diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/tan.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/tan.c')
-rw-r--r-- | libm/double/tan.c | 304 |
1 files changed, 304 insertions, 0 deletions
diff --git a/libm/double/tan.c b/libm/double/tan.c new file mode 100644 index 000000000..603f4b6a9 --- /dev/null +++ b/libm/double/tan.c @@ -0,0 +1,304 @@ +/* tan.c + * + * Circular tangent + * + * + * + * SYNOPSIS: + * + * double x, y, tan(); + * + * y = tan( x ); + * + * + * + * DESCRIPTION: + * + * Returns the circular tangent of the radian argument x. + * + * Range reduction is modulo pi/4. A rational function + * x + x**3 P(x**2)/Q(x**2) + * is employed in the basic interval [0, pi/4]. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC +-1.07e9 44000 4.1e-17 1.0e-17 + * IEEE +-1.07e9 30000 2.9e-16 8.1e-17 + * + * ERROR MESSAGES: + * + * message condition value returned + * tan total loss x > 1.073741824e9 0.0 + * + */ +/* cot.c + * + * Circular cotangent + * + * + * + * SYNOPSIS: + * + * double x, y, cot(); + * + * y = cot( x ); + * + * + * + * DESCRIPTION: + * + * Returns the circular cotangent of the radian argument x. + * + * Range reduction is modulo pi/4. A rational function + * x + x**3 P(x**2)/Q(x**2) + * is employed in the basic interval [0, pi/4]. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE +-1.07e9 30000 2.9e-16 8.2e-17 + * + * + * ERROR MESSAGES: + * + * message condition value returned + * cot total loss x > 1.073741824e9 0.0 + * cot singularity x = 0 INFINITY + * + */ + +/* +Cephes Math Library Release 2.8: June, 2000 +yright 1984, 1995, 2000 by Stephen L. Moshier +*/ + +#include <math.h> + +#ifdef UNK +static double P[] = { +-1.30936939181383777646E4, + 1.15351664838587416140E6, +-1.79565251976484877988E7 +}; +static double Q[] = { +/* 1.00000000000000000000E0,*/ + 1.36812963470692954678E4, +-1.32089234440210967447E6, + 2.50083801823357915839E7, +-5.38695755929454629881E7 +}; +static double DP1 = 7.853981554508209228515625E-1; +static double DP2 = 7.94662735614792836714E-9; +static double DP3 = 3.06161699786838294307E-17; +static double lossth = 1.073741824e9; +#endif + +#ifdef DEC +static unsigned short P[] = { +0143514,0113306,0111171,0174674, +0045214,0147545,0027744,0167346, +0146210,0177526,0114514,0105660 +}; +static unsigned short Q[] = { +/*0040200,0000000,0000000,0000000,*/ +0043525,0142457,0072633,0025617, +0145241,0036742,0140525,0162256, +0046276,0146176,0013526,0143573, +0146515,0077401,0162762,0150607 +}; +/* 7.853981629014015197753906250000E-1 */ +static unsigned short P1[] = {0040111,0007732,0120000,0000000,}; +/* 4.960467869796758577649598009884E-10 */ +static unsigned short P2[] = {0030410,0055060,0100000,0000000,}; +/* 2.860594363054915898381331279295E-18 */ +static unsigned short P3[] = {0021523,0011431,0105056,0001560,}; +#define DP1 *(double *)P1 +#define DP2 *(double *)P2 +#define DP3 *(double *)P3 +static double lossth = 1.073741824e9; +#endif + +#ifdef IBMPC +static unsigned short P[] = { +0x3f38,0xd24f,0x92d8,0xc0c9, +0x9ddd,0xa5fc,0x99ec,0x4131, +0x9176,0xd329,0x1fea,0xc171 +}; +static unsigned short Q[] = { +/*0x0000,0x0000,0x0000,0x3ff0,*/ +0x6572,0xeeb3,0xb8a5,0x40ca, +0xbc96,0x582a,0x27bc,0xc134, +0xd8ef,0xc2ea,0xd98f,0x4177, +0x5a31,0x3cbe,0xafe0,0xc189 +}; +/* + 7.85398125648498535156E-1, + 3.77489470793079817668E-8, + 2.69515142907905952645E-15, +*/ +static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9}; +static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64}; +static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8}; +#define DP1 *(double *)P1 +#define DP2 *(double *)P2 +#define DP3 *(double *)P3 +static double lossth = 1.073741824e9; +#endif + +#ifdef MIEEE +static unsigned short P[] = { +0xc0c9,0x92d8,0xd24f,0x3f38, +0x4131,0x99ec,0xa5fc,0x9ddd, +0xc171,0x1fea,0xd329,0x9176 +}; +static unsigned short Q[] = { +0x40ca,0xb8a5,0xeeb3,0x6572, +0xc134,0x27bc,0x582a,0xbc96, +0x4177,0xd98f,0xc2ea,0xd8ef, +0xc189,0xafe0,0x3cbe,0x5a31 +}; +static unsigned short P1[] = { +0x3fe9,0x21fb,0x4000,0x0000 +}; +static unsigned short P2[] = { +0x3e64,0x442d,0x0000,0x0000 +}; +static unsigned short P3[] = { +0x3ce8,0x4698,0x98cc,0x5170, +}; +#define DP1 *(double *)P1 +#define DP2 *(double *)P2 +#define DP3 *(double *)P3 +static double lossth = 1.073741824e9; +#endif + +#ifdef ANSIPROT +extern double polevl ( double, void *, int ); +extern double p1evl ( double, void *, int ); +extern double floor ( double ); +extern double ldexp ( double, int ); +extern int isnan ( double ); +extern int isfinite ( double ); +static double tancot(double, int); +#else +double polevl(), p1evl(), floor(), ldexp(); +static double tancot(); +int isnan(), isfinite(); +#endif +extern double PIO4; +extern double INFINITY; +extern double NAN; + +double tan(x) +double x; +{ +#ifdef MINUSZERO +if( x == 0.0 ) + return(x); +#endif +#ifdef NANS +if( isnan(x) ) + return(x); +if( !isfinite(x) ) + { + mtherr( "tan", DOMAIN ); + return(NAN); + } +#endif +return( tancot(x,0) ); +} + + +double cot(x) +double x; +{ + +if( x == 0.0 ) + { + mtherr( "cot", SING ); + return( INFINITY ); + } +return( tancot(x,1) ); +} + + +static double tancot( xx, cotflg ) +double xx; +int cotflg; +{ +double x, y, z, zz; +int j, sign; + +/* make argument positive but save the sign */ +if( xx < 0 ) + { + x = -xx; + sign = -1; + } +else + { + x = xx; + sign = 1; + } + +if( x > lossth ) + { + if( cotflg ) + mtherr( "cot", TLOSS ); + else + mtherr( "tan", TLOSS ); + return(0.0); + } + +/* compute x mod PIO4 */ +y = floor( x/PIO4 ); + +/* strip high bits of integer part */ +z = ldexp( y, -3 ); +z = floor(z); /* integer part of y/8 */ +z = y - ldexp( z, 3 ); /* y - 16 * (y/16) */ + +/* integer and fractional part modulo one octant */ +j = z; + +/* map zeros and singularities to origin */ +if( j & 1 ) + { + j += 1; + y += 1.0; + } + +z = ((x - y * DP1) - y * DP2) - y * DP3; + +zz = z * z; + +if( zz > 1.0e-14 ) + y = z + z * (zz * polevl( zz, P, 2 )/p1evl(zz, Q, 4)); +else + y = z; + +if( j & 2 ) + { + if( cotflg ) + y = -y; + else + y = -1.0/y; + } +else + { + if( cotflg ) + y = 1.0/y; + } + +if( sign < 0 ) + y = -y; + +return( y ); +} |