diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/mtstl.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/ldouble/mtstl.c')
-rw-r--r-- | libm/ldouble/mtstl.c | 521 |
1 files changed, 0 insertions, 521 deletions
diff --git a/libm/ldouble/mtstl.c b/libm/ldouble/mtstl.c deleted file mode 100644 index 0cd6eed16..000000000 --- a/libm/ldouble/mtstl.c +++ /dev/null @@ -1,521 +0,0 @@ -/* mtst.c - Consistency tests for math functions. - - With NTRIALS=10000, the following are typical results for - an alleged IEEE long double precision arithmetic: - -Consistency test of math functions. -Max and rms errors for 10000 random arguments. -A = absolute error criterion (but relative if >1): -Otherwise, estimate is of relative error -x = cbrt( cube(x) ): max = 7.65E-20 rms = 4.39E-21 -x = atan( tan(x) ): max = 2.01E-19 rms = 3.96E-20 -x = sin( asin(x) ): max = 2.15E-19 rms = 3.00E-20 -x = sqrt( square(x) ): max = 0.00E+00 rms = 0.00E+00 -x = log( exp(x) ): max = 5.42E-20 A rms = 1.87E-21 A -x = log2( exp2(x) ): max = 1.08E-19 A rms = 3.37E-21 A -x = log10( exp10(x) ): max = 2.71E-20 A rms = 6.76E-22 A -x = acosh( cosh(x) ): max = 3.13E-18 A rms = 3.21E-20 A -x = pow( pow(x,a),1/a ): max = 1.25E-17 rms = 1.70E-19 -x = tanh( atanh(x) ): max = 1.08E-19 rms = 1.16E-20 -x = asinh( sinh(x) ): max = 1.03E-19 rms = 2.94E-21 -x = cos( acos(x) ): max = 1.63E-19 A rms = 4.37E-20 A -lgam(x) = log(gamma(x)): max = 2.31E-19 A rms = 5.93E-20 A -x = ndtri( ndtr(x) ): max = 5.07E-17 rms = 7.03E-19 -Legendre ellpk, ellpe: max = 7.59E-19 A rms = 1.72E-19 A -Absolute error and only 2000 trials: -Wronksian of Yn, Jn: max = 6.40E-18 A rms = 1.49E-19 A -Relative error and only 100 trials: -x = stdtri(stdtr(k,x) ): max = 6.73E-19 rms = 2.46E-19 -*/ - -/* -Cephes Math Library Release 2.3: November, 1995 -Copyright 1984, 1987, 1988, 1995 by Stephen L. Moshier -*/ - -#include <math.h> - -/* C9X spells lgam lgamma. */ -#define GLIBC2 0 - -#define NTRIALS 10000 -#define WTRIALS (NTRIALS/5) -#define STRTST 0 - -/* Note, fabsl may be an intrinsic function. */ -#ifdef ANSIPROT -extern long double fabsl ( long double ); -extern long double sqrtl ( long double ); -extern long double cbrtl ( long double ); -extern long double expl ( long double ); -extern long double logl ( long double ); -extern long double tanl ( long double ); -extern long double atanl ( long double ); -extern long double sinl ( long double ); -extern long double asinl ( long double ); -extern long double cosl ( long double ); -extern long double acosl ( long double ); -extern long double powl ( long double, long double ); -extern long double tanhl ( long double ); -extern long double atanhl ( long double ); -extern long double sinhl ( long double ); -extern long double asinhl ( long double ); -extern long double coshl ( long double ); -extern long double acoshl ( long double ); -extern long double exp2l ( long double ); -extern long double log2l ( long double ); -extern long double exp10l ( long double ); -extern long double log10l ( long double ); -extern long double gammal ( long double ); -extern long double lgaml ( long double ); -extern long double jnl ( int, long