diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/ldouble/acoshl.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/ldouble/acoshl.c')
-rw-r--r-- | libm/ldouble/acoshl.c | 167 |
1 files changed, 0 insertions, 167 deletions
diff --git a/libm/ldouble/acoshl.c b/libm/ldouble/acoshl.c deleted file mode 100644 index 96c46bf22..000000000 --- a/libm/ldouble/acoshl.c +++ /dev/null @@ -1,167 +0,0 @@ -/* acoshl.c - * - * Inverse hyperbolic cosine, long double precision - * - * - * - * SYNOPSIS: - * - * long double x, y, acoshl(); - * - * y = acoshl( x ); - * - * - * - * DESCRIPTION: - * - * Returns inverse hyperbolic cosine of argument. - * - * If 1 <= x < 1.5, a rational approximation - * - * sqrt(2z) * P(z)/Q(z) - * - * where z = x-1, is used. Otherwise, - * - * acosh(x) = log( x + sqrt( (x-1)(x+1) ). - * - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 1,3 30000 2.0e-19 3.9e-20 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * acoshl domain |x| < 1 0.0 - * - */ - -/* acosh.c */ - -/* -Cephes Math Library Release 2.7: May, 1998 -Copyright 1984, 1991, 1998 by Stephen L. Moshier -*/ - - -/* acosh(1+x) = sqrt(2x) * R(x), interval 0 < x < 0.5 */ - -#include <math.h> - -#ifdef UNK -static long double P[] = { - 2.9071989653343333587238E-5L, - 3.2906030801088967279449E-3L, - 6.3034445964862182128388E-2L, - 4.1587081802731351459504E-1L, - 1.0989714347599256302467E0L, - 9.9999999999999999999715E-1L, -}; -static long double Q[] = { - 1.0443462486787584738322E-4L, - 6.0085845375571145826908E-3L, - 8.7750439986662958343370E-2L, - 4.9564621536841869854584E-1L, - 1.1823047680932589605190E0L, - 1.0000000000000000000028E0L, -}; -#endif - - -#ifdef IBMPC -static unsigned short P[] = { -0x4536,0x4dba,0x9f55,0xf3df,0x3fef, XPD -0x23a5,0xf9aa,0x289c,0xd7a7,0x3ff6, XPD -0x7e8b,0x8645,0x341f,0x8118,0x3ffb, XPD -0x0fd5,0x937f,0x0515,0xd4ed,0x3ffd, XPD -0x2364,0xc41b,0x1891,0x8cab,0x3fff, XPD -0x0000,0x0000,0x0000,0x8000,0x3fff, XPD -}; -static short Q[] = { -0x1e7c,0x4f16,0xe98c,0xdb03,0x3ff1, XPD -0xc319,0xc272,0xa90a,0xc4e3,0x3ff7, XPD -0x2f83,0x9e5e,0x80af,0xb3b6,0x3ffb, XPD -0xe1e0,0xc97c,0x573a,0xfdc5,0x3ffd, XPD -0xcdf2,0x6ec5,0xc33c,0x9755,0x3fff, XPD -0x0000,0x0000,0x0000,0x8000,0x3fff, XPD -}; -#endif - -#ifdef MIEEE -static long P[] = { -0x3fef0000,0xf3df9f55,0x4dba4536, -0x3ff60000,0xd7a7289c,0xf9aa23a5, -0x3ffb0000,0x8118341f,0x86457e8b, -0x3ffd0000,0xd4ed0515,0x937f0fd5, -0x3fff0000,0x8cab1891,0xc41b2364, -0x3fff0000,0x80000000,0x00000000, -}; -static long Q[] = { -0x3ff10000,0xdb03e98c,0x4f161e7c, -0x3ff70000,0xc4e3a90a,0xc272c319, -0x3ffb0000,0xb3b680af,0x9e5e2f83, -0x3ffd0000,0xfdc5573a,0xc97ce1e0, -0x3fff0000,0x9755c33c,0x6ec5cdf2, -0x3fff0000,0x80000000,0x00000000, -}; -#endif - -extern long double LOGE2L; -#ifdef INFINITIES -extern long double INFINITYL; -#endif -#ifdef NANS -extern long double NANL; -#endif -#ifdef ANSIPROT -extern long double logl ( long double ); -extern long double sqrtl ( long double ); -extern long double polevll ( long double, void *, int ); -extern int isnanl ( long double ); -#else -long double logl(), sqrtl(), polevll(), isnanl(); -#endif - -long double acoshl(x) -long double x; -{ -long double a, z; - -#ifdef NANS -if( isnanl(x) ) - return(x); -#endif -if( x < 1.0L ) - { - mtherr( "acoshl", DOMAIN ); -#ifdef NANS - return(NANL); -#else - return(0.0L); -#endif - } - -if( x > 1.0e10 ) - { -#ifdef INFINITIES - if( x == INFINITYL ) - return( INFINITYL ); -#endif - return( logl(x) + LOGE2L ); - } - -z = x - 1.0L; - -if( z < 0.5L ) - { - a = sqrtl(2.0L*z) * (polevll(z, P, 5) / polevll(z, Q, 5) ); - return( a ); - } - -a = sqrtl( z*(x+1.0L) ); -return( logl(x + a) ); -} |