summaryrefslogtreecommitdiff
path: root/libm/ldouble/sinl.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-05-10 00:40:28 +0000
committerEric Andersen <andersen@codepoet.org>2001-05-10 00:40:28 +0000
commit1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch)
tree579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/ldouble/sinl.c
parent22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff)
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/ldouble/sinl.c')
-rw-r--r--libm/ldouble/sinl.c342
1 files changed, 342 insertions, 0 deletions
diff --git a/libm/ldouble/sinl.c b/libm/ldouble/sinl.c
new file mode 100644
index 000000000..dc7d739f9
--- /dev/null
+++ b/libm/ldouble/sinl.c
@@ -0,0 +1,342 @@
+/* sinl.c
+ *
+ * Circular sine, long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, sinl();
+ *
+ * y = sinl( x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Range reduction is into intervals of pi/4. The reduction
+ * error is nearly eliminated by contriving an extended precision
+ * modular arithmetic.
+ *
+ * Two polynomial approximating functions are employed.
+ * Between 0 and pi/4 the sine is approximated by the Cody
+ * and Waite polynomial form
+ * x + x**3 P(x**2) .
+ * Between pi/4 and pi/2 the cosine is represented as
+ * 1 - .5 x**2 + x**4 Q(x**2) .
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE +-5.5e11 200,000 1.2e-19 2.9e-20
+ *
+ * ERROR MESSAGES:
+ *
+ * message condition value returned
+ * sin total loss x > 2**39 0.0
+ *
+ * Loss of precision occurs for x > 2**39 = 5.49755813888e11.
+ * The routine as implemented flags a TLOSS error for
+ * x > 2**39 and returns 0.0.
+ */
+ /* cosl.c
+ *
+ * Circular cosine, long double precision
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * long double x, y, cosl();
+ *
+ * y = cosl( x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Range reduction is into intervals of pi/4. The reduction
+ * error is nearly eliminated by contriving an extended precision
+ * modular arithmetic.
+ *
+ * Two polynomial approximating functions are employed.
+ * Between 0 and pi/4 the cosine is approximated by
+ * 1 - .5 x**2 + x**4 Q(x**2) .
+ * Between pi/4 and pi/2 the sine is represented by the Cody
+ * and Waite polynomial form
+ * x + x**3 P(x**2) .
+ *
+ *
+ * ACCURACY:
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE +-5.5e11 50000 1.2e-19 2.9e-20
+ */
+
+/* sin.c */
+
+/*
+Cephes Math Library Release 2.7: May, 1998
+Copyright 1985, 1990, 1998 by Stephen L. Moshier
+*/
+
+#include <math.h>
+
+#ifdef UNK
+static long double sincof[7] = {
+-7.5785404094842805756289E-13L,
+ 1.6058363167320443249231E-10L,
+-2.5052104881870868784055E-8L,
+ 2.7557319214064922217861E-6L,
+-1.9841269841254799668344E-4L,
+ 8.3333333333333225058715E-3L,
+-1.6666666666666666640255E-1L,
+};
+static long double coscof[7] = {
+ 4.7377507964246204691685E-14L,
+-1.1470284843425359765671E-11L,
+ 2.0876754287081521758361E-9L,
+-2.7557319214999787979814E-7L,
+ 2.4801587301570552304991E-5L,
+-1.3888888888888872993737E-3L,
+ 4.1666666666666666609054E-2L,
+};
+static long double DP1 = 7.853981554508209228515625E-1L;
+static long double DP2 = 7.946627356147928367136046290398E-9L;
+static long double DP3 = 3.061616997868382943065164830688E-17L;
+#endif
+
+#ifdef IBMPC
+static short sincof[] = {
+0x4e27,0xe1d6,0x2389,0xd551,0xbfd6, XPD
+0x64d7,0xe706,0x4623,0xb090,0x3fde, XPD
+0x01b1,0xbf34,0x2946,0xd732,0xbfe5, XPD
+0xc8f7,0x9845,0x1d29,0xb8ef,0x3fec, XPD
+0x6514,0x0c53,0x00d0,0xd00d,0xbff2, XPD
+0x569a,0x8888,0x8888,0x8888,0x3ff8, XPD
+0xaa97,0xaaaa,0xaaaa,0xaaaa,0xbffc, XPD
+};
+static short coscof[] = {
+0x7436,0x6f99,0x8c3a,0xd55e,0x3fd2, XPD
+0x2f37,0x58f4,0x920f,0xc9c9,0xbfda, XPD
+0x5350,0x659e,0xc648,0x8f76,0x3fe2, XPD
+0x4d2b,0xf5c6,0x7dba,0x93f2,0xbfe9, XPD
+0x53ed,0x0c66,0x00d0,0xd00d,0x3fef, XPD
+0x7b67,0x0b60,0x60b6,0xb60b,0xbff5, XPD
+0xaa9a,0xaaaa,0xaaaa,0xaaaa,0x3ffa, XPD
+};
+static short P1[] = {0x0000,0x0000,0xda80,0xc90f,0x3ffe, XPD};