double ); -extern long double ynl ( int, long double ); -extern long double ndtrl ( long double ); -extern long double ndtril ( long double ); -extern long double stdtrl ( int, long double ); -extern long double stdtril ( int, long double ); -extern long double ellpel ( long double ); -extern long double ellpkl ( long double ); -extern void exit (int); -#else -long double fabsl(), sqrtl(); -long double cbrtl(), expl(), logl(), tanl(), atanl(); -long double sinl(), asinl(), cosl(), acosl(), powl(); -long double tanhl(), atanhl(), sinhl(), asinhl(), coshl(), acoshl(); -long double exp2l(), log2l(), exp10l(), log10l(); -long double gammal(), lgaml(), jnl(), ynl(), ndtrl(), ndtril(); -long double stdtrl(), stdtril(), ellpel(), ellpkl(); -void exit (); -#endif -extern int merror; -#if GLIBC2 -long double lgammal(long double); -#endif -/* -NYI: -double iv(), kn(); -*/ - -/* Provide inverses for square root and cube root: */ -long double squarel(x) -long double x; -{ -return( x * x ); -} - -long double cubel(x) -long double x; -{ -return( x * x * x ); -} - -/* lookup table for each function */ -struct fundef - { - char *nam1; /* the function */ - long double (*name )(); - char *nam2; /* its inverse */ - long double (*inv )(); - int nargs; /* number of function arguments */ - int tstyp; /* type code of the function */ - long ctrl; /* relative error flag */ - long double arg1w; /* width of domain for 1st arg */ - long double arg1l; /* lower bound domain 1st arg */ - long arg1f; /* flags, e.g. integer arg */ - long double arg2w; /* same info for args 2, 3, 4 */ - long double arg2l; - long arg2f; -/* - double arg3w; - double arg3l; - long arg3f; - double arg4w; - double arg4l; - long arg4f; -*/ - }; - - -/* fundef.ctrl bits: */ -#define RELERR 1 -#define EXPSCAL 4 - -/* fundef.tstyp test types: */ -#define POWER 1 -#define ELLIP 2 -#define GAMMA 3 -#define WRONK1 4 -#define WRONK2 5 -#define WRONK3 6 -#define STDTR 7 - -/* fundef.argNf argument flag bits: */ -#define INT 2 - -extern long double MINLOGL; -extern long double MAXLOGL; -extern long double PIL; -extern long double PIO2L; -/* -define MINLOG -170.0 -define MAXLOG +170.0 -define PI 3.14159265358979323846 -define PIO2 1.570796326794896619 -*/ - -#define NTESTS 17 -struct fundef defs[NTESTS] = { -{" cube", cubel, " cbrt", cbrtl, 1, 0, 1, 2000.0L, -1000.0L, 0, -0.0, 0.0, 0}, -{" tan", tanl, " atan", atanl, 1, 0, 1, 0.0L, 0.0L, 0, -0.0, 0.0, 0}, -{" asin", asinl, " sin", sinl, 1, 0, 1, 2.0L, -1.0L, 0, -0.0, 0.0, 0}, -{"square", squarel, " sqrt", sqrtl, 1, 0, 1, 170.0L, -85.0L, EXPSCAL, -0.0, 0.0, 0}, -{" exp", expl, " log", logl, 1, 0, 0, 340.0L, -170.0L, 0, -0.0, 0.0, 0}, -{" exp2", exp2l, " log2", log2l, 1, 0, 0, 340.0L, -170.0L, 0, -0.0, 0.0, 0}, -{" exp10", exp10l, " log10", log10l, 1, 0, 0, 340.0L, -170.0L, 0, -0.0, 0.0, 0}, -{" cosh", coshl, " acosh", acoshl, 1, 0, 0, 340.0L, 0.0L, 0, -0.0, 0.0, 0}, -{"pow", powl, "pow", powl, 2, POWER, 1, 25.0L, 0.0L, 0, -50.0, -25.0, 0}, -{" atanh", atanhl, " tanh", tanhl, 1, 0, 1, 2.0L, -1.0L, 0, -0.0, 0.0, 0}, -{" sinh", sinhl, " asinh", asinhl, 1, 0, 1, 340.0L, 0.0L, 0, -0.0, 0.0, 0}, -{" acos", acosl, " cos", cosl, 