summaryrefslogtreecommitdiff
path: root/libm/float/bdtrf.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float/bdtrf.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/float/bdtrf.c')
-rw-r--r--libm/float/bdtrf.c247
1 files changed, 0 insertions, 247 deletions
diff --git a/libm/float/bdtrf.c b/libm/float/bdtrf.c
deleted file mode 100644
index e063f1c77..000000000
--- a/libm/float/bdtrf.c
+++ /dev/null
@@ -1,247 +0,0 @@
-/* bdtrf.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrf();
- *
- * y = bdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.9e-5 1.1e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrf domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- *
- */
- /* bdtrcf()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrcf();
- *
- * y = bdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.0e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrcf domain x<0, x>1, n<k 0.0
- */
- /* bdtrif()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrif();
- *
- * p = bdtrf( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 3.5e-5 3.3e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrif domain k < 0, n <= k 0.0
- * x < 0, x > 1
- *
- */
-
-/* bdtr() */
-
-
-/*
-Cephes Math Library Release 2.2: July, 1992
-Copyright 1984, 1987, 1992 by Stephen L. Moshier
-Direct inquiries to 30 Frost Street, Cambridge, MA 02140
-*/
-
-#include <math.h>
-
-#ifdef ANSIC
-float incbetf(float, float, float), powf(float, float);
-float incbif( float, float, float );
-#else
-float incbetf(), powf(), incbif();
-#endif
-
-float bdtrcf( int k, int n, float pp )
-{
-float p, dk, dn;
-
-p = pp;
-if( (p < 0.0) || (p > 1.0) )
- goto domerr;
-if( k < 0 )
- return( 1.0 );
-
-if( n < k )
- {
-domerr:
- mtherr( "bdtrcf", DOMAIN );
- return( 0.0 );
- }
-
-if( k == n )
- return( 0.0 );
-dn = n - k;
-if( k == 0 )
- {
- dk = 1.0 - powf( 1.0-p, dn );
- }
-else
- {
- dk = k + 1;
- dk = incbetf( dk, dn, p );
- }
-return( dk );
-}
-
-
-
-float bdtrf( int k, int n, float pp )
-{
-float p, dk, dn;
-
-p = pp;
-if( (p < 0.0) || (p > 1.0) )
- goto domerr;
-if( (k < 0) || (n < k) )
- {
-domerr:
- mtherr( "bdtrf", DOMAIN );
- return( 0.0 );
- }
-
-if( k == n )
- return( 1.0 );
-
-dn = n - k;
-if( k == 0 )
- {
- dk = powf( 1.0-p, dn );
- }
-else
- {
- dk = k + 1;
- dk = incbetf( dn, dk, 1.0 - p );
- }
-return( dk );
-}
-
-
-float bdtrif( int k, int n, float yy )
-{
-float y, dk, dn, p;
-
-y = yy;
-if( (y < 0.0) || (y > 1.0) )
- goto domerr;
-if( (k < 0) || (n <= k) )
- {
-domerr:
- mtherr( "bdtrif", DOMAIN );
- return( 0.0 );
- }
-
-dn = n - k;
-if( k == 0 )
- {
- p = 1.0 - powf( y, 1.0/dn );
- }
-else
- {
- dk = k + 1;
- p = 1.0 - incbif( dn, dk, y );
- }
-return( p );
-}