diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/i1.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/i1.c')
-rw-r--r-- | libm/double/i1.c | 402 |
1 files changed, 402 insertions, 0 deletions
diff --git a/libm/double/i1.c b/libm/double/i1.c new file mode 100644 index 000000000..dfde216dc --- /dev/null +++ b/libm/double/i1.c @@ -0,0 +1,402 @@ +/* i1.c + * + * Modified Bessel function of order one + * + * + * + * SYNOPSIS: + * + * double x, y, i1(); + * + * y = i1( x ); + * + * + * + * DESCRIPTION: + * + * Returns modified Bessel function of order one of the + * argument. + * + * The function is defined as i1(x) = -i j1( ix ). + * + * The range is partitioned into the two intervals [0,8] and + * (8, infinity). Chebyshev polynomial expansions are employed + * in each interval. + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * DEC 0, 30 3400 1.2e-16 2.3e-17 + * IEEE 0, 30 30000 1.9e-15 2.1e-16 + * + * + */ +/* i1e.c + * + * Modified Bessel function of order one, + * exponentially scaled + * + * + * + * SYNOPSIS: + * + * double x, y, i1e(); + * + * y = i1e( x ); + * + * + * + * DESCRIPTION: + * + * Returns exponentially scaled modified Bessel function + * of order one of the argument. + * + * The function is defined as i1(x) = -i exp(-|x|) j1( ix ). + * + * + * + * ACCURACY: + * + * Relative error: + * arithmetic domain # trials peak rms + * IEEE 0, 30 30000 2.0e-15 2.0e-16 + * See i1(). + * + */ + +/* i1.c 2 */ + + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1985, 1987, 2000 by Stephen L. Moshier +*/ + +#include <math.h> + +/* Chebyshev coefficients for exp(-x) I1(x) / x + * in the interval [0,8]. + * + * lim(x->0){ exp(-x) I1(x) / x } = 1/2. + */ + +#ifdef UNK +static double A[] = +{ + 2.77791411276104639959E-18, +-2.11142121435816608115E-17, + 1.55363195773620046921E-16, +-1.10559694773538630805E-15, + 7.60068429473540693410E-15, +-5.04218550472791168711E-14, + 3.22379336594557470981E-13, +-1.98397439776494371520E-12, + 1.17361862988909016308E-11, +-6.66348972350202774223E-11, + 3.62559028155211703701E-10, +-1.88724975172282928790E-9, + 9.38153738649577178388E-9, +-4.44505912879632808065E-8, + 2.00329475355213526229E-7, +-8.56872026469545474066E-7, + 3.47025130813767847674E-6, +-1.32731636560394358279E-5, + 4.78156510755005422638E-5, +-1.61760815825896745588E-4, + 5.12285956168575772895E-4, +-1.51357245063125314899E-3, + 4.15642294431288815669E-3, +-1.05640848946261981558E-2, + 2.47264490306265168283E-2, +-5.29459812080949914269E-2, + 1.02643658689847095384E-1, +-1.76416518357834055153E-1, + 2.52587186443633654823E-1 +}; +#endif + +#ifdef DEC +static unsigned short A[] = { +0021514,0174520,0060742,0000241, +0122302,0137206,0016120,0025663, +0023063,0017437,0026235,0176536, +0123637,0052523,0170150,0125632, +0024410,0165770,0030251,0044134, +0125143,0012160,0162170,0054727, +0025665,0075702,0035716,0145247, +0126413,0116032,0176670,0015462, +0027116,0073425,0110351,0105242, +0127622,0104034,0137530,0037364, +0030307,0050645,0120776,0175535, +0131001,0130331,0043523,0037455, +0031441,0026160,0010712,0100174, +0132076,0164761,0022706,0017500, +0032527,0015045,0115076,0104076, +0133146,0001714,0015434,0144520, +0033550,0161166,0124215,0077050, +0134136,0127715,0143365,0157170, +0034510,0106652,0013070,0064130, +0135051,0117126,0117264,0123761, +0035406,0045355,0133066,0175751, +0135706,0061420,0054746,0122440, +0036210,0031232,0047235,0006640, +0136455,0012373,0144235,0011523, +0036712,0107437,0036731,0015111, +0137130,0156742,0115744,0172743, +0037322,0033326,0124667,0124740, +0137464,0123210,0021510,0144556, +0037601,0051433,0111123,0177721 +}; +#endif + +#ifdef IBMPC +static unsigned short A[] = { +0x4014,0x0c3c,0x9f2a,0x3c49, +0x0576,0xc38a,0x57d0,0xbc78, +0xbfac,0xe593,0x63e3,0x3ca6, +0x1573,0x7e0d,0xeaaa,0xbcd3, +0x290c,0x0615,0x1d7f,0x3d01, +0x0b3b,0x1c8f,0x628e,0xbd2c, +0xd955,0x4779,0xaf78,0x3d56, +0x0366,0x5fb7,0x7383,0xbd81, +0x3154,0xb21d,0xcee2,0x3da9, +0x07de,0x97eb,0x5103,0xbdd2, +0xdf6c,0xb43f,0xea34,0x3df8, +0x67e6,0x28ea,0x361b,0xbe20, +0x5010,0x0239,0x258e,0x3e44, +0xc3e8,0x24b8,0xdd3e,0xbe67, +0xd108,0xb347,0xe344,0x3e8a, +0x992a,0x8363,0xc079,0xbeac, +0xafc5,0xd511,0x1c4e,0x3ecd, +0xbbcf,0xb8de,0xd5f9,0xbeeb, +0x0d0b,0x42c7,0x11b5,0x3f09, +0x94fe,0xd3d6,0x33ca,0xbf25, +0xdf7d,0xb6c6,0xc95d,0x3f40, +0xd4a4,0x0b3c,0xcc62,0xbf58, +0xa1b4,0x49d3,0x0653,0x3f71, +0xa26a,0x7913,0xa29f,0xbf85, +0x2349,0xe7bb,0x51e3,0x3f99, +0x9ebc,0x537c,0x1bbc,0xbfab, +0xf53c,0xd536,0x46da,0x3fba, +0x192e,0x0469,0x94d1,0xbfc6, +0x7ffa,0x724a,0x2a63,0x3fd0 +}; +#endif + +#ifdef MIEEE +static unsigned short A[] = { +0x3c49,0x9f2a,0x0c3c,0x4014, +0xbc78,0x57d0,0xc38a,0x0576, +0x3ca6,0x63e3,0xe593,0xbfac, +0xbcd3,0xeaaa,0x7e0d,0x1573, +0x3d01,0x1d7f,0x0615,0x290c, +0xbd2c,0x628e,0x1c8f,0x0b3b, +0x3d56,0xaf78,0x4779,0xd955, +0xbd81,0x7383,0x5fb7,0x0366, +0x3da9,0xcee2,0xb21d,0x3154, +0xbdd2,0x5103,0x97eb,0x07de, +0x3df8,0xea34,0xb43f,0xdf6c, +0xbe20,0x361b,0x28ea,0x67e6, +0x3e44,0x258e,0x0239,0x5010, +0xbe67,0xdd3e,0x24b8,0xc3e8, +0x3e8a,0xe344,0xb347,0xd108, +0xbeac,0xc079,0x8363,0x992a, +0x3ecd,0x1c4e,0xd511,0xafc5, +0xbeeb,0xd5f9,0xb8de,0xbbcf, +0x3f09,0x11b5,0x42c7,0x0d0b, +0xbf25,0x33ca,0xd3d6,0x94fe, +0x3f40,0xc95d,0xb6c6,0xdf7d, +0xbf58,0xcc62,0x0b3c,0xd4a4, +0x3f71,0x0653,0x49d3,0xa1b4, +0xbf85,0xa29f,0x7913,0xa26a, +0x3f99,0x51e3,0xe7bb,0x2349, +0xbfab,0x1bbc,0x537c,0x9ebc, +0x3fba,0x46da,0xd536,0xf53c, +0xbfc6,0x94d1,0x0469,0x192e, +0x3fd0,0x2a63,0x724a,0x7ffa +}; +#endif + +/* i1.c */ + +/* Chebyshev coefficients for exp(-x) sqrt(x) I1(x) + * in the inverted interval [8,infinity]. + * + * lim(x->inf){ exp(-x) sqrt(x) I1(x) } = 1/sqrt(2pi). + */ + +#ifdef UNK +static double B[] = +{ + 7.51729631084210481353E-18, + 4.41434832307170791151E-18, +-4.65030536848935832153E-17, +-3.20952592199342395980E-17, + 2.96262899764595013876E-16, + 3.30820231092092828324E-16, +-1.88035477551078244854E-15, +-3.81440307243700780478E-15, + 1.04202769841288027642E-14, + 4.27244001671195135429E-14, +-2.10154184277266431302E-14, +-4.08355111109219731823E-13, +-7.19855177624590851209E-13, + 2.03562854414708950722E-12, + 1.41258074366137813316E-11, + 3.25260358301548823856E-11, +-1.89749581235054123450E-11, +-5.58974346219658380687E-10, +-3.83538038596423702205E-9, +-2.63146884688951950684E-8, +-2.51223623787020892529E-7, +-3.88256480887769039346E-6, +-1.10588938762623716291E-4, +-9.76109749136146840777E-3, + 7.78576235018280120474E-1 +}; +#endif + +#ifdef DEC +static