summaryrefslogtreecommitdiff
path: root/libm/ldouble/mtstl.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/mtstl.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/ldouble/mtstl.c')
-rw-r--r--libm/ldouble/mtstl.c521
1 files changed, 0 insertions, 521 deletions
diff --git a/libm/ldouble/mtstl.c b/libm/ldouble/mtstl.c
deleted file mode 100644
index 0cd6eed16..000000000
--- a/libm/ldouble/mtstl.c
+++ /dev/null
@@ -1,521 +0,0 @@
-/* mtst.c
- Consistency tests for math functions.
-
- With NTRIALS=10000, the following are typical results for
- an alleged IEEE long double precision arithmetic:
-
-Consistency test of math functions.
-Max and rms errors for 10000 random arguments.
-A = absolute error criterion (but relative if >1):
-Otherwise, estimate is of relative error
-x = cbrt( cube(x) ): max = 7.65E-20 rms = 4.39E-21
-x = atan( tan(x) ): max = 2.01E-19 rms = 3.96E-20
-x = sin( asin(x) ): max = 2.15E-19 rms = 3.00E-20
-x = sqrt( square(x) ): max = 0.00E+00 rms = 0.00E+00
-x = log( exp(x) ): max = 5.42E-20 A rms = 1.87E-21 A
-x = log2( exp2(x) ): max = 1.08E-19 A rms = 3.37E-21 A
-x = log10( exp10(x) ): max = 2.71E-20 A rms = 6.76E-22 A
-x = acosh( cosh(x) ): max = 3.13E-18 A rms = 3.21E-20 A
-x = pow( pow(x,a),1/a ): max = 1.25E-17 rms = 1.70E-19
-x = tanh( atanh(x) ): max = 1.08E-19 rms = 1.16E-20
-x = asinh( sinh(x) ): max = 1.03E-19 rms = 2.94E-21
-x = cos( acos(x) ): max = 1.63E-19 A rms = 4.37E-20 A
-lgam(x) = log(gamma(x)): max = 2.31E-19 A rms = 5.93E-20 A
-x = ndtri( ndtr(x) ): max = 5.07E-17 rms = 7.03E-19
-Legendre ellpk, ellpe: max = 7.59E-19 A rms = 1.72E-19 A
-Absolute error and only 2000 trials:
-Wronksian of Yn, Jn: max = 6.40E-18 A rms = 1.49E-19 A
-Relative error and only 100 trials:
-x = stdtri(stdtr(k,x) ): max = 6.73E-19 rms = 2.46E-19
-*/
-
-/*
-Cephes Math Library Release 2.3: November, 1995
-Copyright 1984, 1987, 1988, 1995 by Stephen L. Moshier
-*/
-
-#include <math.h>
-
-/* C9X spells lgam lgamma. */
-#define GLIBC2 0
-
-#define NTRIALS 10000
-#define WTRIALS (NTRIALS/5)
-#define STRTST 0
-
-/* Note, fabsl may be an intrinsic function. */
-#ifdef ANSIPROT
-extern long double fabsl ( long double );
-extern long double sqrtl ( long double );
-extern long double cbrtl ( long double );
-extern long double expl ( long double );
-extern long double logl ( long double );
-extern long double tanl ( long double );
-extern long double atanl ( long double );
-extern long double sinl ( long double );
-extern long double asinl ( long double );
-extern long double cosl ( long double );
-extern long double acosl ( long double );
-extern long double powl ( long double, long double );
-extern long double tanhl ( long double );
-extern long double atanhl ( long double );
-extern long double sinhl ( long double );
-extern long double asinhl ( long double );
-extern long double coshl ( long double );
-extern long double acoshl ( long double );
-extern long double exp2l ( long double );
-extern long double log2l ( long double );
-extern long double exp10l ( long double );
-extern long double log10l ( long double );
-extern long double gammal ( long double );
-extern long double lgaml ( long double );
