diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/ndtr.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/ndtr.c')
-rw-r--r-- | libm/double/ndtr.c | 481 |
1 files changed, 481 insertions, 0 deletions
diff --git a/libm/double/ndtr.c b/libm/double/ndtr.c new file mode 100644 index 000000000..75d59ab54 --- /dev/null +++ b/libm/double/ndtr.c @@ -0,0 +1,481 @@ +/* ndtr.c + * + * Normal distribution function + * + * + * + * SYNOPSIS: + * + * double x, y, ndtr(); + * + * y = ndtr( x ); + * + * + * + * DESCRIPTION: + * + * Returns the area under the Gaussian probability density + * function, integrated from minus infinity to x: + * + * x + * - + * 1 | | 2 + * ndtr(x) = --------- | exp( - t /2 ) dt + * sqrt(2pi) | | + * - + * -inf. + * + * = ( 1 + erf(z) ) / 2 + * = erfc(z) / 2 + * + * where z = x/sqrt(2). Computation is via the functions + * erf and erfc. + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC -13,0 8000 2.1e-15 4.8e-16 + * IEEE -13,0 30000 3.4e-14 6.7e-15 + * + * + * ERROR MESSAGES: + * + * message condition value returned + * erfc underflow x > 37.519379347 0.0 + * + */ +/* erf.c + * + * Error function + * + * + * + * SYNOPSIS: + * + * double x, y, erf(); + * + * y = erf( x ); + * + * + * + * DESCRIPTION: + * + * The integral is + * + * x + * - + * 2 | | 2 + * erf(x) = -------- | exp( - t ) dt. + * sqrt(pi) | | + * - + * 0 + * + * The magnitude of x is limited to 9.231948545 for DEC + * arithmetic; 1 or -1 is returned outside this range. + * + * For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise + * erf(x) = 1 - erfc(x). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC 0,1 14000 4.7e-17 1.5e-17 + * IEEE 0,1 30000 3.7e-16 1.0e-16 + * + */ +/* erfc.c + * + * Complementary error function + * + * + * + * SYNOPSIS: + * + * double x, y, erfc(); + * + * y = erfc( x ); + * + * + * + * DESCRIPTION: + * + * + * 1 - erf(x) = + * + * inf. + * - + * 2 | | 2 + * erfc(x) = -------- | exp( - t ) dt + * sqrt(pi) | | + * - + * x + * + * + * For small x, erfc(x) = 1 - erf(x); otherwise rational + * approximations are computed. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC 0, 9.2319 12000 5.1e-16 1.2e-16 + * IEEE 0,26.6417 30000 5.7e-14 1.5e-14 + * + * + * ERROR MESSAGES: + * + * message condition value returned + * erfc underflow x > 9.231948545 (DEC) 0.0 + * + * + */ + + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier +*/ + + +#include <math.h> + +extern double SQRTH; +extern double MAXLOG; + + +#ifdef UNK +static double P[] = { + 2.46196981473530512524E-10, + 5.64189564831068821977E-1, + 7.46321056442269912687E0, + 4.86371970985681366614E1, + 1.96520832956077098242E2, + 5.26445194995477358631E2, + 9.34528527171957607540E2, + 1.02755188689515710272E3, + 5.57535335369399327526E2 +}; +static double Q[] = { +/* 1.00000000000000000000E0,*/ + 1.32281951154744992508E1, + 8.67072140885989742329E1, + 3.54937778887819891062E2, + 9.75708501743205489753E2, + 1.82390916687909736289E3, + 2.24633760818710981792E3, + 1.65666309194161350182E3, + 5.57535340817727675546E2 +}; +static double R[] = { + 5.64189583547755073984E-1, + 1.27536670759978104416E0, + 5.01905042251180477414E0, + 6.16021097993053585195E0, + 7.40974269950448939160E0, + 2.97886665372100240670E0 +}; +static double