diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/kolmogorov.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/kolmogorov.c')
-rw-r--r-- | libm/double/kolmogorov.c | 243 |
1 files changed, 243 insertions, 0 deletions
diff --git a/libm/double/kolmogorov.c b/libm/double/kolmogorov.c new file mode 100644 index 000000000..0d6fe92bd --- /dev/null +++ b/libm/double/kolmogorov.c @@ -0,0 +1,243 @@ + +/* Re Kolmogorov statistics, here is Birnbaum and Tingey's formula for the + distribution of D+, the maximum of all positive deviations between a + theoretical distribution function P(x) and an empirical one Sn(x) + from n samples. + + + + D = sup [P(x) - S (x)] + n -inf < x < inf n + + + [n(1-e)] + + - v-1 n-v + Pr{D > e} = > C e (e + v/n) (1 - e - v/n) + n - n v + v=0 + + [n(1-e)] is the largest integer not exceeding n(1-e). + nCv is the number of combinations of n things taken v at a time. */ + + +#include <math.h> +#ifdef ANSIPROT +extern double pow ( double, double ); +extern double floor ( double ); +extern double lgam ( double ); +extern double exp ( double ); +extern double sqrt ( double ); +extern double log ( double ); +extern double fabs ( double ); +double smirnov ( int, double ); +double kolmogorov ( double ); +#else +double pow (), floor (), lgam (), exp (), sqrt (), log (), fabs (); +double smirnov (), kolmogorov (); +#endif +extern double MAXLOG; + +/* Exact Smirnov statistic, for one-sided test. */ +double +smirnov (n, e) + int n; + double e; +{ + int v, nn; + double evn, omevn, p, t, c, lgamnp1; + + if (n <= 0 || e < 0.0 || e > 1.0) + return (-1.0); + nn = floor ((double) n * (1.0 - e)); + p = 0.0; + if (n < 1013) + { + c = 1.0; + for (v = 0; v <= nn; v++) + { + evn = e + ((double) v) / n; + p += c * pow (evn, (double) (v - 1)) + * pow (1.0 - evn, (double) (n - v)); + /* Next combinatorial term; worst case error = 4e-15. */ + c *= ((double) (n - v)) / (v + 1); + } + } + else + { + lgamnp1 = lgam ((double) (n + 1)); + for (v = 0; v <= nn; v++) + { + evn = e + ((double) v) / n; + omevn = 1.0 - evn; + if (fabs (omevn) > 0.0) + { + t = lgamnp1 + - lgam ((double) (v + 1)) + - lgam ((double) (n - v + 1)) + + (v - 1) * log (evn) + + (n - v) * log (omevn); + if (t > -MAXLOG) + p += exp (t); + } + } + } + return (p * e); +} + + +/* Kolmogorov's limiting distribution of two-sided test, returns + probability that sqrt(n) * max deviation > y, + or that max deviation > y/sqrt(n). + The approximation is useful for the tail of the distribution + when n is large. */ +double +kolmogorov (y) + double y; +{ + double p, t, r, sign, x; + + x = -2.0 * y * y; + sign = 1.0; + p = 0.0; + r = 1.0; + do + { + t = exp (x * r * r); + p += sign * t; + if (t == 0.0) + break; + r += 1.0; + sign = -sign; + } + while ((t / p) > 1.1e-16); + return (p + p); +} + +/* Functional inverse of Smirnov distribution + finds e such that smirnov(n,e) = p. */ +double +smirnovi (n, p) + int n; + double p; +{ + double e, t, dpde; + + if (p <= 0.0 || p > 1.0) + { + mtherr ("smirnovi", DOMAIN); + return 0.0; + } + /* Start with approximation p = exp(-2 n e^2). */ + e = sqrt (-log (p) / (2.0 * n)); + do + { + /* Use approximate derivative in Newton iteration. */ + t = -2.0 * n * e; + dpde = 2.0 * t * exp (t * e); + if (fabs (dpde) > 0.0) + t = (p - smirnov (n, e)) / dpde; + else + { + mtherr ("smirnovi", UNDERFLOW); + return 0.0; + } + e = e + t; + if (e >= 1.0 || e <= 0.0) + { + mtherr ("smirnovi", OVERFLOW); + return 0.0; + } + } + while (fabs (t / e) > 1e-10); + return (e); +} + + +/* Functional inverse of Kolmogorov statistic for two-sided test. + Finds y such that kolmogorov(y) = p. + If e = smirnovi (n,p), then kolmogi(2 * p) / sqrt(n) should + be close to e. */ +double +kolmogi (p) + double p; +{ + double y, t, dpdy; + + if (p <= 0.0 || p > 1.0) + { + mtherr ("kolmogi", DOMAIN); + return 0.0; + } + /* Start with approximation p = 2 exp(-2 y^2). */ + y = sqrt (-0.5 * log (0.5 * p)); + do + { + /* Use approximate derivative in Newton iteration. */ + t = -2.0 * y; + dpdy = 4.0 * t * exp (t * y); + if (fabs (dpdy) > 0.0) + t = (p - kolmogorov (y)) / dpdy; + else + { + mtherr ("kolmogi", UNDERFLOW); + return 0.0; + } + y = y + t; + } + while (fabs (t / y) > 1e-10); + return (y); +} + + +#ifdef SALONE +/* Type in a number. */ +void +getnum (s, px) + char *s; + double *px; +{ + char str[30]; + + printf (" %s (%.15e) ? ", s, *px); + gets (str); + if (str[0] == '\0' || str[0] == '\n') + return; + sscanf (str, "%lf", px); + printf ("%.15e\n", *px); +} + +/* Type in values, get answers. */ +void +main () +{ + int n; + double e, p, ps, pk, ek, y; + + n = 5; + e = 0.0; + p = 0.1; +loop: + ps = n; + getnum ("n", &ps); + n = ps; + if (n <= 0) + { + printf ("? Operator error.\n"); + goto loop; + } + /* + getnum ("e", &e); + ps = smirnov (n, e); + y = sqrt ((double) n) * e; + printf ("y = %.4e\n", y); + pk = kolmogorov (y); + printf ("Smirnov = %.15e, Kolmogorov/2 = %.15e\n", ps, pk / 2.0); +*/ + getnum ("p", &p); + e = smirnovi (n, p); + printf ("Smirnov e = %.15e\n", e); + y = kolmogi (2.0 * p); + ek = y / sqrt ((double) n); + printf ("Kolmogorov e = %.15e\n", ek); + goto loop; +} +#endif |