diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/pdtr.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/pdtr.c')
-rw-r--r-- | libm/double/pdtr.c | 184 |
1 files changed, 184 insertions, 0 deletions
diff --git a/libm/double/pdtr.c b/libm/double/pdtr.c new file mode 100644 index 000000000..5b4ae4054 --- /dev/null +++ b/libm/double/pdtr.c @@ -0,0 +1,184 @@ +/* pdtr.c + * + * Poisson distribution + * + * + * + * SYNOPSIS: + * + * int k; + * double m, y, pdtr(); + * + * y = pdtr( k, m ); + * + * + * + * DESCRIPTION: + * + * Returns the sum of the first k terms of the Poisson + * distribution: + * + * k j + * -- -m m + * > e -- + * -- j! + * j=0 + * + * The terms are not summed directly; instead the incomplete + * gamma integral is employed, according to the relation + * + * y = pdtr( k, m ) = igamc( k+1, m ). + * + * The arguments must both be positive. + * + * + * + * ACCURACY: + * + * See igamc(). + * + */ +/* pdtrc() + * + * Complemented poisson distribution + * + * + * + * SYNOPSIS: + * + * int k; + * double m, y, pdtrc(); + * + * y = pdtrc( k, m ); + * + * + * + * DESCRIPTION: + * + * Returns the sum of the terms k+1 to infinity of the Poisson + * distribution: + * + * inf. j + * -- -m m + * > e -- + * -- j! + * j=k+1 + * + * The terms are not summed directly; instead the incomplete + * gamma integral is employed, according to the formula + * + * y = pdtrc( k, m ) = igam( k+1, m ). + * + * The arguments must both be positive. + * + * + * + * ACCURACY: + * + * See igam.c. + * + */ +/* pdtri() + * + * Inverse Poisson distribution + * + * + * + * SYNOPSIS: + * + * int k; + * double m, y, pdtr(); + * + * m = pdtri( k, y ); + * + * + * + * + * DESCRIPTION: + * + * Finds the Poisson variable x such that the integral + * from 0 to x of the Poisson density is equal to the + * given probability y. + * + * This is accomplished using the inverse gamma integral + * function and the relation + * + * m = igami( k+1, y ). + * + * + * + * + * ACCURACY: + * + * See igami.c. + * + * ERROR MESSAGES: + * + * message condition value returned + * pdtri domain y < 0 or y >= 1 0.0 + * k < 0 + * + */ + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier +*/ + +#include <math.h> +#ifdef ANSIPROT +extern double igam ( double, double ); +extern double igamc ( double, double ); +extern double igami ( double, double ); +#else +double igam(), igamc(), igami(); +#endif + +double pdtrc( k, m ) +int k; +double m; +{ +double v; + +if( (k < 0) || (m <= 0.0) ) + { + mtherr( "pdtrc", DOMAIN ); + return( 0.0 ); + } +v = k+1; +return( igam( v, m ) ); +} + + + +double pdtr( k, m ) +int k; +double m; +{ +double v; + +if( (k < 0) || (m <= 0.0) ) + { + mtherr( "pdtr", DOMAIN ); + return( 0.0 ); + } +v = k+1; +return( igamc( v, m ) ); +} + + +double pdtri( k, y ) +int k; +double y; +{ +double v; + +if( (k < 0) || (y < 0.0) || (y >= 1.0) ) + { + mtherr( "pdtri", DOMAIN ); + return( 0.0 ); + } +v = k+1; +v = igami( v, y ); +return( v ); +} |