1, 0, 0, 2.0L, -1.0L, 0, -0.0, 0.0, 0}, -#if GLIBC2 - /* -{ "gamma", gammal, "lgammal", lgammal, 1, GAMMA, 0, 34.0, 0.0, 0, -0.0, 0.0, 0}, -*/ -#else -{ "gamma", gammal, "lgam", lgaml, 1, GAMMA, 0, 34.0, 0.0, 0, -0.0, 0.0, 0}, -{ " ndtr", ndtrl, " ndtri", ndtril, 1, 0, 1, 10.0L, -10.0L, 0, -0.0, 0.0, 0}, -{" ellpe", ellpel, " ellpk", ellpkl, 1, ELLIP, 0, 1.0L, 0.0L, 0, -0.0, 0.0, 0}, -{ "stdtr", stdtrl, "stdtri", stdtril, 2, STDTR, 1, 4.0L, -2.0L, 0, -30.0, 1.0, INT}, -{ " Jn", jnl, " Yn", ynl, 2, WRONK1, 0, 30.0, 0.1, 0, -40.0, -20.0, INT}, -#endif -}; - -static char *headrs[] = { -"x = %s( %s(x) ): ", -"x = %s( %s(x,a),1/a ): ", /* power */ -"Legendre %s, %s: ", /* ellip */ -"%s(x) = log(%s(x)): ", /* gamma */ -"Wronksian of %s, %s: ", /* wronk1 */ -"Wronksian of %s, %s: ", /* wronk2 */ -"Wronksian of %s, %s: ", /* wronk3 */ -"x = %s(%s(k,x) ): ", /* stdtr */ -}; - -static long double y1 = 0.0; -static long double y2 = 0.0; -static long double y3 = 0.0; -static long double y4 = 0.0; -static long double a = 0.0; -static long double x = 0.0; -static long double y = 0.0; -static long double z = 0.0; -static long double e = 0.0; -static long double max = 0.0; -static long double rmsa = 0.0; -static long double rms = 0.0; -static long double ave = 0.0; -static double da, db, dc, dd; - -int ldrand(); -int printf(); - -int -main() -{ -long double (*fun )(); -long double (*ifun )(); -struct fundef *d; -int i, k, itst; -int m, ntr; - -ntr = NTRIALS; -printf( "Consistency test of math functions.\n" ); -printf( "Max and rms errors for %d random arguments.\n", - ntr ); -printf( "A = absolute error criterion (but relative if >1):\n" ); -printf( "Otherwise, estimate is of relative error\n" ); - -/* Initialize machine dependent parameters to test near the - * largest an smallest possible arguments. To compare different - * machines, use the same test intervals for all systems. - */ -defs[1].arg1w = PIL; -defs[1].arg1l = -PIL/2.0; -/* -defs[3].arg1w = MAXLOGL; -defs[3].arg1l = -MAXLOGL/2.0; -defs[4].arg1w = 2.0*MAXLOGL; -defs[4].arg1l = -MAXLOGL; -defs[6].arg1w = 2.0*MAXLOGL; -defs[6].arg1l = -MAXLOGL; -defs[7].arg1w = MAXLOGL; -defs[7].arg1l = 0.0; -*/ - -/* Outer loop, on the test number: */ - -for( itst=STRTST; itst<NTESTS; itst++ ) -{ -d = &defs[itst]; -m = 0; -max = 0.0L; -rmsa = 0.0L; -ave = 0.0L; -fun = d->name; -ifun = d->inv; - -/* Smaller number of trials for Wronksians - * (put them at end of list) - */ -if( d->tstyp == WRONK1 ) - { - ntr = WTRIALS; - printf( "Absolute error and only %d trials:\n", ntr ); - } -else if( d->tstyp == STDTR ) - { - ntr = NTRIALS/100; - printf( "Relative error and only %d trials:\n", ntr ); - } -/* -y1 = d->arg1l; -y2 = d->arg1w; -da = y1; -db = y2; -printf( "arg1l = %.4e, arg1w = %.4e\n", da, db ); -*/ -printf( headrs[d->tstyp], d->nam2, d->nam1 ); - -for( i=0; i<ntr; i++ ) -{ -m++; -k = 0; -/* make random number(s) in desired range(s) */ -switch( d->nargs ) -{ - -default: -goto illegn; - -case 2: -ldrand( &a ); -a = d->arg2w * ( a - 1.0L ) + d->arg2l; -if( d->arg2f & EXPSCAL ) - { - a = expl(a); - ldrand( &y2 ); - a -= 1.0e-13L * a * (y2 - 