summaryrefslogtreecommitdiff
path: root/libm/float/jnf.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-05-10 00:40:28 +0000
committerEric Andersen <andersen@codepoet.org>2001-05-10 00:40:28 +0000
commit1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch)
tree579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/float/jnf.c
parent22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff)
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/float/jnf.c')
-rw-r--r--libm/float/jnf.c124
1 files changed, 124 insertions, 0 deletions
diff --git a/libm/float/jnf.c b/libm/float/jnf.c
new file mode 100644
index 000000000..de358e0ef
--- /dev/null
+++ b/libm/float/jnf.c
@@ -0,0 +1,124 @@
+/* jnf.c
+ *
+ * Bessel function of integer order
+ *
+ *
+ *
+ * SYNOPSIS:
+ *
+ * int n;
+ * float x, y, jnf();
+ *
+ * y = jnf( n, x );
+ *
+ *
+ *
+ * DESCRIPTION:
+ *
+ * Returns Bessel function of order n, where n is a
+ * (possibly negative) integer.
+ *
+ * The ratio of jn(x) to j0(x) is computed by backward
+ * recurrence. First the ratio jn/jn-1 is found by a
+ * continued fraction expansion. Then the recurrence
+ * relating successive orders is applied until j0 or j1 is
+ * reached.
+ *
+ * If n = 0 or 1 the routine for j0 or j1 is called
+ * directly.
+ *
+ *
+ *
+ * ACCURACY:
+ *
+ * Absolute error:
+ * arithmetic range # trials peak rms
+ * IEEE 0, 15 30000 3.6e-7 3.6e-8
+ *
+ *
+ * Not suitable for large n or x. Use jvf() instead.
+ *
+ */
+
+/* jn.c
+Cephes Math Library Release 2.2: June, 1992
+Copyright 1984, 1987, 1992 by Stephen L. Moshier
+Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+*/
+#include <math.h>
+
+extern float MACHEPF;
+
+float j0f(float), j1f(float);
+
+float jnf( int n, float xx )
+{
+float x, pkm2, pkm1, pk, xk, r, ans, xinv, sign;
+int k;
+
+x = xx;
+sign = 1.0;
+if( n < 0 )
+ {
+ n = -n;
+ if( (n & 1) != 0 ) /* -1**n */
+ sign = -1.0;
+ }
+
+if( n == 0 )
+ return( sign * j0f(x) );
+if( n == 1 )
+ return( sign * j1f(x) );
+if( n == 2 )
+ return( sign * (2.0 * j1f(x) / x - j0f(x)) );
+
+/*
+if( x < MACHEPF )
+ return( 0.0 );
+*/
+
+/* continued fraction */
+k = 24;
+pk = 2 * (n + k);
+ans = pk;
+xk = x * x;
+
+do
+ {
+ pk -= 2.0;
+ ans = pk - (xk/ans);
+ }
+while( --k > 0 );
+/*ans = x/ans;*/
+
+/* backward recurrence */
+
+pk = 1.0;
+/*pkm1 = 1.0/ans;*/
+xinv = 1.0/x;
+pkm1 = ans * xinv;
+k = n-1;
+r = (float )(2 * k);
+
+do
+ {
+ pkm2 = (pkm1 * r - pk * x) * xinv;
+ pk = pkm1;
+ pkm1 = pkm2;
+ r -= 2.0;
+ }
+while( --k > 0 );
+
+r = pk;
+if( r < 0 )
+ r = -r;
+ans = pkm1;
+if( ans < 0 )
+ ans = -ans;
+
+if( r > ans ) /* if( fabs(pk) > fabs(pkm1) ) */
+ ans = sign * j1f(x)/pk;
+else
+ ans = sign * j0f(x)/pkm1;
+return( ans );
+}