diff options
author | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2001-11-22 14:04:29 +0000 |
commit | 7ce331c01ce6eb7b3f5c715a38a24359da9c6ee2 (patch) | |
tree | 3a7e8476e868ae15f4da1b7ce26b2db6f434468c /libm/double/ellpe.c | |
parent | c117dd5fb183afb1a4790a6f6110d88704be6bf8 (diff) |
Totally rework the math library, this time based on the MacOs X
math library (which is itself based on the math lib from FreeBSD).
-Erik
Diffstat (limited to 'libm/double/ellpe.c')
-rw-r--r-- | libm/double/ellpe.c | 195 |
1 files changed, 0 insertions, 195 deletions
diff --git a/libm/double/ellpe.c b/libm/double/ellpe.c deleted file mode 100644 index 9b2438e0e..000000000 --- a/libm/double/ellpe.c +++ /dev/null @@ -1,195 +0,0 @@ -/* ellpe.c - * - * Complete elliptic integral of the second kind - * - * - * - * SYNOPSIS: - * - * double m1, y, ellpe(); - * - * y = ellpe( m1 ); - * - * - * - * DESCRIPTION: - * - * Approximates the integral - * - * - * pi/2 - * - - * | | 2 - * E(m) = | sqrt( 1 - m sin t ) dt - * | | - * - - * 0 - * - * Where m = 1 - m1, using the approximation - * - * P(x) - x log x Q(x). - * - * Though there are no singularities, the argument m1 is used - * rather than m for compatibility with ellpk(). - * - * E(1) = 1; E(0) = pi/2. - * - * - * ACCURACY: - * - * Relative error: - * arithmetic domain # trials peak rms - * DEC 0, 1 13000 3.1e-17 9.4e-18 - * IEEE 0, 1 10000 2.1e-16 7.3e-17 - * - * - * ERROR MESSAGES: - * - * message condition value returned - * ellpe domain x<0, x>1 0.0 - * - */ - -/* ellpe.c */ - -/* Elliptic integral of second kind */ - -/* -Cephes Math Library, Release 2.8: June, 2000 -Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier -*/ - -#include <math.h> - -#ifdef UNK -static double P[] = { - 1.53552577301013293365E-4, - 2.50888492163602060990E-3, - 8.68786816565889628429E-3, - 1.07350949056076193403E-2, - 7.77395492516787092951E-3, - 7.58395289413514708519E-3, - 1.15688436810574127319E-2, - 2.18317996015557253103E-2, - 5.68051945617860553470E-2, - 4.43147180560990850618E-1, - 1.00000000000000000299E0 -}; -static double Q[] = { - 3.27954898576485872656E-5, - 1.00962792679356715133E-3, - 6.50609489976927491433E-3, - 1.68862163993311317300E-2, - 2.61769742454493659583E-2, - 3.34833904888224918614E-2, - 4.27180926518931511717E-2, - 5.85936634471101055642E-2, - 9.37499997197644278445E-2, - 2.49999999999888314361E-1 -}; -#endif - -#ifdef DEC -static unsigned short P[] = { -0035041,0001364,0141572,0117555, -0036044,0066032,0130027,0033404, -0036416,0053617,0064456,0102632, -0036457,0161100,0061177,0122612, -0036376,0136251,0012403,0124162, -0036370,0101316,0151715,0131613, -0036475,0105477,0050317,0133272, -0036662,0154232,0024645,0171552, -0037150,0126220,0047054,0030064, -0037742,0162057,0167645,0165612, -0040200,0000000,0000000,0000000 -}; -static unsigned short Q[] = { -0034411,0106743,0115771,0055462, -0035604,0052575,0155171,0045540, -0036325,0030424,0064332,0167756, -0036612,0052366,0063006,0115175, -0036726,0070430,0004533,0124654, -0037011,0022741,0030675,0030711, -0037056,0174452,0127062,0132122, -0037157,0177750,0142041,0072523, -0037277,0177777,0173137,0002627, -0037577,0177777,0177777,0101101 -}; -#endif - -#ifdef IBMPC -static unsigned short P[] = { -0x53ee,0x986f,0x205e,0x3f24, -0xe6e0,0x5602,0x8d83,0x3f64, -0xd0b3,0xed25,0xcaf1,0x3f81, -0xf4b1,0x0c4f,0xfc48,0x3f85, -0x750e,0x22a0,0xd795,0x3f7f, -0xb671,0xda79,0x1059,0x3f7f, -0xf6d7,0xea19,0xb167,0x3f87, -0xbe6d,0x4534,0x5b13,0x3f96, -0x8607,0x09c5,0x1592,0x3fad, -0xbd71,0xfdf4,0x5c85,0x3fdc, -0x0000,0x0000,0x0000,0x3ff0 -}; -static unsigned short Q[] = { -0x2b66,0x737f,0x31bc,0x3f01, -0x296c,0xbb4f,0x8aaf,0x3f50, -0x5dfe,0x8d1b,0xa622,0x3f7a, -0xd350,0xccc0,0x4a9e,0x3f91, -0x7535,0x012b,0xce23,0x3f9a, -0xa639,0x2637,0x24bc,0x3fa1, -0x568a,0x55c6,0xdf25,0x3fa5, -0x2eaa,0x1884,0xfffd,0x3fad, -0xe0b3,0xfecb,0xffff,0x3fb7, -0xf048,0xffff,0xffff,0x3fcf -}; -#endif - -#ifdef MIEEE -static unsigned short P[] = { -0x3f24,0x205e,0x986f,0x53ee, -0x3f64,0x8d83,0x5602,0xe6e0, -0x3f81,0xcaf1,0xed25,0xd0b3, -0x3f85,0xfc48,0x0c4f,0xf4b1, -0x3f7f,0xd795,0x22a0,0x750e, -0x3f7f,0x1059,0xda79,0xb671, -0x3f87,0xb167,0xea19,0xf6d7, -0x3f96,0x5b13,0x4534,0xbe6d, -0x3fad,0x1592,0x09c5,0x8607, -0x3fdc,0x5c85,0xfdf4,0xbd71, -0x3ff0,0x0000,0x0000,0x0000 -}; -static unsigned short Q[] = { -0x3f01,0x31bc,0x737f,0x2b66, -0x3f50,0x8aaf,0xbb4f,0x296c, -0x3f7a,0xa622,0x8d1b,0x5dfe, -0x3f91,0x4a9e,0xccc0,0xd350, -0x3f9a,0xce23,0x012b,0x7535, -0x3fa1,0x24bc,0x2637,0xa639, -0x3fa5,0xdf25,0x55c6,0x568a, -0x3fad,0xfffd,0x1884,0x2eaa, -0x3fb7,0xffff,0xfecb,0xe0b3, -0x3fcf,0xffff,0xffff,0xf048 -}; -#endif - -#ifdef ANSIPROT -extern double polevl ( double, void *, int ); -extern double log ( double ); -#else -double polevl(), log(); -#endif - -double ellpe(x) -double x; -{ - -if( (x <= 0.0) || (x > 1.0) ) - { - if( x == 0.0 ) - return( 1.0 ); - mtherr( "ellpe", DOMAIN ); - return( 0.0 ); - } -return( polevl(x,P,10) - log(x) * (x * polevl(x,Q,9)) ); -} |