1.0L); - } -if( d->arg2f & INT ) - { - k = a + 0.25L; - a = k; - } - -case 1: -ldrand( &x ); -y1 = d->arg1l; -y2 = d->arg1w; -x = y2 * ( x - 1.0L ) + y1; -if( x < y1 ) - x = y1; -y1 += y2; -if( x > y1 ) - x = y1; -if( d->arg1f & EXPSCAL ) - { - x = expl(x); - ldrand( &y2 ); - x += 1.0e-13L * x * (y2 - 1.0L); - } -} - -/* compute function under test */ -switch( d->nargs ) - { - case 1: - switch( d->tstyp ) - { - case ELLIP: - y1 = ( *(fun) )(x); - y2 = ( *(fun) )(1.0L-x); - y3 = ( *(ifun) )(x); - y4 = ( *(ifun) )(1.0L-x); - break; -#if 1 - case GAMMA: - y = lgaml(x); - x = logl( gammal(x) ); - break; -#endif - default: - z = ( *(fun) )(x); - y = ( *(ifun) )(z); - } -/* -if( merror ) - { - printf( "error: x = %.15e, z = %.15e, y = %.15e\n", - (double )x, (double )z, (double )y ); - } -*/ - break; - - case 2: - if( d->arg2f & INT ) - { - switch( d->tstyp ) - { - case WRONK1: - y1 = (*fun)( k, x ); /* jn */ - y2 = (*fun)( k+1, x ); - y3 = (*ifun)( k, x ); /* yn */ - y4 = (*ifun)( k+1, x ); - break; - - case WRONK2: - y1 = (*fun)( a, x ); /* iv */ - y2 = (*fun)( a+1.0L, x ); - y3 = (*ifun)( k, x ); /* kn */ - y4 = (*ifun)( k+1, x ); - break; - - default: - z = (*fun)( k, x ); - y = (*ifun)( k, z ); - } - } - else - { - if( d->tstyp == POWER ) - { - z = (*fun)( x, a ); - y = (*ifun)( z, 1.0L/a ); - } - else - { - z = (*fun)( a, x ); - y = (*ifun)( a, z ); - } - } - break; - - - default: -illegn: - printf( "Illegal nargs= %d", d->nargs ); - exit(1); - } - -switch( d->tstyp ) - { - case WRONK1: - /* Jn, Yn */ -/* e = (y2*y3 - y1*y4) - 2.0L/(PIL*x);*/ - e = x*(y2*y3 - y1*y4) - 2.0L/PIL; - break; - - case WRONK2: -/* In, Kn */ -/* e = (y2*y3 + y1*y4) - 1.0L/x; */ - e = x*(y2*y3 + y1*y4) - 1.0L; - break; - - case ELLIP: - e = (y1-y3)*y4 + y3*y2 - PIO2L; - break; - - default: - e = y - x; - break; - } - -if( d->ctrl & RELERR ) - { - if( x != 0.0L ) - e /= x; - else - printf( "warning, x == 0\n" ); - } -else - { - if( fabsl(x) > 1.0L ) - e /= x; - } - -ave += e; -/* absolute value of error */ -if( e < 0 ) - e = -e; - -/* peak detect the error */ -if( e > max ) - { - max = e; - - if( e > 1.0e-10L ) - { -da = x; -db = z; -dc = y; -dd = max; - printf("x %.6E z %.6E y %.6E max %.4E\n", - da, db, dc, dd ); -/* - if( d->tstyp >= WRONK1 ) - { - printf( "y1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n", - (double )y1, (double )y2, (double )y3, - (double )y4, k, (double )x ); - } -*/ - } - -/* - printf("%.8E %.8E %.4E %6ld \n", x, y, max, n); - printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n); - printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n); - printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n); - printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n", - a, b, c, x, y, max, n); -*/ - } - -/* accumulate rms error */ -e *= 1.0e16L; /* adjust range */ -rmsa += e * e; /* accumulate the square of the error */ -} - -/* report after NTRIALS trials */ -rms = 1.0e-16L * sqrtl( rmsa/m ); -da = max; -db = rms; -if(d->ctrl & RELERR) - printf(" max = %.2E rms = %.2E\n", da, db ); -else - printf(" max = %.2E A rms = %.2E A\n", da, db ); -} /* loop on itst */ - -exit (0); -return 0; -} - |