diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/ellpkl.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/ldouble/ellpkl.c')
-rw-r--r-- | libm/ldouble/ellpkl.c | 203 |
1 files changed, 0 insertions, 203 deletions
diff --git a/libm/ldouble/ellpkl.c b/libm/ldouble/ellpkl.c deleted file mode 100644 index dd42ac861..000000000 --- a/libm/ldouble/ellpkl.c +++ /dev/null @@ -1,203 +0,0 @@ -/* ellpkl.c - * - * Complete elliptic integral of the first kind - * - * - * - * SYNOPSIS: - * - * long double m1, y, ellpkl(); - * - * y = ellpkl( m1 ); - * - * - * - * DESCRIPTION: - * - * Approximates the integral - * - * - * - * pi/2 - * - - * | | - * | dt - * K(m) = | ------------------ - * | 2 - * | | sqrt( 1 - m sin t ) - * - - * 0 - * - * where m = 1 - m1, using the approximation - * - * P(x) - log x Q(x). - * - * The argument m1 is used rather than m so that the logarithmic - * singularity at m = 1 will be shifted to the origin; this - * preserves maximum accuracy. - * - * K(0) = pi/2. - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,1 10000 1.1e-19 3.3e-20 - * - * ERROR MESSAGES: - * - * message condition value returned - * ellpkl domain x<0, x>1 0.0 - * - */ - -/* ellpkl.c */ - - -/* -Cephes Math Library, Release 2.3: October, 1995 -Copyright 1984, 1987, 1995 by Stephen L. Moshier -*/ - -#include <math.h> - -#if UNK -static long double P[13] = { - 1.247539729154838838628E-6L, - 2.149421654232011240659E-4L, - 2.265267575136470585139E-3L, - 6.723088676584254248821E-3L, - 8.092066790639263075808E-3L, - 5.664069509748147028621E-3L, - 4.579865994050801042865E-3L, - 5.797368411662027645234E-3L, - 8.767698209432225911803E-3L, - 1.493761594388688915057E-2L, - 3.088514457872042326871E-2L, - 9.657359027999314232753E-2L, - 1.386294361119890618992E0L, -}; -static long double Q[12] = { - 5.568631677757315398993E-5L, - 1.036110372590318802997E-3L, - 5.500459122138244213579E-3L, - 1.337330436245904844528E-2L, - 2.033103735656990487115E-2L, - 2.522868345512332304268E-2L, - 3.026786461242788135379E-2L, - 3.738370118296930305919E-2L, - 4.882812208418620146046E-2L, - 7.031249999330222751046E-2L, - 1.249999999999978263154E-1L, - 4.999999999999999999924E-1L, -}; -static long double C1 = 1.386294361119890618834L; /* log(4) */ -#endif -#if IBMPC -static short P[] = { -0xf098,0xad01,0x2381,0xa771,0x3feb, XPD -0xd6ed,0xea22,0x1922,0xe162,0x3ff2, XPD -0x3733,0xe2f1,0xe226,0x9474,0x3ff6, XPD -0x3031,0x3c9d,0x5aff,0xdc4d,0x3ff7, XPD -0x9a46,0x4310,0x968e,0x8494,0x3ff8, XPD -0xbe4c,0x3ff2,0xa8a7,0xb999,0x3ff7, XPD -0xf35c,0x0eaf,0xb355,0x9612,0x3ff7, XPD -0xbc56,0x8fd4,0xd9dd,0xbdf7,0x3ff7, XPD -0xc01e,0x867f,0x6444,0x8fa6,0x3ff8, XPD -0x4ba3,0x6392,0xe6fd,0xf4bc,0x3ff8, XPD -0x62c3,0xbb12,0xd7bc,0xfd02,0x3ff9, XPD -0x08fe,0x476c,0x5fdf,0xc5c8,0x3ffb, XPD -0x79ad,0xd1cf,0x17f7,0xb172,0x3fff, XPD -}; -static short Q[] = { -0x96a4,0x8474,0xba33,0xe990,0x3ff0, XPD -0xe5a7,0xa50e,0x1854,0x87ce,0x3ff5, XPD -0x8999,0x72e3,0x3205,0xb43d,0x3ff7, XPD -0x3255,0x13eb,0xb438,0xdb1b,0x3ff8, XPD -0xb717,0x497f,0x4691,0xa68d,0x3ff9, XPD -0x30be,0x8c6b,0x624b,0xceac,0x3ff9, XPD -0xa858,0x2a0d,0x5014,0xf7f4,0x3ff9, XPD -0x8615,0xbfa6,0xa6df,0x991f,0x3ffa, XPD -0x103c,0xa076,0xff37,0xc7ff,0x3ffa, XPD -0xf508,0xc515,0xffff,0x8fff,0x3ffb, XPD -0x1af5,0xfffb,0xffff,0xffff,0x3ffb, XPD -0x0000,0x0000,0x0000,0x8000,0x3ffe, XPD -}; -static unsigned short ac1[] = { -0x79ac,0xd1cf,0x17f7,0xb172,0x3fff, XPD -}; -#define C1 (*(long double *)ac1) -#endif - -#ifdef MIEEE -static long P[39] = { -0x3feb0000,0xa7712381,0xad01f098, -0x3ff20000,0xe1621922,0xea22d6ed, -0x3ff60000,0x9474e226,0xe2f13733, -0x3ff70000,0xdc4d5aff,0x3c9d3031, -0x3ff80000,0x8494968e,0x43109a46, -0x3ff70000,0xb999a8a7,0x3ff2be4c, -0x3ff70000,0x9612b355,0x0eaff35c, -0x3ff70000,0xbdf7d9dd,0x8fd4bc56, -0x3ff80000,0x8fa66444,0x867fc01e, -0x3ff80000,0xf4bce6fd,0x63924ba3, -0x3ff90000,0xfd02d7bc,0xbb1262c3, -0x3ffb0000,0xc5c85fdf,0x476c08fe, -0x3fff0000,0xb17217f7,0xd1cf79ad, -}; -static long Q[36] = { -0x3ff00000,0xe990ba33,0x847496a4, -0x3ff50000,0x87ce1854,0xa50ee5a7, -0x3ff70000,0xb43d3205,0x72e38999, -0x3ff80000,0xdb1bb438,0x13eb3255, -0x3ff90000,0xa68d4691,0x497fb717, -0x3ff90000,0xceac624b,0x8c6b30be, -0x3ff90000,0xf7f45014,0x2a0da858, -0x3ffa0000,0x991fa6df,0xbfa68615, -0x3ffa0000,0xc7ffff37,0xa076103c, -0x3ffb0000,0x8fffffff,0xc515f508, -0x3ffb0000,0xffffffff,0xfffb1af5, -0x3ffe0000,0x80000000,0x00000000, -}; -static unsigned long ac1[] = { -0x3fff0000,0xb17217f7,0xd1cf79ac -}; -#define C1 (*(long double *)ac1) -#endif - - -#ifdef ANSIPROT -extern long double polevll ( long double, void *, int ); -extern long double logl ( long double ); -#else -long double polevll(), logl(); -#endif -extern long double MACHEPL, MAXNUML; - -long double ellpkl(x) -long double x; -{ - -if( (x < 0.0L) || (x > 1.0L) ) - { - mtherr( "ellpkl", DOMAIN ); - return( 0.0L ); - } - -if( x > MACHEPL ) - { - return( polevll(x,P,12) - logl(x) * polevll(x,Q,11) ); - } -else - { - if( x == 0.0L ) - { - mtherr( "ellpkl", SING ); - return( MAXNUML ); - } - else - { - return( C1 - 0.5L * logl(x) ); - } - } -} |