diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float/ellikf.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/float/ellikf.c')
-rw-r--r-- | libm/float/ellikf.c | 113 |
1 files changed, 0 insertions, 113 deletions
diff --git a/libm/float/ellikf.c b/libm/float/ellikf.c deleted file mode 100644 index 8ec890926..000000000 --- a/libm/float/ellikf.c +++ /dev/null @@ -1,113 +0,0 @@ -/* ellikf.c - * - * Incomplete elliptic integral of the first kind - * - * - * - * SYNOPSIS: - * - * float phi, m, y, ellikf(); - * - * y = ellikf( phi, m ); - * - * - * - * DESCRIPTION: - * - * Approximates the integral - * - * - * - * phi - * - - * | | - * | dt - * F(phi\m) = | ------------------ - * | 2 - * | | sqrt( 1 - m sin t ) - * - - * 0 - * - * of amplitude phi and modulus m, using the arithmetic - - * geometric mean algorithm. - * - * - * - * - * ACCURACY: - * - * Tested at random points with phi in [0, 2] and m in - * [0, 1]. - * Relative error: - * arithmetic domain # trials peak rms - * IEEE 0,2 10000 2.9e-7 5.8e-8 - * - * - */ - - -/* -Cephes Math Library Release 2.2: July, 1992 -Copyright 1984, 1987, 1992 by Stephen L. Moshier -Direct inquiries to 30 Frost Street, Cambridge, MA 02140 -*/ - -/* Incomplete elliptic integral of first kind */ - -#include <math.h> -extern float PIF, PIO2F, MACHEPF; - -#define fabsf(x) ( (x) < 0 ? -(x) : (x) ) - -#ifdef ANSIC -float sqrtf(float), logf(float), sinf(float), tanf(float), atanf(float); -#else -float sqrtf(), logf(), sinf(), tanf(), atanf(); -#endif - - -float ellikf( float phia, float ma ) -{ -float phi, m, a, b, c, temp; -float t; -int d, mod, sign; - -phi = phia; -m = ma; -if( m == 0.0 ) - return( phi ); -if( phi < 0.0 ) - { - phi = -phi; - sign = -1; - } -else - sign = 0; -a = 1.0; -b = 1.0 - m; -if( b == 0.0 ) - return( logf( tanf( 0.5*(PIO2F + phi) ) ) ); -b = sqrtf(b); -c = sqrtf(m); -d = 1; -t = tanf( phi ); -mod = (phi + PIO2F)/PIF; - -while( fabsf(c/a) > MACHEPF ) - { - temp = b/a; - phi = phi + atanf(t*temp) + mod * PIF; - mod = (phi + PIO2F)/PIF; - t = t * ( 1.0 + temp )/( 1.0 - temp * t * t ); - c = ( a - b )/2.0; - temp = sqrtf( a * b ); - a = ( a + b )/2.0; - b = temp; - d += d; - } - -temp = (atanf(t) + mod * PIF)/(d * a); -if( sign < 0 ) - temp = -temp; -return( temp ); -} |