unsigned short B[] = { +0022012,0125555,0115227,0043456, +0021642,0156127,0052075,0145203, +0122526,0072435,0111231,0011664, +0122424,0001544,0161671,0114403, +0023252,0144257,0163532,0142121, +0023276,0132162,0174045,0013204, +0124007,0077154,0057046,0110517, +0124211,0066650,0116127,0157073, +0024473,0133413,0130551,0107504, +0025100,0064741,0032631,0040364, +0124675,0045101,0071551,0012400, +0125745,0161054,0071637,0011247, +0126112,0117410,0035525,0122231, +0026417,0037237,0131034,0176427, +0027170,0100373,0024742,0025725, +0027417,0006417,0105303,0141446, +0127246,0163716,0121202,0060137, +0130431,0123122,0120436,0166000, +0131203,0144134,0153251,0124500, +0131742,0005234,0122732,0033006, +0132606,0157751,0072362,0121031, +0133602,0043372,0047120,0015626, +0134747,0165774,0001125,0046462, +0136437,0166402,0117746,0155137, +0040107,0050305,0125330,0124241 +}; +#endif + +#ifdef IBMPC +static unsigned short B[] = { +0xe8e6,0xb352,0x556d,0x3c61, +0xb950,0xea87,0x5b8a,0x3c54, +0x2277,0xb253,0xcea3,0xbc8a, +0x3320,0x9c77,0x806c,0xbc82, +0x588a,0xfceb,0x5915,0x3cb5, +0xa2d1,0x5f04,0xd68e,0x3cb7, +0xd22a,0x8bc4,0xefcd,0xbce0, +0xfbc7,0x138a,0x2db5,0xbcf1, +0x31e8,0x762d,0x76e1,0x3d07, +0x281e,0x26b3,0x0d3c,0x3d28, +0x22a0,0x2e6d,0xa948,0xbd17, +0xe255,0x8e73,0xbc45,0xbd5c, +0xb493,0x076a,0x53e1,0xbd69, +0x9fa3,0xf643,0xe7d3,0x3d81, +0x457b,0x653c,0x101f,0x3daf, +0x7865,0xf158,0xe1a1,0x3dc1, +0x4c0c,0xd450,0xdcf9,0xbdb4, +0xdd80,0x5423,0x34ca,0xbe03, +0x3528,0x9ad5,0x790b,0xbe30, +0x46c1,0x94bb,0x4153,0xbe5c, +0x5443,0x2e9e,0xdbfd,0xbe90, +0x0373,0x49ca,0x48df,0xbed0, +0xa9a6,0x804a,0xfd7f,0xbf1c, +0xdb4c,0x53fc,0xfda0,0xbf83, +0x1514,0xb55b,0xea18,0x3fe8 +}; +#endif + +#ifdef MIEEE +static unsigned short B[] = { +0x3c61,0x556d,0xb352,0xe8e6, +0x3c54,0x5b8a,0xea87,0xb950, +0xbc8a,0xcea3,0xb253,0x2277, +0xbc82,0x806c,0x9c77,0x3320, +0x3cb5,0x5915,0xfceb,0x588a, +0x3cb7,0xd68e,0x5f04,0xa2d1, +0xbce0,0xefcd,0x8bc4,0xd22a, +0xbcf1,0x2db5,0x138a,0xfbc7, +0x3d07,0x76e1,0x762d,0x31e8, +0x3d28,0x0d3c,0x26b3,0x281e, +0xbd17,0xa948,0x2e6d,0x22a0, +0xbd5c,0xbc45,0x8e73,0xe255, +0xbd69,0x53e1,0x076a,0xb493, +0x3d81,0xe7d3,0xf643,0x9fa3, +0x3daf,0x101f,0x653c,0x457b, +0x3dc1,0xe1a1,0xf158,0x7865, +0xbdb4,0xdcf9,0xd450,0x4c0c, +0xbe03,0x34ca,0x5423,0xdd80, +0xbe30,0x790b,0x9ad5,0x3528, +0xbe5c,0x4153,0x94bb,0x46c1, +0xbe90,0xdbfd,0x2e9e,0x5443, +0xbed0,0x48df,0x49ca,0x0373, +0xbf1c,0xfd7f,0x804a,0xa9a6, +0xbf83,0xfda0,0x53fc,0xdb4c, +0x3fe8,0xea18,0xb55b,0x1514 +}; +#endif + +/* i1.c */ +#ifdef ANSIPROT +extern double chbevl ( double, void *, int ); +extern double exp ( double ); +extern double sqrt ( double ); +extern double fabs ( double ); +#else +double chbevl(), exp(), sqrt(), fabs(); +#endif + +double i1(x) +double x; +{ +double y, z; + +z = fabs(x); +if( z <= 8.0 ) + { + y = (z/2.0) - 2.0; + z = chbevl( y, A, 29 ) * z * exp(z); + } +else + { + z = exp(z) * chbevl( 32.0/z - 2.0, B, 25 ) / sqrt(z); + } +if( x < 0.0 ) + z = -z; +return( z ); +} + +/* i1e() */ + +double i1e( x ) +double x; +{ +double y, z; + +z = fabs(x); +if( z <= 8.0 ) + { + y = (z/2.0) - 2.0; + z = chbevl( y, A, 29 ) * z; + } +else + { + z = chbevl( 32.0/z - 2.0, B, 25 ) / sqrt(z); + } +if( x < 0.0 ) + z = -z; +return( z ); +} |