diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/double/sin.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/double/sin.c')
-rw-r--r-- | libm/double/sin.c | 387 |
1 files changed, 0 insertions, 387 deletions
diff --git a/libm/double/sin.c b/libm/double/sin.c deleted file mode 100644 index 24746d79d..000000000 --- a/libm/double/sin.c +++ /dev/null @@ -1,387 +0,0 @@ -/* sin.c - * - * Circular sine - * - * - * - * SYNOPSIS: - * - * double x, y, sin(); - * - * y = sin( x ); - * - * - * - * DESCRIPTION: - * - * Range reduction is into intervals of pi/4. The reduction - * error is nearly eliminated by contriving an extended precision - * modular arithmetic. - * - * Two polynomial approximating functions are employed. - * Between 0 and pi/4 the sine is approximated by - * x + x**3 P(x**2). - * Between pi/4 and pi/2 the cosine is represented as - * 1 - x**2 Q(x**2). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC 0, 10 150000 3.0e-17 7.8e-18 - * IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 - * - * ERROR MESSAGES: - * - * message condition value returned - * sin total loss x > 1.073741824e9 0.0 - * - * Partial loss of accuracy begins to occur at x = 2**30 - * = 1.074e9. The loss is not gradual, but jumps suddenly to - * about 1 part in 10e7. Results may be meaningless for - * x > 2**49 = 5.6e14. The routine as implemented flags a - * TLOSS error for x > 2**30 and returns 0.0. - */ -/* cos.c - * - * Circular cosine - * - * - * - * SYNOPSIS: - * - * double x, y, cos(); - * - * y = cos( x ); - * - * - * - * DESCRIPTION: - * - * Range reduction is into intervals of pi/4. The reduction - * error is nearly eliminated by contriving an extended precision - * modular arithmetic. - * - * Two polynomial approximating functions are employed. - * Between 0 and pi/4 the cosine is approximated by - * 1 - x**2 Q(x**2). - * Between pi/4 and pi/2 the sine is represented as - * x + x**3 P(x**2). - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17 - * DEC 0,+1.07e9 17000 3.0e-17 7.2e-18 - */ - -/* sin.c */ - -/* -Cephes Math Library Release 2.8: June, 2000 -Copyright 1985, 1995, 2000 by Stephen L. Moshier -*/ - -#include <math.h> - -#ifdef UNK -static double sincof[] = { - 1.58962301576546568060E-10, --2.50507477628578072866E-8, - 2.75573136213857245213E-6, --1.98412698295895385996E-4, - 8.33333333332211858878E-3, --1.66666666666666307295E-1, -}; -static double coscof[6] = { --1.13585365213876817300E-11, - 2.08757008419747316778E-9, --2.75573141792967388112E-7, - 2.48015872888517045348E-5, --1.38888888888730564116E-3, - 4.16666666666665929218E-2, -}; -static double DP1 = 7.85398125648498535156E-1; -static double DP2 = 3.77489470793079817668E-8; -static double DP3 = 2.69515142907905952645E-15; -/* static double lossth = 1.073741824e9; */ -#endif - -#ifdef DEC -static unsigned short sincof[] = { -0030056,0143750,0177214,0163153, -0131727,0027455,0044510,0175352, -0033470,0167432,0131752,0042414, -0135120,0006400,0146776,0174027, -0036410,0104210,0104207,0137202, -0137452,0125252,0125252,0125103, -}; -static unsigned short coscof[24] = { -0127107,0151115,0002060,0152325, -0031017,0072353,0155161,0174053, -0132623,0171173,0172542,0057056, -0034320,0006400,0147102,0023652, -0135666,0005540,0133012,0076213, -0037052,0125252,0125252,0125126, -}; -/* 7.853981629014015197753906250000E-1 */ -static unsigned short P1[] = {0040111,0007732,0120000,0000000,}; -/* 4.960467869796758577649598009884E-10 */ -static unsigned short P2[] = {0030410,0055060,0100000,0000000,}; -/* 2.860594363054915898381331279295E-18 */ -static unsigned short P3[] = {0021523,0011431,0105056,0001560,}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -#endif - -#ifdef IBMPC -static unsigned short sincof[] = { -0x9ccd,0x1fd1,0xd8fd,0x3de5, -0x1f5d,0xa929,0xe5e5,0xbe5a, -0x48a1,0x567d,0x1de3,0x3ec7, -0xdf03,0x19bf,0x01a0,0xbf2a, -0xf7d0,0x1110,0x1111,0x3f81, -0x5548,0x5555,0x5555,0xbfc5, -}; -static unsigned short coscof[24] = { -0x1a9b,0xa086,0xfa49,0xbda8, -0x3f05,0x7b4e,0xee9d,0x3e21, -0x4bc6,0x7eac,0x7e4f,0xbe92, -0x44f5,0x19c8,0x01a0,0x3efa, -0x4f91,0x16c1,0xc16c,0xbf56, -0x554b,0x5555,0x5555,0x3fa5, -}; -/* - 7.85398125648498535156E-1, - 