S[] = { +/* 1.00000000000000000000E0,*/ + 2.26052863220117276590E0, + 9.39603524938001434673E0, + 1.20489539808096656605E1, + 1.70814450747565897222E1, + 9.60896809063285878198E0, + 3.36907645100081516050E0 +}; +static double T[] = { + 9.60497373987051638749E0, + 9.00260197203842689217E1, + 2.23200534594684319226E3, + 7.00332514112805075473E3, + 5.55923013010394962768E4 +}; +static double U[] = { +/* 1.00000000000000000000E0,*/ + 3.35617141647503099647E1, + 5.21357949780152679795E2, + 4.59432382970980127987E3, + 2.26290000613890934246E4, + 4.92673942608635921086E4 +}; + +#define UTHRESH 37.519379347 +#endif + +#ifdef DEC +static unsigned short P[] = { +0030207,0054445,0011173,0021706, +0040020,0067272,0030661,0122075, +0040756,0151236,0173053,0067042, +0041502,0106175,0062555,0151457, +0042104,0102525,0047401,0003667, +0042403,0116176,0011446,0075303, +0042551,0120723,0061641,0123275, +0042600,0070651,0007264,0134516, +0042413,0061102,0167507,0176625 +}; +static unsigned short Q[] = { +/*0040200,0000000,0000000,0000000,*/ +0041123,0123257,0165741,0017142, +0041655,0065027,0173413,0115450, +0042261,0074011,0021573,0004150, +0042563,0166530,0013662,0007200, +0042743,0176427,0162443,0105214, +0043014,0062546,0153727,0123772, +0042717,0012470,0006227,0067424, +0042413,0061103,0003042,0013254 +}; +static unsigned short R[] = { +0040020,0067272,0101024,0155421, +0040243,0037467,0056706,0026462, +0040640,0116017,0120665,0034315, +0040705,0020162,0143350,0060137, +0040755,0016234,0134304,0130157, +0040476,0122700,0051070,0015473 +}; +static unsigned short S[] = { +/*0040200,0000000,0000000,0000000,*/ +0040420,0126200,0044276,0070413, +0041026,0053051,0007302,0063746, +0041100,0144203,0174051,0061151, +0041210,0123314,0126343,0177646, +0041031,0137125,0051431,0033011, +0040527,0117362,0152661,0066201 +}; +static unsigned short T[] = { +0041031,0126770,0170672,0166101, +0041664,0006522,0072360,0031770, +0043013,0100025,0162641,0126671, +0043332,0155231,0161627,0076200, +0044131,0024115,0021020,0117343 +}; +static unsigned short U[] = { +/*0040200,0000000,0000000,0000000,*/ +0041406,0037461,0177575,0032714, +0042402,0053350,0123061,0153557, +0043217,0111227,0032007,0164217, +0043660,0145000,0004013,0160114, +0044100,0071544,0167107,0125471 +}; +#define UTHRESH 14.0 +#endif + +#ifdef IBMPC +static unsigned short P[] = { +0x6479,0xa24f,0xeb24,0x3df0, +0x3488,0x4636,0x0dd7,0x3fe2, +0x6dc4,0xdec5,0xda53,0x401d, +0xba66,0xacad,0x518f,0x4048, +0x20f7,0xa9e0,0x90aa,0x4068, +0xcf58,0xc264,0x738f,0x4080, +0x34d8,0x6c74,0x343a,0x408d, +0x972a,0x21d6,0x0e35,0x4090, +0xffb3,0x5de8,0x6c48,0x4081 +}; +static unsigned short Q[] = { +/*0x0000,0x0000,0x0000,0x3ff0,*/ +0x23cc,0xfd7c,0x74d5,0x402a, +0x7365,0xfee1,0xad42,0x4055, +0x610d,0x246f,0x2f01,0x4076, +0x41d0,0x02f6,0x7dab,0x408e, +0x7151,0xfca4,0x7fa2,0x409c, +0xf4ff,0xdafa,0x8cac,0x40a1, +0xede2,0x0192,0xe2a7,0x4099, +0x42d6,0x60c4,0x6c48,0x4081 +}; +static unsigned short R[] = { +0x9b62,0x5042,0x0dd7,0x3fe2, +0xc5a6,0xebb8,0x67e6,0x3ff4, +0xa71a,0xf436,0x1381,0x4014, +0x0c0c,0x58dd,0xa40e,0x4018, +0x960e,0x9718,0xa393,0x401d, +0x0367,0x0a47,0xd4b8,0x4007 +}; +static unsigned short S[] = { +/*0x0000,0x0000,0x0000,0x3ff0,*/ +0xce21,0x0917,0x1590,0x4002, +0x4cfd,0x21d8,0xcac5,0x4022, +0x2c4d,0x7f05,0x1910,0x4028, +0x7ff5,0x959c,0x14d9,0x4031, +0x26c1,0xaa63,0x37ca,0x4023, +0x2d90,0x5ab6,0xf3de,0x400a +}; +static unsigned short T[] = { +0x5d88,0x1e37,0x35bf,0x4023, +0x067f,0x4e9e,0x81aa,0x4056, +0x35b7,0xbcb4,0x7002,0x40a1, +0xef90,0x3c72,0x5b53,0x40bb, +0x13dc,0xa442,0x2509,0x40eb +}; +static unsigned short U[] = { +/*0x0000,0x0000,0x0000,0x3ff0,*/ +0xa6ba,0x3fef,0xc7e6,0x4040, +0x3aee,0x14c6,0x4add,0x4080, +0xfd12,0xe680,0xf252,0x40b1, +0x7c0a,0x0101,0x1940,0x40d6, +0xf567,0x9dc8,0x0e6c,0x40e8 +}; +#define UTHRESH 37.519379347 +#endif + +#ifdef MIEEE +static unsigned short P[] = { +0x3df0,0xeb24,0xa24f,0x6479, +0x3fe2,0x0dd7,0x4636,0x3488, +0x401d,0xda53,0xdec5,0x6dc4, +0x4048,0x518f,0xacad,0xba66, +0x4068,0x90aa,0xa9e0,0x20f7, +0x4080,0x738f,0xc264,0xcf58, +0x408d,0x343a,0x6c74,0x34d8, +0x4090,0x0e35,0x21d6,0x972a, +0x4081,0x6c48,0x5de8,0xffb3 +}; +static unsigned short Q[] = { +0x402a,0x74d5,0xfd7c,0x23cc, +0x4055,0xad42,0xfee1,0x7365, +0x4076,0x2f01,0x246f,0x610d, +0x408e,0x7dab,0x02f6,0x41d0, +0x409c,0x7fa2,0xfca4,0x7151, +0x40a1,0x8cac,0xdafa,0xf4ff, +0x4099,0xe2a7,0x0192,0xede2, +0x4081,0x6c48,0x60c4,0x42d6 +}; +static unsigned short R[] = { +0x3fe2,0x0dd7,0x5042,0x9b62, +0x3ff4,0x67e6,0xebb8,0xc5a6, +0x4014,0x1381,0xf436,0xa71a, +0x4018,0xa40e,0x58dd,0x0c0c, +0x401d,0xa393,0x9718,0x960e, +0x4007,0xd4b8,0x0a47,0x0367 +}; +static unsigned short S[] = { +0x4002,0x1590,0x0917,0xce21, +0x4022,0xcac5,0x21d8,0x4cfd, +0x4028,0x1910,0x7f05,0x2c4d, +0x4031,0x14d9,0x959c,0x7ff5, +0x4023,0x37ca,0xaa63,0x26c1, +0x400a,0xf3de,0x5ab6,0x2d90 +}; +static unsigned short T[] = { +0x4023,0x35bf,0x1e37,0x5d88, +0x4056,0x81aa,0x4e9e,0x067f, +0x40a1,0x7002,0xbcb4,0x35b7, +0x40bb,0x5b53,0x3c72,0xef90, +0x40eb,0x2509,0xa442,0x13dc +}; +static unsigned short U[] = { +0x4040,0xc7e6,0x3fef,0xa6ba, +0x4080,0x4add,0x14c6,0x3aee, +0x40b1,0xf252,0xe680,0xfd12, +0x40d6,0x1940,0x0101,0x7c0a, +0x40e8,0x0e6c,0x9dc8,0xf567 +}; +#define UTHRESH 37.519379347 +#endif + +#ifdef ANSIPROT +extern double polevl ( double, void *, int ); +extern double p1evl ( double, void *, int ); +extern double exp ( double ); +extern double log ( double ); +extern double fabs ( double ); +double erf ( double ); +double erfc ( double ); +#else +double polevl(), p1evl(), exp(), log(), fabs(); +double erf(), erfc(); +#endif + +double ndtr(a) +double a; +{ +double x, y, z; + +x = a * SQRTH; +z = fabs(x); + +if( z < SQRTH ) + y = 0.5 + 0.5 * erf(x); + +else + { + y = 0.5 * erfc(z); + + if( x > 0 ) + y = 1.0 - y; + } + +return(y); +} + + +double erfc(a) +double a; +{ +double p,q,x,y,z; + + +if( a < 0.0 ) + x = -a; +else + x = a; + +if( x < 1.0 ) + return( 1.0 - erf(a) ); + +z = -a * a; + +if( z < -MAXLOG ) + { +under: + mtherr( "erfc", UNDERFLOW ); + if( a < 0 ) + return( 2.0 ); + else + return( 0.0 ); + } + +z = exp(z); + +if( x < 8.0 ) + { + p = polevl( x, P, 8 ); + q = p1evl( x, Q, 8 ); + } +else + { + p = polevl( x, R, 5 ); + q = p1evl( x, S, 6 ); + } +y = (z * p)/q; + +if( a < 0 ) + y = 2.0 - y; + +if( y == 0.0 ) + goto under; + +return(y); +} + + + +double erf(x) +double x; +{ +double y, z; + +if( fabs(x) > 1.0 ) + return( 1.0 - erfc(x) ); +z = x * x; +y = x * polevl( z, T, 4 ) / p1evl( z, U, 5 ); +return( y ); + +} |