diff options
author | Eric Andersen <andersen@codepoet.org> | 2002-08-07 15:11:51 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2002-08-07 15:11:51 +0000 |
commit | cf0a78c8823f6e06e8cf253f90472ed653e120df (patch) | |
tree | 12a08c5296fe3c8c566e9965d146109e5b9f966a /libcrypt/des.c | |
parent | bd85a75e3cd2972e2c7c7b7dac878f451c8065a4 (diff) |
Cleanup crypt and remove the crypt_r stuff, since SuSv3
(IEEE Std 1003.1-2001) states that crypt need not be reentrant.
-Erik
Diffstat (limited to 'libcrypt/des.c')
-rw-r--r-- | libcrypt/des.c | 319 |
1 files changed, 167 insertions, 152 deletions
diff --git a/libcrypt/des.c b/libcrypt/des.c index 1981890f8..270fe26ab 100644 --- a/libcrypt/des.c +++ b/libcrypt/des.c @@ -1,9 +1,17 @@ /* - * FreeSec: libcrypt + * FreeSec: libcrypt for NetBSD * * Copyright (c) 1994 David Burren * All rights reserved. * + * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet + * this file should now *only* export crypt(), in order to make + * binaries of libcrypt exportable from the USA + * + * Adapted for FreeBSD-4.0 by Mark R V Murray + * this file should now *only* export crypt_des(), in order to make + * a module that can be optionally included in libcrypt. + * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: @@ -12,7 +20,7 @@ * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. - * 4. Neither the name of the author nor the names of other contributors + * 3. Neither the name of the author nor the names of other contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * @@ -28,7 +36,6 @@ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * - * * This is an original implementation of the DES and the crypt(3) interfaces * by David Burren <davidb@werj.com.au>. * @@ -43,12 +50,10 @@ * attention of the author). A list of errata for this book has been * posted to the sci.crypt newsgroup by the author and is available for FTP. * - * NOTE: - * This file must copy certain chunks of crypt.c for legal reasons. - * crypt.c can only export the interface crypt(), to make binaries - * exportable from the USA. Hence, to also have the other crypto interfaces - * available we have to copy pieces... - * + * ARCHITECTURE ASSUMPTIONS: + * It is assumed that the 8-byte arrays passed by reference can be + * addressed as arrays of u_int32_t's (ie. the CPU is not picky about + * alignment). */ #define __FORCE_GLIBC @@ -65,7 +70,6 @@ static u_char inv_key_perm[64]; static u_char inv_comp_perm[56]; static u_char u_sbox[8][64]; -static u_char u_key_perm[56]; static u_char un_pbox[32]; static u_int32_t en_keysl[16], en_keysr[16]; static u_int32_t de_keysl[16], de_keysr[16]; @@ -74,6 +78,8 @@ static u_int32_t fp_maskl[8][256], fp_maskr[8][256]; static u_int32_t key_perm_maskl[8][128], key_perm_maskr[8][128]; static u_int32_t comp_maskl[8][128], comp_maskr[8][128]; static u_int32_t saltbits; +static u_int32_t old_salt; +static u_int32_t old_rawkey0, old_rawkey1; /* Static stuff that stays resident and doesn't change after @@ -190,8 +196,8 @@ static const u_char bits8[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 static const u_int32_t *bits28, *bits24; - -static __inline int ascii_to_bin(char ch) +static int +ascii_to_bin(char ch) { if (ch > 'z') return(0); @@ -208,7 +214,8 @@ static __inline int ascii_to_bin(char ch) return(0); } -static void des_init(void) +static void +des_init(void) { int i, j, b, k, inbit, obit; u_int32_t *p, *il, *ir, *fl, *fr; @@ -217,7 +224,9 @@ static void des_init(void) if (des_initialised==1) return; - saltbits = 0; + old_rawkey0 = old_rawkey1 = 0L; + saltbits = 0L; + old_salt = 0L; bits24 = (bits28 = bits32 + 4) + 4; /* @@ -237,15 +246,15 @@ static void des_init(void) for (i = 0; i < 64; i++) for (j = 0; j < 64; j++) m_sbox[b][(i << 6) | j] = - (u_sbox[(b << 1)][i] << 4) | - u_sbox[(b << 