diff options
author | Eric Andersen <andersen@codepoet.org> | 2005-03-06 07:11:53 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2005-03-06 07:11:53 +0000 |
commit | c4e44e97f8562254d9da898f6ed7e6cb4d8a3ce4 (patch) | |
tree | 6c61f83ac5b94085222b3eda8d731309d61be99b /libm/e_lgamma_r.c | |
parent | d4fad9c64ee518be51ecb40662af69b405a49556 (diff) |
Trim off whitespace
Diffstat (limited to 'libm/e_lgamma_r.c')
-rw-r--r-- | libm/e_lgamma_r.c | 32 |
1 files changed, 16 insertions, 16 deletions
diff --git a/libm/e_lgamma_r.c b/libm/e_lgamma_r.c index 2b92ea2a2..09bae2af3 100644 --- a/libm/e_lgamma_r.c +++ b/libm/e_lgamma_r.c @@ -5,7 +5,7 @@ * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice + * software is freely granted, provided that this notice * is preserved. * ==================================================== */ @@ -15,12 +15,12 @@ static char rcsid[] = "$NetBSD: e_lgamma_r.c,v 1.7 1995/05/10 20:45:42 jtc Exp $ #endif /* __ieee754_lgamma_r(x, signgamp) - * Reentrant version of the logarithm of the Gamma function - * with user provide pointer for the sign of Gamma(x). + * Reentrant version of the logarithm of the Gamma function + * with user provide pointer for the sign of Gamma(x). * * Method: * 1. Argument Reduction for 0 < x <= 8 - * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may + * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may * reduce x to a number in [1.5,2.5] by * lgamma(1+s) = log(s) + lgamma(s) * for example, @@ -58,36 +58,36 @@ static char rcsid[] = "$NetBSD: e_lgamma_r.c,v 1.7 1995/05/10 20:45:42 jtc Exp $ * by * 3 5 11 * w = w0 + w1*z + w2*z + w3*z + ... + w6*z - * where + * where * |w - f(z)| < 2**-58.74 - * + * * 4. For negative x, since (G is gamma function) * -x*G(-x)*G(x) = pi/sin(pi*x), * we have * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 - * Hence, for x<0, signgam = sign(sin(pi*x)) and + * Hence, for x<0, signgam = sign(sin(pi*x)) and * lgamma(x) = log(|Gamma(x)|) * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); - * Note: one should avoid compute pi*(-x) directly in the + * Note: one should avoid compute pi*(-x) directly in the * computation of sin(pi*(-x)). - * + * * 5. Special Cases * lgamma(2+s) ~ s*(1-Euler) for tiny s * lgamma(1)=lgamma(2)=0 * lgamma(x) ~ -log(x) for tiny x * lgamma(0) = lgamma(inf) = inf * lgamma(-integer) = +-inf - * + * */ #include "math.h" #include "math_private.h" #ifdef __STDC__ -static const double +static const double #else -static double +static double #endif two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */ half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ @@ -204,9 +204,9 @@ __inline__ } switch (n) { case 0: y = __kernel_sin(pi*y,zero,0); break; - case 1: + case 1: case 2: y = __kernel_cos(pi*(0.5-y),zero); break; - case 3: + case 3: case 4: y = __kernel_sin(pi*(one-y),zero,0); break; case 5: case 6: y = -__kernel_cos(pi*(y-1.5),zero); break; @@ -279,7 +279,7 @@ __inline__ p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); p = z*p1-(tt-w*(p2+y*p3)); r += (tf + p); break; - case 2: + case 2: p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); r += (-0.5*y + p1/p2); @@ -308,7 +308,7 @@ __inline__ y = z*z; w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); r = (x-half)*(t-one)+w; - } else + } else /* 2**58 <= x <= inf */ r = x*(__ieee754_log(x)-one); if(hx<0) r = nadj - r; |