diff options
author | Eric Andersen <andersen@codepoet.org> | 2000-10-20 03:48:11 +0000 |
---|---|---|
committer | Eric Andersen <andersen@codepoet.org> | 2000-10-20 03:48:11 +0000 |
commit | 82d766043c6a8dcf6283788419f110dd7ab52f80 (patch) | |
tree | 09505131008d1b4d2178065878c3e8e0d54c26a2 /libc/misc/regex/regex.c | |
parent | 5ce562fc21a7fb6385dc054c8df17009f68b05ae (diff) |
A smaller, kinder, gentler regexp implementation.
Diffstat (limited to 'libc/misc/regex/regex.c')
-rw-r--r-- | libc/misc/regex/regex.c | 5725 |
1 files changed, 5725 insertions, 0 deletions
diff --git a/libc/misc/regex/regex.c b/libc/misc/regex/regex.c new file mode 100644 index 000000000..64e754ee0 --- /dev/null +++ b/libc/misc/regex/regex.c @@ -0,0 +1,5725 @@ +/* Extended regular expression matching and search library, + version 0.12. + (Implements POSIX draft P1003.2/D11.2, except for some of the + internationalization features.) + Copyright (C) 1993-1999, 2000 Free Software Foundation, Inc. + + The GNU C Library is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public License as + published by the Free Software Foundation; either version 2 of the + License, or (at your option) any later version. + + The GNU C Library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Library General Public License for more details. + + You should have received a copy of the GNU Library General Public + License along with the GNU C Library; see the file COPYING.LIB. If not, + write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, + Boston, MA 02111-1307, USA. */ + +/* AIX requires this to be the first thing in the file. */ +#if defined _AIX && !defined REGEX_MALLOC +#pragma alloca +#endif + +#undef _GNU_SOURCE +#define _GNU_SOURCE +#define STDC_HEADERS + +#ifdef HAVE_CONFIG_H +# include <config.h> +#endif + +#ifndef PARAMS +# if defined __GNUC__ || (defined __STDC__ && __STDC__) +# define PARAMS(args) args +# else +# define PARAMS(args) () +# endif /* GCC. */ +#endif /* Not PARAMS. */ + +#if defined STDC_HEADERS && !defined emacs +# include <stddef.h> +#else +/* We need this for `regex.h', and perhaps for the Emacs include files. */ +# include <sys/types.h> +#endif + +#define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC) + +/* For platform which support the ISO C amendement 1 functionality we + support user defined character classes. */ +#if defined _LIBC || WIDE_CHAR_SUPPORT +/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */ +# include <wchar.h> +# include <wctype.h> +#endif + +#ifdef _LIBC +/* We have to keep the namespace clean. */ +# define regfree(preg) __regfree (preg) +# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef) +# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags) +# define regerror(errcode, preg, errbuf, errbuf_size) \ + __regerror(errcode, preg, errbuf, errbuf_size) +# define re_set_registers(bu, re, nu, st, en) \ + __re_set_registers (bu, re, nu, st, en) +# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \ + __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) +# define re_match(bufp, string, size, pos, regs) \ + __re_match (bufp, string, size, pos, regs) +# define re_search(bufp, string, size, startpos, range, regs) \ + __re_search (bufp, string, size, startpos, range, regs) +# define re_compile_pattern(pattern, length, bufp) \ + __re_compile_pattern (pattern, length, bufp) +# define re_set_syntax(syntax) __re_set_syntax (syntax) +# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \ + __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop) +# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp) + +#define btowc __btowc +#endif + +/* This is for other GNU distributions with internationalized messages. */ +#if HAVE_LIBINTL_H || defined _LIBC +# include <libintl.h> +#else +# define gettext(msgid) (msgid) +#endif + +#ifndef gettext_noop +/* This