */
+#define lround(Val) __TGMATH_UNARY_REAL_ONLY (Val, lround)
+#define llround(Val) __TGMATH_UNARY_REAL_ONLY (Val, llround)
+
+
+/* Return X with its signed changed to Y's. */
+#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
+
+/* Error and gamma functions. */
+#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
+#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
+#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
+#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
+
+
+/* Return the integer nearest X in the direction of the
+ prevailing rounding mode. */
+#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
+
+/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
+#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
+#define nexttoward(Val1, Val2) \
+ __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward)
+
+/* Return the remainder of integer divison X / Y with infinite precision. */
+#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
+
+/* Return X times (2 to the Nth power). */
+#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
+# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb)
+#endif
+
+/* Return X times (2 to the Nth power). */
+#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
+
+/* Return X times (2 to the Nth power). */
+#define scalbln(Val1, Val2) \
+ __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
+
+/* Return the binary exponent of X, which must be nonzero. */
+#define ilogb(Val) __TGMATH_UNARY_REAL_ONLY (Val, ilogb)
+
+
+/* Return positive difference between X and Y. */
+#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
+
+/* Return maximum numeric value from X and Y. */
+#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
+
+/* Return minimum numeric value from X and Y. */
+#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
+
+
+/* Multiply-add function computed as a ternary operation. */
+#define fma(Val1, Val2, Val3) \
+ __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
+
+
+/* Absolute value, conjugates, and projection. */
+
+/* Argument value of Z. */
+#define carg(Val) __TGMATH_UNARY_IMAG_ONLY (Val, carg)
+
+/* Complex conjugate of Z. */
+#define conj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, conj)
+
+/* Projection of Z onto the Riemann sphere. */
+#define cproj(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cproj)
+
+
+/* Decomposing complex values. */
+
+/* Imaginary part of Z. */
+#define cimag(Val) __TGMATH_UNARY_IMAG_ONLY (Val, cimag)
+
+/* Real part of Z. */
+#define creal(Val) __TGMATH_UNARY_IMAG_ONLY (Val, creal)
+
+#endif /* tgmath.h */