diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-05-10 00:40:28 +0000 |
commit | 1077fa4d772832f77a677ce7fb7c2d513b959e3f (patch) | |
tree | 579bee13fb0b58d2800206366ec2caecbb15f3fc /libm/double/floor.c | |
parent | 22358dd7ce7bb49792204b698f01a6f69b9c8e08 (diff) |
uClibc now has a math library. muahahahaha!
-Erik
Diffstat (limited to 'libm/double/floor.c')
-rw-r--r-- | libm/double/floor.c | 453 |
1 files changed, 453 insertions, 0 deletions
diff --git a/libm/double/floor.c b/libm/double/floor.c new file mode 100644 index 000000000..dcc1a10f1 --- /dev/null +++ b/libm/double/floor.c @@ -0,0 +1,453 @@ +/* ceil() + * floor() + * frexp() + * ldexp() + * signbit() + * isnan() + * isfinite() + * + * Floating point numeric utilities + * + * + * + * SYNOPSIS: + * + * double ceil(), floor(), frexp(), ldexp(); + * int signbit(), isnan(), isfinite(); + * double x, y; + * int expnt, n; + * + * y = floor(x); + * y = ceil(x); + * y = frexp( x, &expnt ); + * y = ldexp( x, n ); + * n = signbit(x); + * n = isnan(x); + * n = isfinite(x); + * + * + * + * DESCRIPTION: + * + * All four routines return a double precision floating point + * result. + * + * floor() returns the largest integer less than or equal to x. + * It truncates toward minus infinity. + * + * ceil() returns the smallest integer greater than or equal + * to x. It truncates toward plus infinity. + * + * frexp() extracts the exponent from x. It returns an integer + * power of two to expnt and the significand between 0.5 and 1 + * to y. Thus x = y * 2**expn. + * + * ldexp() multiplies x by 2**n. + * + * signbit(x) returns 1 if the sign bit of x is 1, else 0. + * + * These functions are part of the standard C run time library + * for many but not all C compilers. The ones supplied are + * written in C for either DEC or IEEE arithmetic. They should + * be used only if your compiler library does not already have + * them. + * + * The IEEE versions assume that denormal numbers are implemented + * in the arithmetic. Some modifications will be required if + * the arithmetic has abrupt rather than gradual underflow. + */ + + +/* +Cephes Math Library Release 2.8: June, 2000 +Copyright 1984, 1995, 2000 by Stephen L. Moshier +*/ + + +#include <math.h> + +#ifdef UNK +/* ceil(), floor(), frexp(), ldexp() may need to be rewritten. */ +#undef UNK +#if BIGENDIAN +#define MIEEE 1 +#else +#define IBMPC 1 +#endif +#endif + +#ifdef DEC +#define EXPMSK 0x807f +#define MEXP 255 +#define NBITS 56 +#endif + +#ifdef IBMPC +#define EXPMSK 0x800f +#define MEXP 0x7ff +#define NBITS 53 +#endif + +#ifdef MIEEE +#define EXPMSK 0x800f +#define MEXP 0x7ff +#define NBITS 53 +#endif + +extern double MAXNUM, NEGZERO; +#ifdef ANSIPROT +double floor ( double ); +int isnan ( double ); +int isfinite ( double ); +double ldexp ( double, int ); +#else +double floor(); +int isnan(), isfinite(); +double ldexp(); +#endif + +double ceil(x) +double x; +{ +double y; + +#ifdef UNK +mtherr( "ceil", DOMAIN ); +return(0.0); +#endif +#ifdef NANS +if( isnan(x) ) + return( x ); +#endif +#ifdef INFINITIES +if(!isfinite(x)) + return(x); +#endif + +y = floor(x); +if( y < x ) + y += 1.0; +#ifdef MINUSZERO +if( y == 0.0 && x < 0.0 ) + return( NEGZERO ); +#endif +return(y); +} + + + + +/* Bit clearing masks: */ + +static unsigned short bmask[] = { +0xffff, +0xfffe, +0xfffc, +0xfff8, +0xfff0, +0xffe0, +0xffc0, +0xff80, +0xff00, +0xfe00, +0xfc00, +0xf800, +0xf000, +0xe000, +0xc000, +0x8000, +0x0000, +}; + + + + + +double floor(x) +double x; +{ +union + { + double y; + unsigned short sh[4]; + } u; +unsigned short *p; +int e; + +#ifdef