summaryrefslogtreecommitdiff
path: root/libm/float/README.txt
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/float/README.txt
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/float/README.txt')
-rw-r--r--libm/float/README.txt4721
1 files changed, 0 insertions, 4721 deletions
diff --git a/libm/float/README.txt b/libm/float/README.txt
deleted file mode 100644
index 30a10b083..000000000
--- a/libm/float/README.txt
+++ /dev/null
@@ -1,4721 +0,0 @@
-/* acoshf.c
- *
- * Inverse hyperbolic cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, acoshf();
- *
- * y = acoshf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic cosine of argument.
- *
- * If 1 <= x < 1.5, a polynomial approximation
- *
- * sqrt(z) * P(z)
- *
- * where z = x-1, is used. Otherwise,
- *
- * acosh(x) = log( x + sqrt( (x-1)(x+1) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 1,3 100000 1.8e-7 3.9e-8
- * IEEE 1,2000 100000 3.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * acoshf domain |x| < 1 0.0
- *
- */
-
-/* airy.c
- *
- * Airy function
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, ai, aip, bi, bip;
- * int airyf();
- *
- * airyf( x, _&ai, _&aip, _&bi, _&bip );
- *
- *
- *
- * DESCRIPTION:
- *
- * Solution of the differential equation
- *
- * y"(x) = xy.
- *
- * The function returns the two independent solutions Ai, Bi
- * and their first derivatives Ai'(x), Bi'(x).
- *
- * Evaluation is by power series summation for small x,
- * by rational minimax approximations for large x.
- *
- *
- *
- * ACCURACY:
- * Error criterion is absolute when function <= 1, relative
- * when function > 1, except * denotes relative error criterion.
- * For large negative x, the absolute error increases as x^1.5.
- * For large positive x, the relative error increases as x^1.5.
- *
- * Arithmetic domain function # trials peak rms
- * IEEE -10, 0 Ai 50000 7.0e-7 1.2e-7
- * IEEE 0, 10 Ai 50000 9.9e-6* 6.8e-7*
- * IEEE -10, 0 Ai' 50000 2.4e-6 3.5e-7
- * IEEE 0, 10 Ai' 50000 8.7e-6* 6.2e-7*
- * IEEE -10, 10 Bi 100000 2.2e-6 2.6e-7
- * IEEE -10, 10 Bi' 50000 2.2e-6 3.5e-7
- *
- */
-
-/* asinf.c
- *
- * Inverse circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, asinf();
- *
- * y = asinf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
- *
- * A polynomial of the form x + x**3 P(x**2)
- * is used for |x| in the interval [0, 0.5]. If |x| > 0.5 it is
- * transformed by the identity
- *
- * asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1, 1 100000 2.5e-7 5.0e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * asinf domain |x| > 1 0.0
- *
- */
- /* acosf()
- *
- * Inverse circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, acosf();
- *
- * y = acosf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose cosine
- * is x.
- *
- * Analytically, acos(x) = pi/2 - asin(x). However if |x| is
- * near 1, there is cancellation error in subtracting asin(x)
- * from pi/2. Hence if x < -0.5,
- *
- * acos(x) = pi - 2.0 * asin( sqrt((1+x)/2) );
- *
- * or if x > +0.5,
- *
- * acos(x) = 2.0 * asin( sqrt((1-x)/2) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1, 1 100000 1.4e-7 4.2e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * acosf domain |x| > 1 0.0
- */
-
-/* asinhf.c
- *
- * Inverse hyperbolic sine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, asinhf();
- *
- * y = asinhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic sine of argument.
- *
- * If |x| < 0.5, the function is approximated by a rational
- * form x + x**3 P(x)/Q(x). Otherwise,
- *
- * asinh(x) = log( x + sqrt(1 + x*x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -3,3 100000 2.4e-7 4.1e-8
- *
- */
-
-/* atanf.c
- *
- * Inverse circular tangent
- * (arctangent)
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, atanf();
- *
- * y = atanf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle between -pi/2 and +pi/2 whose tangent
- * is x.