define is so xgettext can find the internationalizable + strings. */ +# define gettext_noop(String) String +#endif + +/* The `emacs' switch turns on certain matching commands + that make sense only in Emacs. */ +#ifdef emacs + +# include "lisp.h" +# include "buffer.h" +# include "syntax.h" + +#else /* not emacs */ + +/* If we are not linking with Emacs proper, + we can't use the relocating allocator + even if config.h says that we can. */ +# undef REL_ALLOC + +# if defined STDC_HEADERS || defined _LIBC +# include <stdlib.h> +# else +char *malloc(); +char *realloc(); +# endif + +/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. + If nothing else has been done, use the method below. */ +# ifdef INHIBIT_STRING_HEADER +# if !(defined HAVE_BZERO && defined HAVE_BCOPY) +# if !defined bzero && !defined bcopy +# undef INHIBIT_STRING_HEADER +# endif +# endif +# endif + +/* This is the normal way of making sure we have a bcopy and a bzero. + This is used in most programs--a few other programs avoid this + by defining INHIBIT_STRING_HEADER. */ +# ifndef INHIBIT_STRING_HEADER +# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC +# include <string.h> +# ifndef bzero +# ifndef _LIBC +# define bzero(s, n) (memset (s, '\0', n), (s)) +# else +# define bzero(s, n) __bzero (s, n) +# endif +# endif +# else +# include <strings.h> +# ifndef memcmp +# define memcmp(s1, s2, n) bcmp (s1, s2, n) +# endif +# ifndef memcpy +# define memcpy(d, s, n) (bcopy (s, d, n), (d)) +# endif +# endif +# endif + +/* Define the syntax stuff for \<, \>, etc. */ + +/* This must be nonzero for the wordchar and notwordchar pattern + commands in re_match_2. */ +# ifndef Sword +# define Sword 1 +# endif + +# ifdef SWITCH_ENUM_BUG +# define SWITCH_ENUM_CAST(x) ((int)(x)) +# else +# define SWITCH_ENUM_CAST(x) (x) +# endif + +#endif /* not emacs */ + +/* Get the interface, including the syntax bits. */ +#include <regex.h> + +/* isalpha etc. are used for the character classes. */ +#include <ctype.h> + +/* Jim Meyering writes: + + "... Some ctype macros are valid only for character codes that + isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when + using /bin/cc or gcc but without giving an ansi option). So, all + ctype uses should be through macros like ISPRINT... If + STDC_HEADERS is defined, then autoconf has verified that the ctype + macros don't need to be guarded with references to isascii. ... + Defining isascii to 1 should let any compiler worth its salt + eliminate the && through constant folding." + Solaris defines some of these symbols so we must undefine them first. */ + +#undef ISASCII +#if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII) +# define ISASCII(c) 1 +#else +# define ISASCII(c) isascii(c) +#endif + +#ifdef isblank +# define ISBLANK(c) (ISASCII (c) && isblank (c)) +#else +# define ISBLANK(c) ((c) == ' ' || (c) == '\t') +#endif +#ifdef isgraph +# define ISGRAPH(c) (ISASCII (c) && isgraph (c)) +#else +# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) +#endif + +#undef ISPRINT +#define ISPRINT(c) (ISASCII (c) && isprint (c)) +#define ISDIGIT(c) (ISASCII (c) && isdigit (c)) +#define ISALNUM(c) (ISASCII (c) && isalnum (c)) +#define ISALPHA(c) (ISASCII (c) && isalpha (c)) +#define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) +#define ISLOWER(c) (ISASCII (c) && islower (c)) +#define ISPUNCT(c) (ISASCII (c) && ispunct (c)) +#define ISSPACE(c) (ISASCII (c) && isspace (c)) +#define ISUPPER(c) (ISASCII (c) && isupper (c)) +#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) + +#ifdef _tolower +# define TOLOWER(c) _tolower(c) +#else +# define TOLOWER(c) tolower(c) +#endif + +#ifndef NULL +# define NULL (void *)0 +#endif + +/* We remove any previous definition of `SIGN_EXTEND_CHAR', + since ours (we hope) works properly with all combinations of + machines, compilers, `char' and `unsigned char' argument types. + (Per Bothner suggested the basic approach.) */ +#undef SIGN_EXTEND_CHAR +#if __STDC__ +# define SIGN_EXTEND_CHAR(c) ((signed char) (c)) +#else /* not __STDC__ */ +/* As in Harbison and Steele. */ +# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) +#endif + +#ifndef emacs +/* How many characters in the character set. */ +# define CHAR_SET_SIZE 256 + +# ifdef SYNTAX_TABLE + +extern char *re_syntax_table; + +# else /* not SYNTAX_TABLE */ + +static char re_syntax_table[CHAR_SET_SIZE]; + +static void init_syntax_once() +{ + register int c; + static int done = 0; + + if (done) + return; + bzero(re_syntax_table, sizeof re_syntax_table); + + for (c = 0; c < CHAR_SET_SIZE; ++c) + if (ISALNUM(c)) + re_syntax_table[c] = Sword; + + re_syntax_table['_'] = Sword; + + done = 1; +} + +# endif /* not SYNTAX_TABLE */ + +# define SYNTAX(c) re_syntax_table[((c) & 0xFF)] + +#endif /* emacs */ + +/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we + use `alloca' instead of `malloc'. This is because using malloc in + re_search* or re_match* could cause memory leaks when C-g is used in + Emacs; also, malloc is slower and causes storage fragmentation. On + the other hand, malloc is more portable, and easier to debug. + + Because we sometimes use alloca, some routines have to be macros, + not functions -- `alloca'-allocated space disappears at the end of the + function it is called in. */ + +#ifdef REGEX_MALLOC + +# define REGEX_ALLOCATE malloc +# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) +# define REGEX_FREE free + +#else /* not REGEX_MALLOC */ + +/* Emacs already defines alloca, sometimes. */ +# ifndef alloca + +/* Make alloca work the best possible way. */ +# ifdef __GNUC__ +# define alloca __builtin_alloca +# else /* not __GNUC__ */ +# if HAVE_ALLOCA_H +# include <alloca.h> +# endif /* HAVE_ALLOCA_H */ +# endif /* not __GNUC__ */ + +# endif /* not alloca */ + +# define REGEX_ALLOCATE alloca + +/* Assumes a `char *destination' variable. */ +# define REGEX_REALLOCATE(source, osize, nsize) \ + (destination = (char *) alloca (nsize), \ + memcpy (destination, source, osize)) + +/* No need to do anything to free, after alloca. */ +# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ + +#endif /* not REGEX_MALLOC */ + +/* Define how to allocate the failure stack. */ + +#if defined REL_ALLOC && defined REGEX_MALLOC + +# define REGEX_ALLOCATE_STACK(size) \ + r_alloc (&failure_stack_ptr, (size)) +# define REGEX_REALLOCATE_STACK(source, osize, nsize) \ + r_re_alloc (&failure_stack_ptr, (nsize)) +# define REGEX_FREE_STACK(ptr) \ + r_alloc_free (&failure_stack_ptr) + +#else /* not using relocating allocator */ + +# ifdef REGEX_MALLOC + +# define REGEX_ALLOCATE_STACK malloc +# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) +# define REGEX_FREE_STACK free + +# else /* not REGEX_MALLOC */ + +# define REGEX_ALLOCATE_STACK alloca + +# define REGEX_REALLOCATE_STACK(source, osize, nsize) \ + REGEX_REALLOCATE (source, osize, nsize) +/* No need to explicitly free anything. */ +# define REGEX_FREE_STACK(arg) + +# endif /* not REGEX_MALLOC */ +#endif /* not using relocating allocator */ + + +/* True if `size1' is non-NULL and PTR is pointing anywhere inside + `string1' or just past its end. This works if PTR is NULL, which is + a good thing. */ +#define FIRST_STRING_P(ptr) \ + (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) + +/* (Re)Allocate N items of type T using malloc, or fail. */ +#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) +#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) +#define RETALLOC_IF(addr, n, t) \ + if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) +#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) + +#define BYTEWIDTH 8 /* In bits. */ + +#define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) + +#undef