+static short P2[] = {0x0000,0x0000,0xa300,0x8885,0x3fe4, XPD};
+static short P3[] = {0x3707,0xa2e0,0x3198,0x8d31,0x3fc8, XPD};
+#define DP1 *(long double *)P1
+#define DP2 *(long double *)P2
+#define DP3 *(long double *)P3
+#endif
+
+#ifdef MIEEE
+static long sincof[] = {
+0xbfd60000,0xd5512389,0xe1d64e27,
+0x3fde0000,0xb0904623,0xe70664d7,
+0xbfe50000,0xd7322946,0xbf3401b1,
+0x3fec0000,0xb8ef1d29,0x9845c8f7,
+0xbff20000,0xd00d00d0,0x0c536514,
+0x3ff80000,0x88888888,0x8888569a,
+0xbffc0000,0xaaaaaaaa,0xaaaaaa97,
+};
+static long coscof[] = {
+0x3fd20000,0xd55e8c3a,0x6f997436,
+0xbfda0000,0xc9c9920f,0x58f42f37,
+0x3fe20000,0x8f76c648,0x659e5350,
+0xbfe90000,0x93f27dba,0xf5c64d2b,
+0x3fef0000,0xd00d00d0,0x0c6653ed,
+0xbff50000,0xb60b60b6,0x0b607b67,
+0x3ffa0000,0xaaaaaaaa,0xaaaaaa9a,
+};
+static long P1[] = {0x3ffe0000,0xc90fda80,0x00000000};
+static long P2[] = {0x3fe40000,0x8885a300,0x00000000};
+static long P3[] = {0x3fc80000,0x8d313198,0xa2e03707};
+#define DP1 *(long double *)P1
+#define DP2 *(long double *)P2
+#define DP3 *(long double *)P3
+#endif
+
+static long double lossth = 5.49755813888e11L; /* 2^39 */
+extern long double PIO4L;
+#ifdef ANSIPROT
+extern long double polevll ( long double, void *, int );
+extern long double floorl ( long double );
+extern long double ldexpl ( long double, int );
+extern int isnanl ( long double );
+extern int isfinitel ( long double );
+#else
+long double polevll(), floorl(), ldexpl(), isnanl(), isfinitel();
+#endif
+#ifdef INFINITIES
+extern long double INFINITYL;
+#endif
+#ifdef NANS
+extern long double NANL;
+#endif
+
+long double sinl(x)
+long double x;
+{
+long double y, z, zz;
+int j, sign;
+
+#ifdef NANS
+if( isnanl(x) )
+ return(x);
+#endif
+#ifdef MINUSZERO
+if( x == 0.0L )
+ return(x);
+#endif
+#ifdef NANS
+if( !isfinitel(x) )
+ {
+ mtherr( "sinl", DOMAIN );
+#ifdef NANS
+ return(NANL);
+#else
+ return(0.0L);
+#endif
+ }
+#endif
+/* make argument positive but save the sign */
+sign = 1;
+if( x < 0 )
+ {
+ x = -x;
+ sign = -1;
+ }
+
+if( x > lossth )
+ {
+ mtherr( "sinl", TLOSS );
+ return(0.0L);
+ }
+
+y = floorl( x/PIO4L ); /* integer part of x/PIO4 */
+
+/* strip high bits of integer part to prevent integer overflow */
+z = ldexpl( y, -4 );
+z = floorl(z); /* integer part of y/8 */
+z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
+
+j = z; /* convert to integer for tests on the phase angle */
+/* map zeros to origin */
+if( j & 1 )
+ {
+ j += 1;
+ y += 1.0L;
+ }
+j = j & 07; /* octant modulo 360 degrees */
+/* reflect in x axis */
+if( j > 3)
+ {
+ sign = -sign;
+ j -= 4;
+ }
+
+/* Extended precision modular arithmetic */
+z = ((x - y * DP1) - y * DP2) - y * DP3;
+
+zz = z * z;
+if( (j==1) || (j==2) )
+ {
+ y = 1.0L - ldexpl(zz,-1) + zz * zz * polevll( zz, coscof, 6 );
+ }
+else
+ {
+ y = z + z * (zz * polevll( zz, sincof, 6 ));
+ }
+
+if(sign < 0)
+ y = -y;
+
+return(y);
+}
+
+
+
+
+
+long double cosl(x)
+long double x;
+{
+long double y, z, zz;
+long i;
+int j, sign;
+
+
+#ifdef NANS
+if( isnanl(x) )
+ return(x);
+#endif
+#ifdef INFINITIES
+if( !isfinitel(x) )
+ {
+ mtherr( "cosl", DOMAIN );
+#ifdef NANS
+ return(NANL);
+#else
+ return(0.0L);
+#endif
+ }
+#endif
+
+/* make argument positive */
+sign = 1;
+if( x < 0 )
+ x = -x;
+
+if( x > lossth )
+ {
+ mtherr( "cosl", TLOSS );
+ return(0.0L);
+ }
+
+y = floorl( x/PIO4L );
+z = ldexpl( y, -4 );
+z = floorl(z); /* integer part of y/8 */
+z = y - ldexpl( z, 4 ); /* y - 16 * (y/16) */
+
+/* integer and fractional part modulo one octant */
+i = z;
+if( i & 1 ) /* map zeros to origin */
+ {
+ i += 1;
+ y += 1.0L;
+ }
+j = i & 07;
+if( j > 3)
+ {
+ j -=4;
+ sign = -sign;
+ }
+
+if( j > 1 )
+ sign = -sign;
+
+/* Extended precision modular arithmetic */
+z = ((x - y * DP1) - y * DP2) - y * DP3;
+
+zz = z * z;
+if( (j==1) || (j==2) )
+ {
+ y = z + z * (zz * polevll( zz, sincof, 6 ));
+ }
+else
+ {
+ y = 1.0L - ldexpl(zz,-1) + zz * zz * polevll( zz, coscof, 6 );
+ }
+
+if(sign < 0)
+ y = -y;
+
+return(y);
+}