- *
- * Range reduction is from four intervals into the interval
- * from zero to tan( pi/8 ). A polynomial approximates
- * the function in this basic interval.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 100000 1.9e-7 4.1e-8
- *
- */
- /* atan2f()
- *
- * Quadrant correct inverse circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, z, atan2f();
- *
- * z = atan2f( y, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns radian angle whose tangent is y/x.
- * Define compile time symbol ANSIC = 1 for ANSI standard,
- * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
- * 0 to 2PI, args (x,y).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10, 10 100000 1.9e-7 4.1e-8
- * See atan.c.
- *
- */
-
-/* atanhf.c
- *
- * Inverse hyperbolic tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, atanhf();
- *
- * y = atanhf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns inverse hyperbolic tangent of argument in the range
- * MINLOGF to MAXLOGF.
- *
- * If |x| < 0.5, a polynomial approximation is used.
- * Otherwise,
- * atanh(x) = 0.5 * log( (1+x)/(1-x) ).
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1,1 100000 1.4e-7 3.1e-8
- *
- */
-
-/* bdtrf.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrf();
- *
- * y = bdtrf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.9e-5 1.1e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrf domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- *
- */
- /* bdtrcf()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrcf();
- *
- * y = bdtrcf( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 6.0e-5 1.2e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrcf domain x<0, x>1, n<k 0.0
- */
- /* bdtrif()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * float p, y, bdtrif();
- *
- * p = bdtrf( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error (p varies from 0 to 1):
- * arithmetic domain # trials peak rms
- * IEEE 0,100 2000 3.5e-5 3.3e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrif domain k < 0, n <= k 0.0
- * x < 0, x > 1
- *
- */
-
-/* betaf.c
- *
- * Beta function
- *
- *
- *
- * SYNOPSIS:
- *
- * float a, b, y, betaf();
- *
- * y = betaf( a, b );
- *
- *
- *
- * DESCRIPTION:
- *
- * - -
- * | (a) | (b)
- * beta( a, b ) = -----------.
- * -
- * | (a+b)
- *
- * For large arguments the logarithm of the function is
- * evaluated using lgam(), then exponentiated.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 10000 4.0e-5 6.0e-6
- * IEEE -20,0 10000 4.9e-3 5.4e-5
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * betaf overflow log(beta) > MAXLOG 0.0
- * a or b <0 integer 0.0
- *
- */
-
-/* cbrtf.c
- *
- * Cube root
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, cbrtf();
- *
- * y = cbrtf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the cube root of the argument, which may be negative.
- *
- * Range reduction involves determining the power of 2 of
- * the argument. A polynomial of degree 2 applied to the
- * mantissa, and multiplication by the cube root of 1, 2, or 4
- * approximates the root to within about 0.1%. Then Newton's
- * iteration is used to converge to an accurate result.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,1e38 100000 7.6e-8 2.7e-8
- *
- */
-
-/* chbevlf.c
- *
- * Evaluate Chebyshev series
- *
- *
- *
- * SYNOPSIS:
- *
- * int N;
- * float x, y, coef[N], chebevlf();
- *
- * y = chbevlf( x, coef, N );
- *
- *
- *
- * DESCRIPTION:
- *
- * Evaluates the series
- *
- * N-1
- * - '
- * y = > coef[i] T (x/2)
- * - i
- * i=0
- *
- * of Chebyshev polynomials Ti at argument x/2.
- *
- * Coefficients are stored in reverse order, i.e. the zero
- * order term is last in the array. Note N is the number of
- * coefficients, not the order.
- *
- * If coefficients are for the interval a to b, x must
- * have been transformed to x -> 2(2x - b - a)/(b-a) before
- * entering the routine. This maps x from (a, b) to (-1, 1),
- * over which the Chebyshev polynomials are defined.
