diff options
| -rw-r--r-- | libm/Makefile.in | 2 | ||||
| -rw-r--r-- | libm/e_log2.c | 130 | ||||
| -rw-r--r-- | libm/math_private.h | 1 | 
3 files changed, 132 insertions, 1 deletions
| diff --git a/libm/Makefile.in b/libm/Makefile.in index bcee5f35c..01c63d15a 100644 --- a/libm/Makefile.in +++ b/libm/Makefile.in @@ -57,7 +57,7 @@ ifeq ($(DO_C99_MATH),y)  libm_CSRC := \  	e_acos.c e_acosh.c e_asin.c e_atan2.c e_atanh.c e_cosh.c \  	e_exp.c e_fmod.c e_gamma.c e_gamma_r.c e_hypot.c e_j0.c \ -	e_j1.c e_jn.c e_lgamma.c e_lgamma_r.c e_log.c e_log10.c \ +	e_j1.c e_jn.c e_lgamma.c e_lgamma_r.c e_log.c e_log2.c e_log10.c \  	e_pow.c e_remainder.c e_rem_pio2.c e_scalb.c e_sinh.c \  	e_sqrt.c k_cos.c k_rem_pio2.c k_sin.c k_standard.c k_tan.c \  	s_asinh.c s_atan.c s_cbrt.c s_ceil.c s_copysign.c s_cos.c \ diff --git a/libm/e_log2.c b/libm/e_log2.c new file mode 100644 index 000000000..894a96df0 --- /dev/null +++ b/libm/e_log2.c @@ -0,0 +1,130 @@ +/* Adapted for log2 by Ulrich Drepper <drepper@cygnus.com>.  */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +/* __ieee754_log2(x) + * Return the logarithm to base 2 of x + * + * Method : + *   1. Argument Reduction: find k and f such that + *			x = 2^k * (1+f), + *	   where  sqrt(2)/2 < 1+f < sqrt(2) . + * + *   2. Approximation of log(1+f). + *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) + *		 = 2s + 2/3 s**3 + 2/5 s**5 + ....., + *	     	 = 2s + s*R + *      We use a special Reme algorithm on [0,0.1716] to generate + * 	a polynomial of degree 14 to approximate R The maximum error + *	of this polynomial approximation is bounded by 2**-58.45. In + *	other words, + *		        2      4      6      8      10      12      14 + *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s + *  	(the values of Lg1 to Lg7 are listed in the program) + *	and + *	    |      2          14          |     -58.45 + *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2 + *	    |                             | + *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. + *	In order to guarantee error in log below 1ulp, we compute log + *	by + *		log(1+f) = f - s*(f - R)	(if f is not too large) + *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy) + * + *	3. Finally,  log(x) = k + log(1+f). + *			    = k+(f-(hfsq-(s*(hfsq+R)))) + * + * Special cases: + *	log2(x) is NaN with signal if x < 0 (including -INF) ; + *	log2(+INF) is +INF; log(0) is -INF with signal; + *	log2(NaN) is that NaN with no signal. + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math.h" +#include "math_private.h" + +#ifdef __STDC__ +static const double +#else +static double +#endif +ln2 = 0.69314718055994530942, +two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */ +Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */ +Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */ +Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */ +Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */ +Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */ +Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */ +Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */ + +#ifdef __STDC__ +static const double zero   =  0.0; +#else +static double zero   =  0.0; +#endif + +#ifdef __STDC__ +	double __ieee754_log2(double x) +#else +	double __ieee754_log2(x) +	double x; +#endif +{ +	double hfsq,f,s,z,R,w,t1,t2,dk; +	int32_t k,hx,i,j; +	u_int32_t lx; + +	EXTRACT_WORDS(hx,lx,x); + +	k=0; +	if (hx < 0x00100000) {			/* x < 2**-1022  */ +	    if (((hx&0x7fffffff)|lx)==0) +		return -two54/(x-x);		/* log(+-0)=-inf */ +	    if (hx<0) return (x-x)/(x-x);	/* log(-#) = NaN */ +	    k -= 54; x *= two54; /* subnormal number, scale up x */ +	    GET_HIGH_WORD(hx,x); +	} +	if (hx >= 0x7ff00000) return x+x; +	k += (hx>>20)-1023; +	hx &= 0x000fffff; +	i = (hx+0x95f64)&0x100000; +	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */ +	k += (i>>20); +	dk = (double) k; +	f = x-1.0; +	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */ +	    if(f==zero) return dk; +	    R = f*f*(0.5-0.33333333333333333*f); +	    return dk-(R-f)/ln2; +	} +	s = f/(2.0+f); +	z = s*s; +	i = hx-0x6147a; +	w = z*z; +	j = 0x6b851-hx; +	t1= w*(Lg2+w*(Lg4+w*Lg6)); +	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); +	i |= j; +	R = t2+t1; +	if(i>0) { +	    hfsq=0.5*f*f; +	    return dk-((hfsq-(s*(hfsq+R)))-f)/ln2; +	} else { +	    return dk-((s*(f-R))-f)/ln2; +	} +} diff --git a/libm/math_private.h b/libm/math_private.h index b0d948c07..f85db12a8 100644 --- a/libm/math_private.h +++ b/libm/math_private.h @@ -158,6 +158,7 @@ extern double __ieee754_sqrt (double) attribute_hidden;  extern double __ieee754_acos (double) attribute_hidden;  extern double __ieee754_acosh (double) attribute_hidden;  extern double __ieee754_log (double) attribute_hidden; +extern double __ieee754_log2 (double) attribute_hidden;  extern double __ieee754_atanh (double) attribute_hidden;  extern double __ieee754_asin (double) attribute_hidden;  extern double __ieee754_atan2 (double,double) attribute_hidden; | 