1) + 1][j]; + (u_char)((u_sbox[(b << 1)][i] << 4) | + u_sbox[(b << 1) + 1][j]); /* * Set up the initial & final permutations into a useful form, and * initialise the inverted key permutation. */ for (i = 0; i < 64; i++) { - init_perm[final_perm[i] = IP[i] - 1] = i; + init_perm[final_perm[i] = IP[i] - 1] = (u_char)i; inv_key_perm[i] = 255; } @@ -254,8 +263,7 @@ static void des_init(void) * compression permutation. */ for (i = 0; i < 56; i++) { - u_key_perm[i] = key_perm[i] - 1; - inv_key_perm[key_perm[i] - 1] = i; + inv_key_perm[key_perm[i] - 1] = (u_char)i; inv_comp_perm[i] = 255; } @@ -263,7 +271,7 @@ static void des_init(void) * Invert the key compression permutation. */ for (i = 0; i < 48; i++) { - inv_comp_perm[comp_perm[i] - 1] = i; + inv_comp_perm[comp_perm[i] - 1] = (u_char)i; } /* @@ -272,10 +280,10 @@ static void des_init(void) */ for (k = 0; k < 8; k++) { for (i = 0; i < 256; i++) { - *(il = &ip_maskl[k][i]) = 0; - *(ir = &ip_maskr[k][i]) = 0; - *(fl = &fp_maskl[k][i]) = 0; - *(fr = &fp_maskr[k][i]) = 0; + *(il = &ip_maskl[k][i]) = 0L; + *(ir = &ip_maskr[k][i]) = 0L; + *(fl = &fp_maskl[k][i]) = 0L; + *(fr = &fp_maskr[k][i]) = 0L; for (j = 0; j < 8; j++) { inbit = 8 * k + j; if (i & bits8[j]) { @@ -291,8 +299,8 @@ static void des_init(void) } } for (i = 0; i < 128; i++) { - *(il = &key_perm_maskl[k][i]) = 0; - *(ir = &key_perm_maskr[k][i]) = 0; + *(il = &key_perm_maskl[k][i]) = 0L; + *(ir = &key_perm_maskr[k][i]) = 0L; for (j = 0; j < 7; j++) { inbit = 8 * k + j; if (i & bits8[j + 1]) { @@ -304,8 +312,8 @@ static void des_init(void) *ir |= bits28[obit - 28]; } } - *(il = &comp_maskl[k][i]) = 0; - *(ir = &comp_maskr[k][i]) = 0; + *(il = &comp_maskl[k][i]) = 0L; + *(ir = &comp_maskr[k][i]) = 0L; for (j = 0; j < 7; j++) { inbit = 7 * k + j; if (i & bits8[j + 1]) { @@ -325,11 +333,11 @@ static void des_init(void) * handling the output of the S-box arrays setup above. */ for (i = 0; i < 32; i++) - un_pbox[pbox[i] - 1] = i; + un_pbox[pbox[i] - 1] = (u_char)i; for (b = 0; b < 4; b++) for (i = 0; i < 256; i++) { - *(p = &psbox[b][i]) = 0; + *(p = &psbox[b][i]) = 0L; for (j = 0; j < 8; j++) { if (i & bits8[j]) *p |= bits32[un_pbox[8 * b + j]]; @@ -339,17 +347,18 @@ static void des_init(void) des_initialised = 1; } -static void setup_salt(int32_t salt) + +static void +setup_salt(long salt) { u_int32_t obit, saltbit; int i; - static int32_t old_salt = 0; if (salt == old_salt) return; old_salt = salt; - saltbits = 0; + saltbits = 0L; saltbit = 1; obit = 0x800000; for (i = 0; i < 24; i++) { @@ -360,21 +369,96 @@ static void setup_salt(int32_t salt) } } -static int do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, - int count, struct crypt_data *data) + +static int +des_setkey(const char *key) +{ + u_int32_t k0, k1, rawkey0, rawkey1; + int shifts, round; + + des_init(); + + rawkey0 = ntohl(*(const u_int32_t *) key); + rawkey1 = ntohl(*(const u_int32_t *) (key + 4)); + + if ((rawkey0 | rawkey1) + && rawkey0 == old_rawkey0 + && rawkey1 == old_rawkey1) { + /* + * Already setup for this key. + * This optimisation fails on a zero key (which is weak and + * has bad parity anyway) in order to simplify the starting + * conditions. + */ + return(0); + } + old_rawkey0 = rawkey0; + old_rawkey1 = rawkey1; + + /* + * Do key permutation and split into two 28-bit subkeys. + */ + k0 = key_perm_maskl[0][rawkey0 >> 25] + | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskl[4][rawkey1 >> 25] + | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; + k1 = key_perm_maskr[0][rawkey0 >> 25] + | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] + | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] + | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] + | key_perm_maskr[4][rawkey1 >> 25] + | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] + | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] + | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; + /* + * Rotate subkeys and do compression permutation. + */ + shifts = 0; + for (round = 0; round < 16; round++) { + u_int32_t t0, t1; + + shifts += key_shifts[round]; + + t0 = (k0 << shifts) | (k0 >> (28 - shifts)); + t1 = (k1 << shifts) | (k1 >> (28 - shifts)); + + de_keysl[15 - round] = + en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] + | comp_maskl[1][(t0 >> 14) & 0x7f] + | comp_maskl[2][(t0 >> 7) & 0x7f] + | comp_maskl[3][t0 & 0x7f] + | comp_maskl[4][(t1 >> 21) & 0x7f] + | comp_maskl[5][(t1 >> 14) & 0x7f] + | comp_maskl[6][(t1 >> 7) & 0x7f] + | comp_maskl[7][t1 & 0x7f]; + + de_keysr[15 - round] = + en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] + | comp_maskr[1][(t0 >> 14) & 0x7f] + | comp_maskr[2][(t0 >> 7) & 0x7f] + | comp_maskr[3][t0 & 0x7f] + | comp_maskr[4][(t1 >> 21) & 0x7f] + | comp_maskr[5][(t1 >> 14) & 0x7f] + | comp_maskr[6][(t1 >> 7) & 0x7f] + | comp_maskr[7][t1 & 0x7f]; + } + return(0); +} + + +static int +do_des( u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r_out, int count) { /* * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format. */ - int round; u_int32_t l, r, *kl, *kr, *kl1, *kr1; u_int32_t f, r48l, r48r; -#if 0 - u_int32_t *en_keysl = &(data->key[0]); - u_int32_t *en_keysr = &(data->key[16]); - u_int32_t *de_keysl = &(data->key[32]); - u_int32_t *de_keysr = &(data->key[48]); -#endif + int round; if (count == 0) { return(1); @@ -482,97 +566,41 @@ static int do_des(u_int32_t l_in, u_int32_t r_in, u_int32_t *l_out, u_int32_t *r return(0); } -static int des_setkey_r(const char *key, struct crypt_data *data) -{ - u_int32_t k0, k1, rawkey0, rawkey1; - int shifts, round; - static u_int32_t old_rawkey0=0, old_rawkey1=0; - #if 0 - u_int32_t *en_keysl = &(data->key[0]); - u_int32_t *en_keysr = &(data->key[16]); - u_int32_t *de_keysl = &(data->key[32]); - u_int32_t *de_keysr = &(data->key[48]); -#endif +static int +des_cipher(const char *in, char *out, u_int32_t salt, int count) +{ + u_int32_t l_out, r_out, rawl, rawr; + int retval; + union { + u_int32_t *ui32; + const char *c; + } trans; des_init(); - rawkey0 = ntohl(*(u_int32_t *) key); - rawkey1 = ntohl(*(u_int32_t *) (key + 4)); - - if ((rawkey0 | rawkey1) - && rawkey0 == old_rawkey0 - && rawkey1 == old_rawkey1) { - /* - * Already setup for this key. - * This optimisation fails on a zero key (which is weak and - * has bad parity anyway) in order to simplify the starting - * conditions. - */ - return(0); - } - old_rawkey0 = rawkey0; - old_rawkey1 = rawkey1; - - /* - * Do key permutation and split into two 28-bit subkeys. - */ - k0 = key_perm_maskl[0][rawkey0 >> 25] - | key_perm_maskl[1][(rawkey0 >> 17) & 0x7f] - | key_perm_maskl[2][(rawkey0 >> 9) & 0x7f] - | key_perm_maskl[3][(rawkey0 >> 1) & 0x7f] - | key_perm_maskl[4][rawkey1 >> 25] - | key_perm_maskl[5][(rawkey1 >> 17) & 0x7f] - | key_perm_maskl[6][(rawkey1 >> 9) & 0x7f] - | key_perm_maskl[7][(rawkey1 >> 1) & 0x7f]; - k1 = key_perm_maskr[0][rawkey0 >> 25] - | key_perm_maskr[1][(rawkey0 >> 17) & 0x7f] - | key_perm_maskr[2][(rawkey0 >> 9) & 0x7f] - | key_perm_maskr[3][(rawkey0 >> 1) & 0x7f] - | key_perm_maskr[4][rawkey1 >> 25] - | key_perm_maskr[5][(rawkey1 >> 17) & 0x7f] - | key_perm_maskr[6][(rawkey1 >> 9) & 0x7f] - | key_perm_maskr[7][(rawkey1 >> 1) & 0x7f]; - /* - * Rotate subkeys and do compression permutation. - */ - shifts = 0; - for (round = 0; round < 16; round++) { - u_int32_t t0, t1; + setup_salt(salt); - shifts += key_shifts[round]; + trans.c = in; + rawl = ntohl(*trans.ui32++); + rawr = ntohl(*trans.ui32); - t0 = (k0 << shifts) | (k0 >> (28 - shifts)); - t1 = (k1 << shifts) | (k1 >> (28 - shifts)); + retval = do_des(rawl, rawr, &l_out, &r_out, count); - de_keysl[15 - round] = - en_keysl[round] = comp_maskl[0][(t0 >> 21) & 0x7f] - | comp_maskl[1][(t0 >> 14) & 0x7f] - | comp_maskl[2][(t0 >> 7) & 0x7f] - | comp_maskl[3][t0 & 0x7f] - | comp_maskl[4][(t1 >> 21) & 0x7f] - | comp_maskl[5][(t1 >> 14) & 0x7f] - | comp_maskl[6][(t1 >> 7) & 0x7f] - | comp_maskl[7][t1 & 0x7f]; - - de_keysr[15 - round] = - en_keysr[round] = comp_maskr[0][(t0 >> 21) & 0x7f] - | comp_maskr[1][(t0 >> 14) & 0x7f] - | comp_maskr[2][(t0 >> 7) & 0x7f] - | comp_maskr[3][t0 & 0x7f] - | comp_maskr[4][(t1 >> 21) & 0x7f] - | comp_maskr[5][(t1 >> 14) & 0x7f] - | comp_maskr[6][(t1 >> 7) & 0x7f] - | comp_maskr[7][t1 & 0x7f]; - } - return(0); + trans.c = out; + *trans.ui32++ = htonl(l_out); + *trans.ui32 = htonl(r_out); + return(retval); } +#endif + -static int __des_setkey_r(const char *key, struct crypt_data *data) +void +setkey(const char *key) { int i, j; - u_int32_t packed_keys[2]; + u_int32_t packed_keys[2]; u_char *p; p = (u_char *) packed_keys; @@ -583,40 +611,39 @@ static int __des_setkey_r(const char *key, struct crypt_data *data) if (*key++ & 1) p[i] |= bits8[j]; } - return(des_setkey_r(p, data)); + des_setkey(p); } -static int __des_encrypt_r(char *block, int flag, struct crypt_data *data) + +void +encrypt(char *block, int flag) { - u_int32_t io[2]; + u_int32_t io[2]; u_char *p; - int i, j, retval; + int i, j; des_init(); - setup_salt((int32_t)0); - p = (u_char *)block; + setup_salt(0L); + p = block; for (i = 0; i < 2; i++) { io[i] = 0L; for (j = 0; j < 32; j++) if (*p++ & 1) io[i] |= bits32[j]; } - retval = do_des(io[0], io[1], io, io + 1, flag ? -1 : 1, data); + do_des(io[0], io[1], io, io + 1, flag ? -1 : 1); for (i = 0; i < 2; i++) for (j = 0; j < 32; j++) block[(i << 5) | j] = (io[i] & bits32[j]) ? 1 : 0; - return(retval); } -extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_data *data) +char * +__des_crypt(const char *key, const char *setting) { u_int32_t count, salt, l, r0, r1, keybuf[2]; u_char *p, *q; - /* This is a nice place where we can grab a bit of reentrant space... - * I'd create a separate field in struct crypt_data, but this spot - * should do nicely for now... */ - char *output = data->key.b_data; + static char output[21]; des_init(); @@ -630,13 +657,12 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da if (*(q - 1)) key++; } - - if (des_setkey_r((char *)keybuf, data)) + if (des_setkey((char *)keybuf)) return(NULL); #if 0 if (*setting == _PASSWORD_EFMT1) { - int i; + int i; /* * "new"-style: * setting - underscore, 4 bytes of count, 4 bytes of salt @@ -652,7 +678,7 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da /* * Encrypt the key with itself. */ - if (__des_encrypt_r((char *)keybuf, (char *)keybuf, 0L, 1), data) + if (des_cipher((char *)keybuf, (char *)keybuf, 0L, 1)) return(NULL); /* * And XOR with the next 8 characters of the key. @@ -661,7 +687,7 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da while (q - (u_char *)keybuf - 8 && *key) *q++ ^= *key++ << 1; - if (__des_setkey((char *)keybuf)) + if (des_setkey((char *)keybuf)) return(NULL); } strncpy(output, setting, 9); @@ -703,7 +729,7 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da /* * Do it. */ - if (do_des(0L, 0L, &r0, &r1, (int)count, data)) + if (do_des(0L, 0L, &r0, &r1, (int)count)) return(NULL); /* * Now encode the result... @@ -726,17 +752,6 @@ extern char *__des_crypt_r(const char *key, const char *setting, struct crypt_da *p++ = ascii64[l & 0x3f]; *p = 0; - return output; -} - -#warning FIXME - setkey_r, encrypt_r, and __des_crypt_r are not really reentrant -void setkey_r(const char *key, struct crypt_data *data) -{ - __des_setkey_r(key, data); -} - -extern void encrypt_r(char *block, int edflag, struct crypt_data *data) -{ - __des_encrypt_r(block, edflag, data); + return(output); } |