- *
- * If the coefficients are for the inverted interval, in
- * which (a, b) is mapped to (1/b, 1/a), the transformation
- * required is x -> 2(2ab/x - b - a)/(b-a). If b is infinity,
- * this becomes x -> 4a/x - 1.
- *
- *
- *
- * SPEED:
- *
- * Taking advantage of the recurrence properties of the
- * Chebyshev polynomials, the routine requires one more
- * addition per loop than evaluating a nested polynomial of
- * the same degree.
- *
- */
-
-/* chdtrf.c
- *
- * Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df, x, y, chdtrf();
- *
- * y = chdtrf( df, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the left hand tail (from 0 to x)
- * of the Chi square probability density function with
- * v degrees of freedom.
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 3.2e-5 5.0e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtrf domain x < 0 or v < 1 0.0
- */
- /* chdtrcf()
- *
- * Complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float v, x, y, chdtrcf();
- *
- * y = chdtrcf( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the area under the right hand tail (from x to
- * infinity) of the Chi square probability density function
- * with v degrees of freedom:
- *
- *
- * inf.
- * -
- * 1 | | v/2-1 -t/2
- * P( x | v ) = ----------- | t e dt
- * v/2 - | |
- * 2 | (v/2) -
- * x
- *
- * where x is the Chi-square variable.
- *
- * The incomplete gamma integral is used, according to the
- * formula
- *
- * y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
- *
- *
- * The arguments must both be positive.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 5000 2.7e-5 3.2e-6
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtrc domain x < 0 or v < 1 0.0
- */
- /* chdtrif()
- *
- * Inverse of complemented Chi-square distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * float df, x, y, chdtrif();
- *
- * x = chdtrif( df, y );
- *
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the Chi-square argument x such that the integral
- * from x to infinity of the Chi-square density is equal
- * to the given cumulative probability y.
- *
- * This is accomplished using the inverse gamma integral
- * function and the relation
- *
- * x/2 = igami( df/2, y );
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,100 10000 2.2e-5 8.5e-7
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * chdtri domain y < 0 or y > 1 0.0
- * v < 1
- *
- */
-
-/* clogf.c
- *
- * Complex natural logarithm
- *
- *
- *
- * SYNOPSIS:
- *
- * void clogf();
- * cmplxf z, w;
- *
- * clogf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns complex logarithm to the base e (2.718...) of
- * the complex argument x.
- *
- * If z = x + iy, r = sqrt( x**2 + y**2 ),
- * then
- * w = log(r) + i arctan(y/x).
- *
- * The arctangent ranges from -PI to +PI.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.9e-6 6.2e-8
- *
- * Larger relative error can be observed for z near 1 +i0.
- * In IEEE arithmetic the peak absolute error is 3.1e-7.
- *
- */
- /* cexpf()
- *
- * Complex exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * void cexpf();
- * cmplxf z, w;
- *
- * cexpf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the exponential of the complex argument z
- * into the complex result w.
- *
- * If
- * z = x + iy,
- * r = exp(x),
- *
- * then
- *
- * w = r cos y + i r sin y.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.4e-7 4.5e-8
- *
- */
- /* csinf()
- *
- * Complex circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * void csinf();
- * cmplxf z, w;
- *
- * csinf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * w = sin x cosh y + i cos x sinh y.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.9e-7 5.5e-8
- *
- */
- /* ccosf()
- *
- * Complex circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * void ccosf();
- * cmplxf z, w;
- *
- * ccosf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * w = cos x cosh y - i sin x sinh y.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.8e-7 5.5e-8
- */
- /* ctanf()
- *
- * Complex circular tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void ctanf();
- * cmplxf z, w;
- *
- * ctanf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * sin 2x + i sinh 2y
- * w = --------------------.
