summaryrefslogtreecommitdiff
path: root/libm/double/floor.c
diff options
context:
space:
mode:
authorEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
committerEric Andersen <andersen@codepoet.org>2001-11-22 14:04:29 +0000
commit7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch)
tree3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/double/floor.c
parentc117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff)
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD). -Erik
Diffstat (limited to 'libm/double/floor.c')
-rw-r--r--libm/double/floor.c531
1 files changed, 0 insertions, 531 deletions
diff --git a/libm/double/floor.c b/libm/double/floor.c
deleted file mode 100644
index affc7753e..000000000
--- a/libm/double/floor.c
+++ /dev/null
@@ -1,531 +0,0 @@
-/* ceil()
- * floor()
- * frexp()
- * ldexp()
- * signbit()
- * isnan()
- * isfinite()
- *
- * Floating point numeric utilities
- *
- *
- *
- * SYNOPSIS:
- *
- * double ceil(), floor(), frexp(), ldexp();
- * int signbit(), isnan(), isfinite();
- * double x, y;
- * int expnt, n;
- *
- * y = floor(x);
- * y = ceil(x);
- * y = frexp( x, &expnt );
- * y = ldexp( x, n );
- * n = signbit(x);
- * n = isnan(x);
- * n = isfinite(x);
- *
- *
- *
- * DESCRIPTION:
- *
- * All four routines return a double precision floating point
- * result.
- *
- * floor() returns the largest integer less than or equal to x.
- * It truncates toward minus infinity.
- *
- * ceil() returns the smallest integer greater than or equal
- * to x. It truncates toward plus infinity.
- *
- * frexp() extracts the exponent from x. It returns an integer
- * power of two to expnt and the significand between 0.5 and 1
- * to y. Thus x = y * 2**expn.
- *
- * ldexp() multiplies x by 2**n.
- *
- * signbit(x) returns 1 if the sign bit of x is 1, else 0.
- *
- * These functions are part of the standard C run time library
- * for many but not all C compilers. The ones supplied are
- * written in C for either DEC or IEEE arithmetic. They should
- * be used only if your compiler library does not already have
- * them.
- *
- * The IEEE versions assume that denormal numbers are implemented
- * in the arithmetic. Some modifications will be required if
- * the arithmetic has abrupt rather than gradual underflow.
- */
-
-
-/*
-Cephes Math Library Release 2.8: June, 2000
-Copyright 1984, 1995, 2000 by Stephen L. Moshier
-*/
-
-
-#include <math.h>
-
-#ifdef UNK
-/* ceil(), floor(), frexp(), ldexp() may need to be rewritten. */
-#undef UNK
-#if BIGENDIAN
-#define MIEEE 1
-#else
-#define IBMPC 1
-#endif
-#endif
-
-#ifdef DEC
-#define EXPMSK 0x807f
-#define MEXP 255
-#define NBITS 56
-#endif
-
-#ifdef IBMPC
-#define EXPMSK 0x800f
-#define MEXP 0x7ff
-#define NBITS 53
-#endif
-
-#ifdef MIEEE
-#define EXPMSK 0x800f
-#define MEXP 0x7ff
-#define NBITS 53
-#endif
-
-extern double MAXNUM, NEGZERO;
