diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/k_tan.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/k_tan.c')
-rw-r--r-- | libm/k_tan.c | 131 |
1 files changed, 131 insertions, 0 deletions
diff --git a/libm/k_tan.c b/libm/k_tan.c new file mode 100644 index 000000000..aa9c67c9d --- /dev/null +++ b/libm/k_tan.c @@ -0,0 +1,131 @@ +/* @(#)k_tan.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: k_tan.c,v 1.8 1995/05/10 20:46:37 jtc Exp $"; +#endif + +/* __kernel_tan( x, y, k ) + * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 + * Input x is assumed to be bounded by ~pi/4 in magnitude. + * Input y is the tail of x. + * Input k indicates whether tan (if k=1) or + * -1/tan (if k= -1) is returned. + * + * Algorithm + * 1. Since tan(-x) = -tan(x), we need only to consider positive x. + * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0. + * 3. tan(x) is approximated by a odd polynomial of degree 27 on + * [0,0.67434] + * 3 27 + * tan(x) ~ x + T1*x + ... + T13*x + * where + * + * |tan(x) 2 4 26 | -59.2 + * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2 + * | x | + * + * Note: tan(x+y) = tan(x) + tan'(x)*y + * ~ tan(x) + (1+x*x)*y + * Therefore, for better accuracy in computing tan(x+y), let + * 3 2 2 2 2 + * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13)))) + * then + * 3 2 + * tan(x+y) = x + (T1*x + (x *(r+y)+y)) + * + * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then + * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) + * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) + */ + +#include "math.h" +#include "math_private.h" +#ifdef __STDC__ +static const double +#else +static double +#endif +one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ +pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */ +pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */ +T[] = { + 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */ + 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */ + 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */ + 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */ + 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */ + 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */ + 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */ + 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */ + 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */ + 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */ + 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */ + -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */ + 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */ +}; + +#ifdef __STDC__ + double __kernel_tan(double x, double y, int iy) +#else + double __kernel_tan(x, y, iy) + double x,y; int iy; +#endif +{ + double z,r,v,w,s; + int32_t ix,hx; + GET_HIGH_WORD(hx,x); + ix = hx&0x7fffffff; /* high word of |x| */ + if(ix<0x3e300000) /* x < 2**-28 */ + {if((int)x==0) { /* generate inexact */ + u_int32_t low; + GET_LOW_WORD(low,x); + if(((ix|low)|(iy+1))==0) return one/fabs(x); + else return (iy==1)? x: -one/x; + } + } + if(ix>=0x3FE59428) { /* |x|>=0.6744 */ + if(hx<0) {x = -x; y = -y;} + z = pio4-x; + w = pio4lo-y; + x = z+w; y = 0.0; + } + z = x*x; + w = z*z; + /* Break x^5*(T[1]+x^2*T[2]+...) into + * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) + + * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12])) + */ + r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11])))); + v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12]))))); + s = z*x; + r = y + z*(s*(r+v)+y); + r += T[0]*s; + w = x+r; + if(ix>=0x3FE59428) { + v = (double)iy; + return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r))); + } + if(iy==1) return w; + else { /* if allow error up to 2 ulp, + simply return -1.0/(x+r) here */ + /* compute -1.0/(x+r) accurately */ + double a,t; + z = w; + SET_LOW_WORD(z,0); + v = r-(z - x); /* z+v = r+x */ + t = a = -1.0/w; /* a = -1.0/w */ + SET_LOW_WORD(t,0); + s = 1.0+t*z; + return t+a*(s+t*v); + } +} |