diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float/igamif.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/float/igamif.c')
-rw-r--r-- | libm/float/igamif.c | 112 |
1 files changed, 0 insertions, 112 deletions
diff --git a/libm/float/igamif.c b/libm/float/igamif.c deleted file mode 100644 index 5a33b4982..000000000 --- a/libm/float/igamif.c +++ /dev/null @@ -1,112 +0,0 @@ -/* igamif() - * - * Inverse of complemented imcomplete gamma integral - * - * - * - * SYNOPSIS: - * - * float a, x, y, igamif(); - * - * x = igamif( a, y ); - * - * - * - * DESCRIPTION: - * - * Given y, the function finds x such that - * - * igamc( a, x ) = y. - * - * Starting with the approximate value - * - * 3 - * x = a t - * - * where - * - * t = 1 - d - ndtri(y) sqrt(d) - * - * and - * - * d = 1/9a, - * - * the routine performs up to 10 Newton iterations to find the - * root of igamc(a,x) - y = 0. - * - * - * ACCURACY: - * - * Tested for a ranging from 0 to 100 and x from 0 to 1. - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,100 5000 1.0e-5 1.5e-6 - * - */ - -/* -Cephes Math Library Release 2.2: July, 1992 -Copyright 1984, 1987, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - -#include <math.h> - -extern float MACHEPF, MAXLOGF; - -#define fabsf(x) ( (x) < 0 ? -(x) : (x) ) - -#ifdef ANSIC -float igamcf(float, float); -float ndtrif(float), expf(float), logf(float), sqrtf(float), lgamf(float); -#else -float igamcf(); -float ndtrif(), expf(), logf(), sqrtf(), lgamf(); -#endif - - -float igamif( float aa, float yy0 ) -{ -float a, y0, d, y, x0, lgm; -int i; - -a = aa; -y0 = yy0; -/* approximation to inverse function */ -d = 1.0/(9.0*a); -y = ( 1.0 - d - ndtrif(y0) * sqrtf(d) ); -x0 = a * y * y * y; - -lgm = lgamf(a); - -for( i=0; i<10; i++ ) - { - if( x0 <= 0.0 ) - { - mtherr( "igamif", UNDERFLOW ); - return(0.0); - } - y = igamcf(a,x0); -/* compute the derivative of the function at this point */ - d = (a - 1.0) * logf(x0) - x0 - lgm; - if( d < -MAXLOGF ) - { - mtherr( "igamif", UNDERFLOW ); - goto done; - } - d = -expf(d); -/* compute the step to the next approximation of x */ - if( d == 0.0 ) - goto done; - d = (y - y0)/d; - x0 = x0 - d; - if( i < 3 ) - continue; - if( fabsf(d/x0) < (2.0 * MACHEPF) ) - goto done; - } - -done: -return( x0 ); -} |