MAX +#undef MIN +#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#define MIN(a, b) ((a) < (b) ? (a) : (b)) + +typedef char boolean; + +#define false 0 +#define true 1 + +static int re_match_2_internal PARAMS((struct re_pattern_buffer * bufp, + const char *string1, int size1, + const char *string2, int size2, + int pos, + struct re_registers * regs, + + int stop)); + +/* These are the command codes that appear in compiled regular + expressions. Some opcodes are followed by argument bytes. A + command code can specify any interpretation whatsoever for its + arguments. Zero bytes may appear in the compiled regular expression. */ + +typedef enum { + no_op = 0, + + /* Succeed right away--no more backtracking. */ + succeed, + + /* Followed by one byte giving n, then by n literal bytes. */ + exactn, + + /* Matches any (more or less) character. */ + anychar, + + /* Matches any one char belonging to specified set. First + following byte is number of bitmap bytes. Then come bytes + for a bitmap saying which chars are in. Bits in each byte + are ordered low-bit-first. A character is in the set if its + bit is 1. A character too large to have a bit in the map is + automatically not in the set. */ + charset, + + /* Same parameters as charset, but match any character that is + not one of those specified. */ + charset_not, + + /* Start remembering the text that is matched, for storing in a + register. Followed by one byte with the register number, in + the range 0 to one less than the pattern buffer's re_nsub + field. Then followed by one byte with the number of groups + inner to this one. (This last has to be part of the + start_memory only because we need it in the on_failure_jump + of re_match_2.) */ + start_memory, + + /* Stop remembering the text that is matched and store it in a + memory register. Followed by one byte with the register + number, in the range 0 to one less than `re_nsub' in the + pattern buffer, and one byte with the number of inner groups, + just like `start_memory'. (We need the number of inner + groups here because we don't have any easy way of finding the + corresponding start_memory when we're at a stop_memory.) */ + stop_memory, + + /* Match a duplicate of something remembered. Followed by one + byte containing the register number. */ + duplicate, + + /* Fail unless at beginning of line. */ + begline, + + /* Fail unless at end of line. */ + endline, + + /* Succeeds if at beginning of buffer (if emacs) or at beginning + of string to be matched (if not). */ + begbuf, + + /* Analogously, for end of buffer/string. */ + endbuf, + + /* Followed by two byte relative address to which to jump. */ + jump, + + /* Same as jump, but marks the end of an alternative. */ + jump_past_alt, + + /* Followed by two-byte relative address of place to resume at + in case of failure. */ + on_failure_jump, + + /* Like on_failure_jump, but pushes a placeholder instead of the + current string position when executed. */ + on_failure_keep_string_jump, + + /* Throw away latest failure point and then jump to following + two-byte relative address. */ + pop_failure_jump, + + /* Change to pop_failure_jump if know won't have to backtrack to + match; otherwise change to jump. This is used to jump + back to the beginning of a repeat. If what follows this jump + clearly won't match what the repeat does, such that we can be + sure that there is no use backtracking out of repetitions + already matched, then we change it to a pop_failure_jump. + Followed by two-byte address. */ + maybe_pop_jump, + + /* Jump to following two-byte address, and push a dummy failure + point. This failure point will be thrown away if an attempt + is made to use it for a failure. A `+' construct makes this + before the first repeat. Also used as an intermediary kind + of jump when compiling an alternative. */ + dummy_failure_jump, + + /* Push a dummy failure point and continue. Used at the end of + alternatives. */ + push_dummy_failure, + + /* Followed by two-byte relative address and two-byte number n. + After matching N times, jump to the address upon failure. */ + succeed_n, + + /* Followed by two-byte relative address, and two-byte number n. + Jump to the address N times, then fail. */ + jump_n, + + /* Set the following two-byte relative address to the + subsequent two-byte number. The address *includes* the two + bytes of number. */ + set_number_at, + + wordchar, /* Matches any word-constituent character. */ + notwordchar, /* Matches any char that is not a word-constituent. */ + + wordbeg, /* Succeeds if at word beginning. */ + wordend, /* Succeeds if at word end. */ + + wordbound, /* Succeeds if at a word boundary. */ + notwordbound /* Succeeds if not at a word boundary. */ +#ifdef emacs + , before_dot, /* Succeeds if before point. */ + at_dot, /* Succeeds if at point. */ + after_dot, /* Succeeds if after point. */ + + /* Matches any character whose syntax is specified. Followed by + a byte which contains a syntax code, e.g., Sword. */ + syntaxspec, + + /* Matches any character whose syntax is not that specified. */ + notsyntaxspec +#endif /* emacs */ +} re_opcode_t; + +/* Common operations on the compiled pattern. */ + +/* Store NUMBER in two contiguous bytes starting at DESTINATION. */ + +#define STORE_NUMBER(destination, number) \ + do { \ + (destination)[0] = (number) & 0377; \ + (destination)[1] = (number) >> 8; \ + } while (0) + +/* Same as STORE_NUMBER, except increment DESTINATION to + the byte after where the number is stored. Therefore, DESTINATION + must be an lvalue. */ + +#define STORE_NUMBER_AND_INCR(destination, number) \ + do { \ + STORE_NUMBER (destination, number); \ + (destination) += 2; \ + } while (0) + +/* Put into DESTINATION a number stored in two contiguous bytes starting + at SOURCE. */ + +#define EXTRACT_NUMBER(destination, source) \ + do { \ + (destination) = *(source) & 0377; \ + (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ + } while (0) + +#ifdef DEBUG +static void extract_number _RE_ARGS((int *dest, unsigned char *source)); +static void extract_number(dest, source) +int *dest; +unsigned char *source; +{ + int temp = SIGN_EXTEND_CHAR(*(source + 1)); + + *dest = *source & 0377; + *dest += temp << 8; +} + +# ifndef EXTRACT_MACROS /* To debug the macros. */ +# undef EXTRACT_NUMBER +# define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) +# endif /* not EXTRACT_MACROS */ + +#endif /* DEBUG */ + +/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. + SOURCE must be an lvalue. */ + +#define EXTRACT_NUMBER_AND_INCR(destination, source) \ + do { \ + EXTRACT_NUMBER (destination, source); \ + (source) += 2; \ + } while (0) + +#ifdef DEBUG +static void extract_number_and_incr _RE_ARGS((int *destination, + unsigned char **source)); +static void extract_number_and_incr(destination, source) +int *destination; +unsigned char **source; +{ + extract_number(destination, *source); + *source += 2; +} + +# ifndef EXTRACT_MACROS +# undef EXTRACT_NUMBER_AND_INCR +# define EXTRACT_NUMBER_AND_INCR(dest, src) \ + extract_number_and_incr (&dest, &src) +# endif /* not EXTRACT_MACROS */ + +#endif /* DEBUG */ + +/* If DEBUG is defined, Regex prints many voluminous messages about what + it is doing (if the variable `debug' is nonzero). If linked with the + main program in `iregex.c', you can enter patterns and strings + interactively. And if linked with the main program in `main.c' and + the other test files, you can run the already-written tests. */ + +#ifdef DEBUG + +/* We use standard I/O for debugging. */ +# include <stdio.h> + +/* It is useful to test things that ``must'' be true when debugging. */ +# include <assert.h> + +static int debug; + +# define DEBUG_STATEMENT(e) e +# define DEBUG_PRINT1(x) if (debug) printf (x) +# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) +# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) +# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) +# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ + if (debug) print_partial_compiled_pattern (s, e) +# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ + if (debug) print_double_string (w, s1, sz1, s2, sz2) + + +/* Print the fastmap in human-readable form. */ + +void print_fastmap(fastmap) +char *fastmap; +{ + unsigned was_a_range = 0; + unsigned i = 0; + + while (i < (1 << BYTEWIDTH)) { + if (fastmap[i++]) { + was_a_range = 0; + putchar(i - 1); + while (i < (1 << BYTEWIDTH) && fastmap[i]) { + was_a_range = 1; + i++; + } + if (was_a_range) { + printf("-"); + putchar(i - 1); + } + } + } + putchar('\n'); +} + + +/* Print a compiled pattern string in human-readable form, starting at + the START pointer into it and ending just before the pointer END. */ + +void print_partial_compiled_pattern(start, end) +unsigned char *start; +unsigned char *end; +{ + int mcnt, mcnt2; + unsigned char *p1; + unsigned char *p = start; + unsigned char *pend = end; + + if (start == NULL) { + printf("(null)\n"); + return; + } + + /* Loop over pattern commands. */ + while (p < pend) { + printf("%d:\t", p - start); + + switch ((re_opcode_t) * p++) { + case no_op: + printf("/no_op"); + break; + + case exactn: + mcnt = *p++; + printf("/exactn/%d", mcnt); + do { + putchar('/'); + putchar(*p++); + } + while (--mcnt); + break; + + case start_memory: + mcnt = *p++; + printf("/start_memory/%d/%d", mcnt, *p++); + break; + + case stop_memory: + mcnt = *p++; + printf("/stop_memory/%d/%d", mcnt, *p++); + break; + + case duplicate: + printf("/duplicate/%d", *p++); + break; + + case anychar: + printf("/anychar"); + break; + + case charset: + case charset_not: + { + register int c, last = -100; + register int in_range = 0; + + printf("/charset [%s", + (re_opcode_t) * (p - 1) == charset_not ? "^" : ""); + + assert(p + *p < pend); + + for (c = 0; c < 256; c++) + if (c / 8 < *p && (p[1 + (c / 8)] & (1 << (c % 8)))) { + /* Are we starting a range? */ + if (last + 1 == c && !in_range) { + putchar('-'); + in_range = 1; + } + /* Have we broken a range? */ + else if (last + 1 != c && in_range) { + putchar(last); + in_range = 0; + } + + if (!in_range) + putchar(c); + + last = c; + } + + if (in_range) + putchar(last); + + putchar(']'); + + p += 1 + *p; + } + break; + + case begline: + printf("/begline"); + break; + + case endline: + printf("/endline"); + break; + + case on_failure_jump: + extract_number_and_incr(&mcnt, &p); + printf("/on_failure_jump to %d", p + mcnt - start); + break; + + case on_failure_keep_string_jump: + extract_number_and_incr(&mcnt, &p); + printf("/on_failure_keep_string_jump to %d", p + mcnt - start); + break; + + case dummy_failure_jump: + extract_number_and_incr(&mcnt, &p); + printf("/dummy_failure_jump to %d", p + mcnt - start); + break; + + case push_dummy_failure: + printf("/push_dummy_failure"); + break; + + case maybe_pop_jump: + extract_number_and_incr(&mcnt, &p); + printf("/maybe_pop_jump to %d", p + mcnt - start); + break; + + case pop_failure_jump: + extract_number_and_incr(&mcnt, &p); + printf("/pop_failure_jump to %d", p + mcnt - start); + break; + + case jump_past_alt: + extract_number_and_incr(&mcnt, &p); + printf("/jump_past_alt to %d", p + mcnt - start); + break; + + case jump: + extract_number_and_incr(&mcnt, &p); + printf("/jump to %d", p + mcnt - start); + break; + + case succeed_n: + extract_number_and_incr(&mcnt, &p); + p1 = p + mcnt; + extract_number_and_incr(&mcnt2, &p); + printf("/succeed_n to %d, %d times", p1 - start, mcnt2); + break; + + case jump_n: + extract_number_and_incr(&mcnt, &p); + p1 = p + mcnt; + extract_number_and_incr(&mcnt2, &p); + printf("/jump_n