-extern long double jnl ( int, long double );
-extern long double ynl ( int, long double );
-extern long double ndtrl ( long double );
-extern long double ndtril ( long double );
-extern long double stdtrl ( int, long double );
-extern long double stdtril ( int, long double );
-extern long double ellpel ( long double );
-extern long double ellpkl ( long double );
-extern void exit (int);
-#else
-long double fabsl(), sqrtl();
-long double cbrtl(), expl(), logl(), tanl(), atanl();
-long double sinl(), asinl(), cosl(), acosl(), powl();
-long double tanhl(), atanhl(), sinhl(), asinhl(), coshl(), acoshl();
-long double exp2l(), log2l(), exp10l(), log10l();
-long double gammal(), lgaml(), jnl(), ynl(), ndtrl(), ndtril();
-long double stdtrl(), stdtril(), ellpel(), ellpkl();
-void exit ();
-#endif
-extern int merror;
-#if GLIBC2
-long double lgammal(long double);
-#endif
-/*
-NYI:
-double iv(), kn();
-*/
-
-/* Provide inverses for square root and cube root: */
-long double squarel(x)
-long double x;
-{
-return( x * x );
-}
-
-long double cubel(x)
-long double x;
-{
-return( x * x * x );
-}
-
-/* lookup table for each function */
-struct fundef
- {
- char *nam1; /* the function */
- long double (*name )();
- char *nam2; /* its inverse */
- long double (*inv )();
- int nargs; /* number of function arguments */
- int tstyp; /* type code of the function */
- long ctrl; /* relative error flag */
- long double arg1w; /* width of domain for 1st arg */
- long double arg1l; /* lower bound domain 1st arg */
- long arg1f; /* flags, e.g. integer arg */
- long double arg2w; /* same info for args 2, 3, 4 */
- long double arg2l;
- long arg2f;
-/*
- double arg3w;
- double arg3l;
- long arg3f;
- double arg4w;
- double arg4l;
- long arg4f;
-*/
- };
-
-
-/* fundef.ctrl bits: */
-#define RELERR 1
-#define EXPSCAL 4
-
-/* fundef.tstyp test types: */
-#define POWER 1
-#define ELLIP 2
-#define GAMMA 3
-#define WRONK1 4
-#define WRONK2 5
-#define WRONK3 6
-#define STDTR 7
-
-/* fundef.argNf argument flag bits: */
-#define INT 2
-
-extern long double MINLOGL;
-extern long double MAXLOGL;
-extern long double PIL;
-extern long double PIO2L;
-/*
-define MINLOG -170.0
-define MAXLOG +170.0
-define PI 3.14159265358979323846
-define PIO2 1.570796326794896619
-*/
-
-#define NTESTS 17
-struct fundef defs[NTESTS] = {
-{" cube", cubel, " cbrt", cbrtl, 1, 0, 1, 2000.0L, -1000.0L, 0,
-0.0, 0.0, 0},
-{" tan", tanl, " atan", atanl, 1, 0, 1, 0.0L, 0.0L, 0,
-0.0, 0.0, 0},
-{" asin", asinl, " sin", sinl, 1, 0, 1, 2.0L, -1.0L, 0,
-0.0, 0.0, 0},
-{"square", squarel, " sqrt", sqrtl, 1, 0, 1, 170.0L, -85.0L, EXPSCAL,
-0.0, 0.0, 0},
-{" exp", expl, " log", logl, 1, 0, 0, 340.0L, -170.0L, 0,
-0.0, 0.0, 0},
-{" exp2", exp2l, " log2", log2l, 1, 0, 0, 340.0L, -170.0L, 0,
-0.0, 0.0, 0},
-{" exp10", exp10l, " log10", log10l, 1, 0, 0, 340.0L, -170.0L, 0,
-0.0, 0.0, 0},
-{" cosh", coshl, " acosh", acoshl, 1, 0, 0, 340.0L, 0.0L, 0,
-0.0, 0.0, 0},
-{"pow", powl, "pow", powl, 2, POWER, 1, 25.0L, 0.0L, 0,
-50.0, -25.0, 0},
-{" atanh", atanhl, " tanh", tanhl, 1, 0, 1, 2.0L, -1.0L, 0,
-0.0, 0.0, 0},
-{" sinh", sinhl, " asinh", asinhl, 1, 0, 1, 340.0L, 0.0L, 0,