UNK +mtherr( "floor", DOMAIN ); +return(0.0); +#endif +#ifdef NANS +if( isnan(x) ) + return( x ); +#endif +#ifdef INFINITIES +if(!isfinite(x)) + return(x); +#endif +#ifdef MINUSZERO +if(x == 0.0L) + return(x); +#endif +u.y = x; +/* find the exponent (power of 2) */ +#ifdef DEC +p = (unsigned short *)&u.sh[0]; +e = (( *p >> 7) & 0377) - 0201; +p += 3; +#endif + +#ifdef IBMPC +p = (unsigned short *)&u.sh[3]; +e = (( *p >> 4) & 0x7ff) - 0x3ff; +p -= 3; +#endif + +#ifdef MIEEE +p = (unsigned short *)&u.sh[0]; +e = (( *p >> 4) & 0x7ff) - 0x3ff; +p += 3; +#endif + +if( e < 0 ) + { + if( u.y < 0.0 ) + return( -1.0 ); + else + return( 0.0 ); + } + +e = (NBITS -1) - e; +/* clean out 16 bits at a time */ +while( e >= 16 ) + { +#ifdef IBMPC + *p++ = 0; +#endif + +#ifdef DEC + *p-- = 0; +#endif + +#ifdef MIEEE + *p-- = 0; +#endif + e -= 16; + } + +/* clear the remaining bits */ +if( e > 0 ) + *p &= bmask[e]; + +if( (x < 0) && (u.y != x) ) + u.y -= 1.0; + +return(u.y); +} + + + + +double frexp( x, pw2 ) +double x; +int *pw2; +{ +union + { + double y; + unsigned short sh[4]; + } u; +int i; +#ifdef DENORMAL +int k; +#endif +short *q; + +u.y = x; + +#ifdef UNK +mtherr( "frexp", DOMAIN ); +return(0.0); +#endif + +#ifdef IBMPC +q = (short *)&u.sh[3]; +#endif + +#ifdef DEC +q = (short *)&u.sh[0]; +#endif + +#ifdef MIEEE +q = (short *)&u.sh[0]; +#endif + +/* find the exponent (power of 2) */ +#ifdef DEC +i = ( *q >> 7) & 0377; +if( i == 0 ) + { + *pw2 = 0; + return(0.0); + } +i -= 0200; +*pw2 = i; +*q &= 0x807f; /* strip all exponent bits */ +*q |= 040000; /* mantissa between 0.5 and 1 */ +return(u.y); +#endif + +#ifdef IBMPC +i = ( *q >> 4) & 0x7ff; +if( i != 0 ) + goto ieeedon; +#endif + +#ifdef MIEEE +i = *q >> 4; +i &= 0x7ff; +if( i != 0 ) + goto ieeedon; +#ifdef DENORMAL + +#else +*pw2 = 0; +return(0.0); +#endif + +#endif + + +#ifndef DEC +/* Number is denormal or zero */ +#ifdef DENORMAL +if( u.y == 0.0 ) + { + *pw2 = 0; + return( 0.0 ); + } + + +/* Handle denormal number. */ +do + { + u.y *= 2.0; + i -= 1; + k = ( *q >> 4) & 0x7ff; + } +while( k == 0 ); +i = i + k; +#endif /* DENORMAL */ + +ieeedon: + +i -= 0x3fe; +*pw2 = i; +*q &= 0x800f; +*q |= 0x3fe0; +return( u.y ); +#endif +} + + + + + + + +double ldexp( x, pw2 ) +double x; +int pw2; +{ +union + { + double y; + unsigned short sh[4]; + } u; +short *q; +int e; + +#ifdef UNK +mtherr( "ldexp", DOMAIN ); +return(0.0); +#endif + +u.y = x; +#ifdef DEC +q = (short *)&u.sh[0]; +e = ( *q >> 7) & 0377; +if( e == 0 ) + return(0.0); +#else + +#ifdef IBMPC +q = (short *)&u.sh[3]; +#endif +#ifdef MIEEE +q = (short *)&u.sh[0]; +#endif +while( (e = (*q & 0x7ff0) >> 4) == 0 ) + { + if( u.y == 0.0 ) + { + return( 0.0 ); + } +/* Input is denormal. */ + if( pw2 > 0 ) + { + u.y *= 2.0; + pw2 -= 1; + } + if( pw2 < 0 ) + { + if( pw2 < -53 ) + return(0.0); + u.y /= 2.0; + pw2 += 1; + } + if( pw2 == 0 ) + return(u.y); + } +#endif /* not DEC */ + +e += pw2; + +/* Handle overflow */ +#ifdef DEC +if( e > MEXP ) + return( MAXNUM ); +#else +if( e >= MEXP ) + return( 2.0*MAXNUM ); +#endif + +/* Handle denormalized results */ +if( e < 1 ) + { +#ifdef DENORMAL + if( e < -53 ) + return(0.0); + *q &= 0x800f; + *q |= 0x10; + /* For denormals, significant bits may be lost even + when dividing by 2. Construct 2^-(1-e) so the result + is obtained with only one multiplication. */ + u.y *= ldexp(1.0, e-1); + return(u.y); +#else + return(0.0); +#endif + } +else + { +#ifdef DEC + *q &= 0x807f; /* strip all exponent bits */ + *q |= (e & 0xff) << 7; +#else + *q &= 0x800f; + *q |= (e & 0x7ff) << 4; +#endif + return(u.y); + } +} |