diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/ldouble/fdtrl.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/ldouble/fdtrl.c')
-rw-r--r-- | libm/ldouble/fdtrl.c | 237 |
1 files changed, 237 insertions, 0 deletions
diff --git a/libm/ldouble/fdtrl.c b/libm/ldouble/fdtrl.c new file mode 100644 index 000000000..da2f8910a --- /dev/null +++ b/libm/ldouble/fdtrl.c @@ -0,0 +1,237 @@ +/* fdtrl.c + * + * F distribution, long double precision + * + * + * + * SYNOPSIS: + * + * int df1, df2; + * long double x, y, fdtrl(); + * + * y = fdtrl( df1, df2, x ); + * + * + * + * DESCRIPTION: + * + * Returns the area from zero to x under the F density + * function (also known as Snedcor's density or the + * variance ratio density). This is the density + * of x = (u1/df1)/(u2/df2), where u1 and u2 are random + * variables having Chi square distributions with df1 + * and df2 degrees of freedom, respectively. + * + * The incomplete beta integral is used, according to the + * formula + * + * P(x) = incbetl( df1/2, df2/2, (df1*x/(df2 + df1*x) ). + * + * + * The arguments a and b are greater than zero, and x + * x is nonnegative. + * + * ACCURACY: + * + * Tested at random points (a,b,x) in the indicated intervals. + * x a,b Relative error: + * arithmetic domain domain # trials peak rms + * IEEE 0,1 1,100 10000 9.3e-18 2.9e-19 + * IEEE 0,1 1,10000 10000 1.9e-14 2.9e-15 + * IEEE 1,5 1,10000 10000 5.8e-15 1.4e-16 + * + * ERROR MESSAGES: + * + * message condition value returned + * fdtrl domain a<0, b<0, x<0 0.0 + * + */ +/* fdtrcl() + * + * Complemented F distribution + * + * + * + * SYNOPSIS: + * + * int df1, df2; + * long double x, y, fdtrcl(); + * + * y = fdtrcl( df1, df2, x ); + * + * + * + * DESCRIPTION: + * + * Returns the area from x to infinity under the F density + * function (also known as Snedcor's density or the + * variance ratio density). + * + * + * inf. + * - + * 1 | | a-1 b-1 + * 1-P(x) = ------ | t (1-t) dt + * B(a,b) | | + * - + * x + * + * (See fdtr.c.) + * + * The incomplete beta integral is used, according to the + * formula + * + * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). + * + * + * ACCURACY: + * + * See incbet.c. + * Tested at random points (a,b,x). + * + * x a,b Relative error: + * arithmetic domain domain # trials peak rms + * IEEE 0,1 0,100 10000 4.2e-18 3.3e-19 + * IEEE 0,1 1,10000 10000 7.2e-15 2.6e-16 + * IEEE 1,5 1,10000 10000 1.7e-14 3.0e-15 + * + * ERROR MESSAGES: + * + * message condition value returned + * fdtrcl domain a<0, b<0, x<0 0.0 + * + */ +/* fdtril() + * + * Inverse of complemented F distribution + * + * + * + * SYNOPSIS: + * + * int df1, df2; + * long double x, p, fdtril(); + * + * x = fdtril( df1, df2, p ); + * + * DESCRIPTION: + * + * Finds the F density argument x such that the integral + * from x to infinity of the F density is equal to the + * given probability p. + * + * This is accomplished using the inverse beta integral + * function and the relations + * + * z = incbi( df2/2, df1/2, p ) + * x = df2 (1-z) / (df1 z). + * + * Note: the following relations hold for the inverse of + * the uncomplemented F distribution: + * + * z = incbi( df1/2, df2/2, p ) + * x = df2 z / (df1 (1-z)). + * + * ACCURACY: + * + * See incbi.c. + * Tested at random points (a,b,p). + * + * a,b Relative error: + * arithmetic domain # trials peak rms + * For p between .001 and 1: + * IEEE 1,100 40000 4.6e-18 2.7e-19 + * IEEE 1,10000 30000 1.7e-14 1.4e-16 + * For p between 10^-6 and .001: + * IEEE 1,100 20000 1.9e-15 3.9e-17 + * IEEE 1,10000 30000 2.7e-15 4.0e-17 + * + * ERROR MESSAGES: + * + * message condition value returned + * fdtril domain p <= 0 or p > 1 0.0 + * v < 1 + */ + + +/* +Cephes Math Library Release 2.3: March, 1995 +Copyright 1984, 1995 by Stephen L. Moshier +*/ + + +#include <math.h> +#ifdef ANSIPROT +extern long double incbetl ( long double, long double, long double ); +extern long double incbil ( long double, long double, long double ); +#else +long double incbetl(), incbil(); +#endif + +long double fdtrcl( ia, ib, x ) +int ia, ib; +long double x; +{ +long double a, b, w; + +if( (ia < 1) || (ib < 1) || (x < 0.0L) ) + { + mtherr( "fdtrcl", DOMAIN ); + return( 0.0L ); + } +a = ia; +b = ib; +w = b / (b + a * x); +return( incbetl( 0.5L*b, 0.5L*a, w ) ); +} + + + +long double fdtrl( ia, ib, x ) +int ia, ib; +long double x; +{ +long double a, b, w; + +if( (ia < 1) || (ib < 1) || (x < 0.0L) ) + { + mtherr( "fdtrl", DOMAIN ); + return( 0.0L ); + } +a = ia; +b = ib; +w = a * x; +w = w / (b + w); +return( incbetl(0.5L*a, 0.5L*b, w) ); +} + + +long double fdtril( ia, ib, y ) +int ia, ib; +long double y; +{ +long double a, b, w, x; + +if( (ia < 1) || (ib < 1) || (y <= 0.0L) || (y > 1.0L) ) + { + mtherr( "fdtril", DOMAIN ); + return( 0.0L ); + } +a = ia; +b = ib; +/* Compute probability for x = 0.5. */ +w = incbetl( 0.5L*b, 0.5L*a, 0.5L ); +/* If that is greater than y, then the solution w < .5. + Otherwise, solve at 1-y to remove cancellation in (b - b*w). */ +if( w > y || y < 0.001L) + { + w = incbil( 0.5L*b, 0.5L*a, y ); + x = (b - b*w)/(a*w); + } +else + { + w = incbil( 0.5L*a, 0.5L*b, 1.0L - y ); + x = b*w/(a*(1.0L-w)); + } +return(x); +} |