-0.0, 0.0, 0},
-{" acos", acosl, " cos", cosl, 1, 0, 0, 2.0L, -1.0L, 0,
-0.0, 0.0, 0},
-#if GLIBC2
- /*
-{ "gamma", gammal, "lgammal", lgammal, 1, GAMMA, 0, 34.0, 0.0, 0,
-0.0, 0.0, 0},
-*/
-#else
-{ "gamma", gammal, "lgam", lgaml, 1, GAMMA, 0, 34.0, 0.0, 0,
-0.0, 0.0, 0},
-{ " ndtr", ndtrl, " ndtri", ndtril, 1, 0, 1, 10.0L, -10.0L, 0,
-0.0, 0.0, 0},
-{" ellpe", ellpel, " ellpk", ellpkl, 1, ELLIP, 0, 1.0L, 0.0L, 0,
-0.0, 0.0, 0},
-{ "stdtr", stdtrl, "stdtri", stdtril, 2, STDTR, 1, 4.0L, -2.0L, 0,
-30.0, 1.0, INT},
-{ " Jn", jnl, " Yn", ynl, 2, WRONK1, 0, 30.0, 0.1, 0,
-40.0, -20.0, INT},
-#endif
-};
-
-static char *headrs[] = {
-"x = %s( %s(x) ): ",
-"x = %s( %s(x,a),1/a ): ", /* power */
-"Legendre %s, %s: ", /* ellip */
-"%s(x) = log(%s(x)): ", /* gamma */
-"Wronksian of %s, %s: ", /* wronk1 */
-"Wronksian of %s, %s: ", /* wronk2 */
-"Wronksian of %s, %s: ", /* wronk3 */
-"x = %s(%s(k,x) ): ", /* stdtr */
-};
-
-static long double y1 = 0.0;
-static long double y2 = 0.0;
-static long double y3 = 0.0;
-static long double y4 = 0.0;
-static long double a = 0.0;
-static long double x = 0.0;
-static long double y = 0.0;
-static long double z = 0.0;
-static long double e = 0.0;
-static long double max = 0.0;
-static long double rmsa = 0.0;
-static long double rms = 0.0;
-static long double ave = 0.0;
-static double da, db, dc, dd;
-
-int ldrand();
-int printf();
-
-int
-main()
-{
-long double (*fun )();
-long double (*ifun )();
-struct fundef *d;
-int i, k, itst;
-int m, ntr;
-
-ntr = NTRIALS;
-printf( "Consistency test of math functions.\n" );
-printf( "Max and rms errors for %d random arguments.\n",
- ntr );
-printf( "A = absolute error criterion (but relative if >1):\n" );
-printf( "Otherwise, estimate is of relative error\n" );
-
-/* Initialize machine dependent parameters to test near the
- * largest an smallest possible arguments. To compare different
- * machines, use the same test intervals for all systems.
- */
-defs[1].arg1w = PIL;
-defs[1].arg1l = -PIL/2.0;
-/*
-defs[3].arg1w = MAXLOGL;
-defs[3].arg1l = -MAXLOGL/2.0;
-defs[4].arg1w = 2.0*MAXLOGL;
-defs[4].arg1l = -MAXLOGL;
-defs[6].arg1w = 2.0*MAXLOGL;
-defs[6].arg1l = -MAXLOGL;
-defs[7].arg1w = MAXLOGL;
-defs[7].arg1l = 0.0;
-*/
-
-/* Outer loop, on the test number: */
-
-for( itst=STRTST; itst<NTESTS; itst++ )
-{
-d = &defs[itst];
-m = 0;
-max = 0.0L;
-rmsa = 0.0L;
-ave = 0.0L;
-fun = d->name;
-ifun = d->inv;
-
-/* Smaller number of trials for Wronksians
- * (put them at end of list)
- */
-if( d->tstyp == WRONK1 )
- {
- ntr = WTRIALS;
- printf( "Absolute error and only %d trials:\n", ntr );
- }
-else if( d->tstyp == STDTR )
- {
- ntr = NTRIALS/100;
- printf( "Relative error and only %d trials:\n", ntr );
- }
-/*
-y1 = d->arg1l;
-y2 = d->arg1w;
-da = y1;
-db = y2;
-printf( "arg1l = %.4e, arg1w = %.4e\n", da, db );
-*/
-printf( headrs[d->tstyp], d->nam2, d->nam1 );
-
-for( i=0; i<ntr; i++ )
-{
-m++;
-k = 0;
-/* make random number(s) in desired range(s) */
-switch( d->nargs )
-{
-
-default:
-goto illegn;
-
-case 2:
-ldrand( &a );
-a = d->arg2w * ( a - 1.0L ) + d->arg2l;
-if( d->arg2f & EXPSCAL )
- {
- a = expl(a);
- ldrand( &y2 );