-#ifdef ANSIPROT
-double floor ( double );
-int isnan ( double );
-int isfinite ( double );
-double ldexp ( double, int );
-#else
-double floor();
-int isnan(), isfinite();
-double ldexp();
-#endif
-
-double ceil(x)
-double x;
-{
-double y;
-
-#ifdef UNK
-mtherr( "ceil", DOMAIN );
-return(0.0);
-#endif
-#ifdef NANS
-if( isnan(x) )
- return( x );
-#endif
-#ifdef INFINITIES
-if(!isfinite(x))
- return(x);
-#endif
-
-y = floor(x);
-if( y < x )
- y += 1.0;
-#ifdef MINUSZERO
-if( y == 0.0 && x < 0.0 )
- return( NEGZERO );
-#endif
-return(y);
-}
-
-
-
-
-/* Bit clearing masks: */
-
-static unsigned short bmask[] = {
-0xffff,
-0xfffe,
-0xfffc,
-0xfff8,
-0xfff0,
-0xffe0,
-0xffc0,
-0xff80,
-0xff00,
-0xfe00,
-0xfc00,
-0xf800,
-0xf000,
-0xe000,
-0xc000,
-0x8000,
-0x0000,
-};
-
-
-
-
-
-double floor(x)
-double x;
-{
-union
- {
- double y;
- unsigned short sh[4];
- } u;
-unsigned short *p;
-int e;
-
-#ifdef UNK
-mtherr( "floor", DOMAIN );
-return(0.0);
-#endif
-#ifdef NANS
-if( isnan(x) )
- return( x );
-#endif
-#ifdef INFINITIES
-if(!isfinite(x))
- return(x);
-#endif
-#ifdef MINUSZERO
-if(x == 0.0L)
- return(x);
-#endif
-u.y = x;
-/* find the exponent (power of 2) */
-#ifdef DEC
-p = (unsigned short *)&u.sh[0];
-e = (( *p >> 7) & 0377) - 0201;
-p += 3;
-#endif
-
-#ifdef IBMPC
-p = (unsigned short *)&u.sh[3];
-e = (( *p >> 4) & 0x7ff) - 0x3ff;
-p -= 3;
-#endif
-
-#ifdef MIEEE
-p = (unsigned short *)&u.sh[0];
-e = (( *p >> 4) & 0x7ff) - 0x3ff;
-p += 3;
-#endif
-
-if( e < 0 )
- {
- if( u.y < 0.0 )
- return( -1.0 );
- else
- return( 0.0 );
- }
-
-e = (NBITS -1) - e;
-/* clean out 16 bits at a time */
-while( e >= 16 )
- {
-#ifdef IBMPC
- *p++ = 0;
-#endif
-
-#ifdef DEC
- *p-- = 0;
-#endif
-
-#ifdef MIEEE
- *p-- = 0;
-#endif
- e -= 16;
- }
-
-/* clear the remaining bits */
-if( e > 0 )
- *p &= bmask[e];
-
-if( (x < 0) && (u.y != x) )
- u.y -= 1.0;
-
-return(u.y);
-}
-
-
-
-
-double frexp( x, pw2 )
-double x;
-int *pw2;
-{
-union
- {
- double y;
- unsigned short sh[4];
- } u;
-int i;
-#ifdef DENORMAL
-int k;
-#endif
-short *q;
-
-u.y = x;
-
-#ifdef UNK
-mtherr( "frexp", DOMAIN );
-return(0.0);
-#endif
-
-#ifdef IBMPC
-q = (short *)&u.sh[3];
-#endif
-
-#ifdef DEC
-q = (short *)&u.sh[0];
-#endif
-
-#ifdef MIEEE
-q = (short *)&u.sh[0];
-#endif
-
-/* find the exponent (power of 2) */
-#ifdef DEC
-i = ( *q >> 7) & 0377;
-if( i == 0 )
- {
- *pw2 = 0;
- return(0.0);
- }
-i -= 0200;
-*pw2 = i;
-*q &= 0x807f; /* strip all exponent bits */
-*q |= 040000; /* mantissa between 0.5 and 1 */
-return(u.y);
-#endif
-
-#ifdef IBMPC
-i = ( *q >> 4) & 0x7ff;
-if( i != 0 )
- goto ieeedon;
-#endif
-
-#ifdef MIEEE
-i = *q >> 4;
-i &= 0x7ff;
-if( i != 0 )
- goto ieeedon;
-#ifdef DENORMAL
-
-#else
-*pw2 = 0;
-return(0.0);
-#endif
-
-#endif
-
-
-#ifndef DEC
-/* Number is denormal or zero */
-#ifdef DENORMAL
-if( u.y == 0.0 )