3.77489470793079817668E-8, - 2.69515142907905952645E-15, -*/ -static unsigned short P1[] = {0x0000,0x4000,0x21fb,0x3fe9}; -static unsigned short P2[] = {0x0000,0x0000,0x442d,0x3e64}; -static unsigned short P3[] = {0x5170,0x98cc,0x4698,0x3ce8}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -#endif - -#ifdef MIEEE -static unsigned short sincof[] = { -0x3de5,0xd8fd,0x1fd1,0x9ccd, -0xbe5a,0xe5e5,0xa929,0x1f5d, -0x3ec7,0x1de3,0x567d,0x48a1, -0xbf2a,0x01a0,0x19bf,0xdf03, -0x3f81,0x1111,0x1110,0xf7d0, -0xbfc5,0x5555,0x5555,0x5548, -}; -static unsigned short coscof[24] = { -0xbda8,0xfa49,0xa086,0x1a9b, -0x3e21,0xee9d,0x7b4e,0x3f05, -0xbe92,0x7e4f,0x7eac,0x4bc6, -0x3efa,0x01a0,0x19c8,0x44f5, -0xbf56,0xc16c,0x16c1,0x4f91, -0x3fa5,0x5555,0x5555,0x554b, -}; -static unsigned short P1[] = {0x3fe9,0x21fb,0x4000,0x0000}; -static unsigned short P2[] = {0x3e64,0x442d,0x0000,0x0000}; -static unsigned short P3[] = {0x3ce8,0x4698,0x98cc,0x5170}; -#define DP1 *(double *)P1 -#define DP2 *(double *)P2 -#define DP3 *(double *)P3 -#endif - -#ifdef ANSIPROT -extern double polevl ( double, void *, int ); -extern double p1evl ( double, void *, int ); -extern double floor ( double ); -extern double ldexp ( double, int ); -extern int isnan ( double ); -extern int isfinite ( double ); -#else -double polevl(), floor(), ldexp(); -int isnan(), isfinite(); -#endif -extern double PIO4; -static double lossth = 1.073741824e9; -#ifdef NANS -extern double NAN; -#endif -#ifdef INFINITIES -extern double INFINITY; -#endif - - -double sin(x) -double x; -{ -double y, z, zz; -int j, sign; - -#ifdef MINUSZERO -if( x == 0.0 ) - return(x); -#endif -#ifdef NANS -if( isnan(x) ) - return(x); -if( !isfinite(x) ) - { - mtherr( "sin", DOMAIN ); - return(NAN); - } -#endif -/* make argument positive but save the sign */ -sign = 1; -if( x < 0 ) - { - x = -x; - sign = -1; - } - -if( x > lossth ) - { - mtherr( "sin", TLOSS ); - return(0.0); - } - -y = floor( x/PIO4 ); /* integer part of x/PIO4 */ - -/* strip high bits of integer part to prevent integer overflow */ -z = ldexp( y, -4 ); -z = floor(z); /* integer part of y/8 */ -z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */ - -j = z; /* convert to integer for tests on the phase angle */ -/* map zeros to origin */ -if( j & 1 ) - { - j += 1; - y += 1.0; - } -j = j & 07; /* octant modulo 360 degrees */ -/* reflect in x axis */ -if( j > 3) - { - sign = -sign; - j -= 4; - } - -/* Extended precision modular arithmetic */ -z = ((x - y * DP1) - y * DP2) - y * DP3; - -zz = z * z; - -if( (j==1) || (j==2) ) - { - y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 ); - } -else - { -/* y = z + z * (zz * polevl( zz, sincof, 5 ));*/ - y = z + z * z * z * polevl( zz, sincof, 5 ); - } - -if(sign < 0) - y = -y; - -return(y); -} - - - - - -double cos(x) -double x; -{ -double y, z, zz; -long i; -int j, sign; - -#ifdef NANS -if( isnan(x) ) - return(x); -if( !isfinite(x) ) - { - mtherr( "cos", DOMAIN ); - return(NAN); - } -#endif - -/* make argument positive */ -sign = 1; -if( x < 0 ) - x = -x; - -if( x > lossth ) - { - mtherr( "cos", TLOSS ); - return(0.0); - } - -y = floor( x/PIO4 ); -z = ldexp( y, -4 ); -z = floor(z); /* integer part of y/8 */ -z = y - ldexp( z, 4 ); /* y - 16 * (y/16) */ - -/* integer and fractional part modulo one octant */ -i = z; -if( i & 1 ) /* map zeros to origin */ - { - i += 1; - y += 1.0; - } -j = i & 07; -if( j > 3) - { - j -=4; - sign = -sign; - } - -if( j > 1 ) - sign = -sign; - -/* Extended precision modular arithmetic */ -z = ((x - y * DP1) - y * DP2) - y * DP3; - -zz = z * z; - -if( (j==1) || (j==2) ) - { -/* y = z + z * (zz * polevl( zz, sincof, 5 ));*/ - y = z + z * z * z * polevl( zz, sincof, 5 ); - } -else - { - y = 1.0 - ldexp(zz,-1) + zz * zz * polevl( zz, coscof, 5 ); - } - -if(sign < 0) - y = -y; - -return(y); -} - - - - - -/* Degrees, minutes, seconds to radians: */ - -/* 1 arc second, in radians = 4.8481368110953599358991410e-5 */ -#ifdef DEC -static unsigned short P648[] = {034513,054170,0176773,0116043,}; -#define P64800 *(double *)P648 -#else -static double P64800 = 4.8481368110953599358991410e-5; -#endif - -double radian(d,m,s) -double d,m,s; -{ - -return( ((d*60.0 + m)*60.0 + s)*P64800 ); -} |