- a -= 1.0e-13L * a * (y2 - 1.0L);
- }
-if( d->arg2f & INT )
- {
- k = a + 0.25L;
- a = k;
- }
-
-case 1:
-ldrand( &x );
-y1 = d->arg1l;
-y2 = d->arg1w;
-x = y2 * ( x - 1.0L ) + y1;
-if( x < y1 )
- x = y1;
-y1 += y2;
-if( x > y1 )
- x = y1;
-if( d->arg1f & EXPSCAL )
- {
- x = expl(x);
- ldrand( &y2 );
- x += 1.0e-13L * x * (y2 - 1.0L);
- }
-}
-
-/* compute function under test */
-switch( d->nargs )
- {
- case 1:
- switch( d->tstyp )
- {
- case ELLIP:
- y1 = ( *(fun) )(x);
- y2 = ( *(fun) )(1.0L-x);
- y3 = ( *(ifun) )(x);
- y4 = ( *(ifun) )(1.0L-x);
- break;
-#if 1
- case GAMMA:
- y = lgaml(x);
- x = logl( gammal(x) );
- break;
-#endif
- default:
- z = ( *(fun) )(x);
- y = ( *(ifun) )(z);
- }
-/*
-if( merror )
- {
- printf( "error: x = %.15e, z = %.15e, y = %.15e\n",
- (double )x, (double )z, (double )y );
- }
-*/
- break;
-
- case 2:
- if( d->arg2f & INT )
- {
- switch( d->tstyp )
- {
- case WRONK1:
- y1 = (*fun)( k, x ); /* jn */
- y2 = (*fun)( k+1, x );
- y3 = (*ifun)( k, x ); /* yn */
- y4 = (*ifun)( k+1, x );
- break;
-
- case WRONK2:
- y1 = (*fun)( a, x ); /* iv */
- y2 = (*fun)( a+1.0L, x );
- y3 = (*ifun)( k, x ); /* kn */
- y4 = (*ifun)( k+1, x );
- break;
-
- default:
- z = (*fun)( k, x );
- y = (*ifun)( k, z );
- }
- }
- else
- {
- if( d->tstyp == POWER )
- {
- z = (*fun)( x, a );
- y = (*ifun)( z, 1.0L/a );
- }
- else
- {
- z = (*fun)( a, x );
- y = (*ifun)( a, z );
- }
- }
- break;
-
-
- default:
-illegn:
- printf( "Illegal nargs= %d", d->nargs );
- exit(1);
- }
-
-switch( d->tstyp )
- {
- case WRONK1:
- /* Jn, Yn */
-/* e = (y2*y3 - y1*y4) - 2.0L/(PIL*x);*/
- e = x*(y2*y3 - y1*y4) - 2.0L/PIL;
- break;
-
- case WRONK2:
-/* In, Kn */
-/* e = (y2*y3 + y1*y4) - 1.0L/x; */
- e = x*(y2*y3 + y1*y4) - 1.0L;
- break;
-
- case ELLIP:
- e = (y1-y3)*y4 + y3*y2 - PIO2L;
- break;
-
- default:
- e = y - x;
- break;
- }
-
-if( d->ctrl & RELERR )
- {
- if( x != 0.0L )
- e /= x;
- else
- printf( "warning, x == 0\n" );
- }
-else
- {
- if( fabsl(x) > 1.0L )
- e /= x;
- }
-
-ave += e;
-/* absolute value of error */
-if( e < 0 )
- e = -e;
-
-/* peak detect the error */
-if( e > max )
- {
- max = e;
-
- if( e > 1.0e-10L )
- {
-da = x;
-db = z;
-dc = y;
-dd = max;
- printf("x %.6E z %.6E y %.6E max %.4E\n",
- da, db, dc, dd );
-/*
- if( d->tstyp >= WRONK1 )
- {
- printf( "y1 %.4E y2 %.4E y3 %.4E y4 %.4E k %d x %.4E\n",
- (double )y1, (double )y2, (double )y3,
- (double )y4, k, (double )x );
- }
-*/
- }
-
-/*
- printf("%.8E %.8E %.4E %6ld \n", x, y, max, n);
- printf("%d %.8E %.8E %.4E %6ld \n", k, x, y, max, n);
- printf("%.6E %.6E %.6E %.4E %6ld \n", a, x, y, max, n);
- printf("%.6E %.6E %.6E %.6E %.4E %6ld \n", a, b, x, y, max, n);
- printf("%.4E %.4E %.4E %.4E %.4E %.4E %6ld \n",
- a, b, c, x, y, max, n);
-*/
- }
-
-/* accumulate rms error */
-e *= 1.0e16L; /* adjust range */
-rmsa += e * e; /* accumulate the square of the error */
-}
-
-/* report after NTRIALS trials */
-rms = 1.0e-16L * sqrtl( rmsa/m );
-da = max;
-db = rms;
-if(d->ctrl & RELERR)
- printf(" max = %.2E rms = %.2E\n", da, db );
-else
- printf(" max = %.2E A rms = %.2E A\n", da, db );
-} /* loop on itst */
-
-exit (0);
-return 0;
-}
-