- {
- *pw2 = 0;
- return( 0.0 );
- }
-
-
-/* Handle denormal number. */
-do
- {
- u.y *= 2.0;
- i -= 1;
- k = ( *q >> 4) & 0x7ff;
- }
-while( k == 0 );
-i = i + k;
-#endif /* DENORMAL */
-
-ieeedon:
-
-i -= 0x3fe;
-*pw2 = i;
-*q &= 0x800f;
-*q |= 0x3fe0;
-return( u.y );
-#endif
-}
-
-
-
-
-
-
-
-double ldexp( x, pw2 )
-double x;
-int pw2;
-{
-union
- {
- double y;
- unsigned short sh[4];
- } u;
-short *q;
-int e;
-
-#ifdef UNK
-mtherr( "ldexp", DOMAIN );
-return(0.0);
-#endif
-
-u.y = x;
-#ifdef DEC
-q = (short *)&u.sh[0];
-e = ( *q >> 7) & 0377;
-if( e == 0 )
- return(0.0);
-#else
-
-#ifdef IBMPC
-q = (short *)&u.sh[3];
-#endif
-#ifdef MIEEE
-q = (short *)&u.sh[0];
-#endif
-while( (e = (*q & 0x7ff0) >> 4) == 0 )
- {
- if( u.y == 0.0 )
- {
- return( 0.0 );
- }
-/* Input is denormal. */
- if( pw2 > 0 )
- {
- u.y *= 2.0;
- pw2 -= 1;
- }
- if( pw2 < 0 )
- {
- if( pw2 < -53 )
- return(0.0);
- u.y /= 2.0;
- pw2 += 1;
- }
- if( pw2 == 0 )
- return(u.y);
- }
-#endif /* not DEC */
-
-e += pw2;
-
-/* Handle overflow */
-#ifdef DEC
-if( e > MEXP )
- return( MAXNUM );
-#else
-if( e >= MEXP )
- return( 2.0*MAXNUM );
-#endif
-
-/* Handle denormalized results */
-if( e < 1 )
- {
-#ifdef DENORMAL
- if( e < -53 )
- return(0.0);
- *q &= 0x800f;
- *q |= 0x10;
- /* For denormals, significant bits may be lost even
- when dividing by 2. Construct 2^-(1-e) so the result
- is obtained with only one multiplication. */
- u.y *= ldexp(1.0, e-1);
- return(u.y);
-#else
- return(0.0);
-#endif
- }
-else
- {
-#ifdef DEC
- *q &= 0x807f; /* strip all exponent bits */
- *q |= (e & 0xff) << 7;
-#else
- *q &= 0x800f;
- *q |= (e & 0x7ff) << 4;
-#endif
- return(u.y);
- }
-}
-
-/**********************************************************************/
-/*
- * trunc is just a slightly modified version of floor above.
- */
-
-double trunc(double x)
-{
- union {
- double y;
- unsigned short sh[4];
- } u;
- unsigned short *p;
- int e;
-
-#ifdef UNK
- mtherr( "trunc", DOMAIN );
- return(0.0);
-#endif
-#ifdef NANS
- if( isnan(x) )
- return( x );
-#endif
-#ifdef INFINITIES
- if(!isfinite(x))
- return(x);
-#endif
-#ifdef MINUSZERO
- if(x == 0.0L)
- return(x);
-#endif
- u.y = x;
- /* find the exponent (power of 2) */
-#ifdef DEC
- p = (unsigned short *)&u.sh[0];
- e = (( *p >> 7) & 0377) - 0201;
- p += 3;
-#endif
-
-#ifdef IBMPC
- p = (unsigned short *)&u.sh[3];
- e = (( *p >> 4) & 0x7ff) - 0x3ff;
- p -= 3;
-#endif
-
-#ifdef MIEEE
- p = (unsigned short *)&u.sh[0];
- e = (( *p >> 4) & 0x7ff) - 0x3ff;
- p += 3;
-#endif
-
- if( e < 0 )
- return( 0.0 );
-
- e = (NBITS -1) - e;
- /* clean out 16 bits at a time */
- while( e >= 16 )
- {
-#ifdef IBMPC
- *p++ = 0;
-#endif
-
-#ifdef DEC
- *p-- = 0;
-#endif
-
-#ifdef MIEEE
- *p-- = 0;
-#endif
- e -= 16;
- }
-
- /* clear the remaining bits */
- if( e > 0 )
- *p &= bmask[e];
-
- return(u.y);
-}