- * cos 2x + cosh 2y
- *
- * On the real axis the denominator is zero at odd multiples
- * of PI/2. The denominator is evaluated by its Taylor
- * series near these points.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 3.3e-7 5.1e-8
- */
- /* ccotf()
- *
- * Complex circular cotangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void ccotf();
- * cmplxf z, w;
- *
- * ccotf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- *
- * sin 2x - i sinh 2y
- * w = --------------------.
- * cosh 2y - cos 2x
- *
- * On the real axis, the denominator has zeros at even
- * multiples of PI/2. Near these points it is evaluated
- * by a Taylor series.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 3.6e-7 5.7e-8
- * Also tested by ctan * ccot = 1 + i0.
- */
- /* casinf()
- *
- * Complex circular arc sine
- *
- *
- *
- * SYNOPSIS:
- *
- * void casinf();
- * cmplxf z, w;
- *
- * casinf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * Inverse complex sine:
- *
- * 2
- * w = -i clog( iz + csqrt( 1 - z ) ).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.1e-5 1.5e-6
- * Larger relative error can be observed for z near zero.
- *
- */
- /* cacosf()
- *
- * Complex circular arc cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * void cacosf();
- * cmplxf z, w;
- *
- * cacosf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * w = arccos z = PI/2 - arcsin z.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 9.2e-6 1.2e-6
- *
- */
- /* catan()
- *
- * Complex circular arc tangent
- *
- *
- *
- * SYNOPSIS:
- *
- * void catan();
- * cmplxf z, w;
- *
- * catan( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- * If
- * z = x + iy,
- *
- * then
- * 1 ( 2x )
- * Re w = - arctan(-----------) + k PI
- * 2 ( 2 2)
- * (1 - x - y )
- *
- * ( 2 2)
- * 1 (x + (y+1) )
- * Im w = - log(------------)
- * 4 ( 2 2)
- * (x + (y-1) )
- *
- * Where k is an arbitrary integer.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 2.3e-6 5.2e-8
- *
- */
-
-/* cmplxf.c
- *
- * Complex number arithmetic
- *
- *
- *
- * SYNOPSIS:
- *
- * typedef struct {
- * float r; real part
- * float i; imaginary part
- * }cmplxf;
- *
- * cmplxf *a, *b, *c;
- *
- * caddf( a, b, c ); c = b + a
- * csubf( a, b, c ); c = b - a
- * cmulf( a, b, c ); c = b * a
- * cdivf( a, b, c ); c = b / a
- * cnegf( c ); c = -c
- * cmovf( b, c ); c = b
- *
- *
- *
- * DESCRIPTION:
- *
- * Addition:
- * c.r = b.r + a.r
- * c.i = b.i + a.i
- *
- * Subtraction:
- * c.r = b.r - a.r
- * c.i = b.i - a.i
- *
- * Multiplication:
- * c.r = b.r * a.r - b.i * a.i
- * c.i = b.r * a.i + b.i * a.r
- *
- * Division:
- * d = a.r * a.r + a.i * a.i
- * c.r = (b.r * a.r + b.i * a.i)/d
- * c.i = (b.i * a.r - b.r * a.i)/d
- * ACCURACY:
- *
- * In DEC arithmetic, the test (1/z) * z = 1 had peak relative
- * error 3.1e-17, rms 1.2e-17. The test (y/z) * (z/y) = 1 had
- * peak relative error 8.3e-17, rms 2.1e-17.
- *
- * Tests in the rectangle {-10,+10}:
- * Relative error:
- * arithmetic function # trials peak rms
- * IEEE cadd 30000 5.9e-8 2.6e-8
- * IEEE csub 30000 6.0e-8 2.6e-8
- * IEEE cmul 30000 1.1e-7 3.7e-8
- * IEEE cdiv 30000 2.1e-7 5.7e-8
- */
-
-/* cabsf()
- *
- * Complex absolute value
- *
- *
- *
- * SYNOPSIS:
- *
- * float cabsf();
- * cmplxf z;
- * float a;
- *
- * a = cabsf( &z );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy
- *
- * then
- *
- * a = sqrt( x**2 + y**2 ).
- *
- * Overflow and underflow are avoided by testing the magnitudes
- * of x and y before squaring. If either is outside half of
- * the floating point full scale range, both are rescaled.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 30000 1.2e-7 3.4e-8
- */
- /* csqrtf()
- *
- * Complex square root
- *
- *
- *
- * SYNOPSIS:
- *
- * void csqrtf();
- * cmplxf z, w;
- *
- * csqrtf( &z, &w );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * If z = x + iy, r = |z|, then
- *
- * 1/2
- * Im w = [ (r - x)/2 ] ,
- *
- * Re w = y / 2 Im w.
- *
- *
- * Note that -w is also a square root of z. The solution
- * reported is always in the upper half plane.
- *
- * Because of the potential for cancellation error in r - x,
- * the result is sharpened by doing a Heron iteration
- * (see sqrt.c) in complex arithmetic.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -10,+10 100000 1.8e-7 4.2e-8
- *
- */
-
-/* coshf.c
- *
- * Hyperbolic cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, coshf();
- *
- * y = coshf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns hyperbolic cosine of argument in the range MINLOGF to
- * MAXLOGF.
- *
- * cosh(x) = ( exp(x) + exp(-x) )/2.
- *
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE +-MAXLOGF 100000 1.2e-7 2.8e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * coshf overflow |x| > MAXLOGF MAXNUMF
- *
- *
- */
-
-/* dawsnf.c
- *
- * Dawson's Integral
- *
- *
- *
- * SYNOPSIS:
- *
- * float x, y, dawsnf();
- *
- * y = dawsnf( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- * x
- * -
- * 2 | | 2
- * dawsn(x) = exp( -x ) | exp( t ) dt
- * | |
- * -
- * 0
- *
- * Three different rational approximations are employed, for
- * the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,10 50000 4.4e-7 6.3e-8
- *
- *
- */
-
-/* ellief.c
- *
- * Incomplete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellief();
- *
- * y = ellief( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * phi
- * -
- * | |
- * | 2
- * E(phi\m) = | sqrt( 1 - m sin t ) dt
- * |
- * | |
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random arguments with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 4.5e-7 7.4e-8
- *
- *
- */
-
-/* ellikf.c
- *
- * Incomplete elliptic integral of the first kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float phi, m, y, ellikf();
- *
- * y = ellikf( phi, m );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- *
- * phi
- * -
- * | |
- * | dt
- * F(phi\m) = | ------------------
- * | 2
- * | | sqrt( 1 - m sin t )
- * -
- * 0
- *
- * of amplitude phi and modulus m, using the arithmetic -
- * geometric mean algorithm.
- *
- *
- *
- *
- * ACCURACY:
- *
- * Tested at random points with phi in [0, 2] and m in
- * [0, 1].
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,2 10000 2.9e-7 5.8e-8
- *
- *
- */
-
-/* ellpef.c
- *
- * Complete elliptic integral of the second kind
- *
- *
- *
- * SYNOPSIS:
- *
- * float m1, y, ellpef();
- *
- * y = ellpef( m1 );
- *
- *
- *
- * DESCRIPTION:
- *
- * Approximates the integral
- *
- *
- * pi/2
- * -
- * | | 2
- * E(m) = | sqrt( 1 - m sin t ) dt
- * | |
- * -
- * 0
- *
- * Where m = 1 - m1, using the approximation
- *
- * P(x) - x log x Q(x).
- *
- * Though there are no singularities, the argument m1 is used
- * rather than m for compatibility with ellpk().
- *
- * E(1) = 1; E(0) = pi/2.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0, 1 30000 1.1e-7 3.9e-8
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * ellpef domain x<0, x>1 0.0
- *
- */
-
-/* ellpjf.c
- *
- * Jacobian Elliptic Functions
- *
- *
- *
- * SYNOPSIS:
- *
- * float u, m, sn, cn, dn, phi;
- * int ellpj();