to %d, %d times", p1 - start, mcnt2); + break; + + case set_number_at: + extract_number_and_incr(&mcnt, &p); + p1 = p + mcnt; + extract_number_and_incr(&mcnt2, &p); + printf("/set_number_at location %d to %d", p1 - start, mcnt2); + break; + + case wordbound: + printf("/wordbound"); + break; + + case notwordbound: + printf("/notwordbound"); + break; + + case wordbeg: + printf("/wordbeg"); + break; + + case wordend: + printf("/wordend"); + +# ifdef emacs + case before_dot: + printf("/before_dot"); + break; + + case at_dot: + printf("/at_dot"); + break; + + case after_dot: + printf("/after_dot"); + break; + + case syntaxspec: + printf("/syntaxspec"); + mcnt = *p++; + printf("/%d", mcnt); + break; + + case notsyntaxspec: + printf("/notsyntaxspec"); + mcnt = *p++; + printf("/%d", mcnt); + break; +# endif /* emacs */ + + case wordchar: + printf("/wordchar"); + break; + + case notwordchar: + printf("/notwordchar"); + break; + + case begbuf: + printf("/begbuf"); + break; + + case endbuf: + printf("/endbuf"); + break; + + default: + printf("?%d", *(p - 1)); + } + + putchar('\n'); + } + + printf("%d:\tend of pattern.\n", p - start); +} + + +void print_compiled_pattern(bufp) +struct re_pattern_buffer *bufp; +{ + unsigned char *buffer = bufp->buffer; + + print_partial_compiled_pattern(buffer, buffer + bufp->used); + printf("%ld bytes used/%ld bytes allocated.\n", + bufp->used, bufp->allocated); + + if (bufp->fastmap_accurate && bufp->fastmap) { + printf("fastmap: "); + print_fastmap(bufp->fastmap); + } + + printf("re_nsub: %d\t", bufp->re_nsub); + printf("regs_alloc: %d\t", bufp->regs_allocated); + printf("can_be_null: %d\t", bufp->can_be_null); + printf("newline_anchor: %d\n", bufp->newline_anchor); + printf("no_sub: %d\t", bufp->no_sub); + printf("not_bol: %d\t", bufp->not_bol); + printf("not_eol: %d\t", bufp->not_eol); + printf("syntax: %lx\n", bufp->syntax); + /* Perhaps we should print the translate table? */ +} + + +void print_double_string(where, string1, size1, string2, size2) +const char *where; +const char *string1; +const char *string2; +int size1; +int size2; +{ + int this_char; + + if (where == NULL) + printf("(null)"); + else { + if (FIRST_STRING_P(where)) { + for (this_char = where - string1; this_char < size1; + this_char++) + putchar(string1[this_char]); + + where = string2; + } + + for (this_char = where - string2; this_char < size2; this_char++) + putchar(string2[this_char]); + } +} + +void printchar(c) +int c; +{ + putc(c, stderr); +} + +#else /* not DEBUG */ + +# undef assert +# define assert(e) + +# define DEBUG_STATEMENT(e) +# define DEBUG_PRINT1(x) +# define DEBUG_PRINT2(x1, x2) +# define DEBUG_PRINT3(x1, x2, x3) +# define DEBUG_PRINT4(x1, x2, x3, x4) +# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) +# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) + +#endif /* not DEBUG */ + +/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can + also be assigned to arbitrarily: each pattern buffer stores its own + syntax, so it can be changed between regex compilations. */ +/* This has no initializer because initialized variables in Emacs + become read-only after dumping. */ +reg_syntax_t re_syntax_options; + + +/* Specify the precise syntax of regexps for compilation. This provides + for compatibility for various utilities which historically have + different, incompatible syntaxes. + + The argument SYNTAX is a bit mask comprised of the various bits + defined in regex.h. We return the old syntax. */ + +reg_syntax_t re_set_syntax(syntax) +reg_syntax_t syntax; +{ + reg_syntax_t ret = re_syntax_options; + + re_syntax_options = syntax; +#ifdef DEBUG + if (syntax & RE_DEBUG) + debug = 1; + else if (debug) /* was on but now is not */ + debug = 0; +#endif /* DEBUG */ + return ret; +} + +#ifdef _LIBC +weak_alias(__re_set_syntax, re_set_syntax) +#endif +/* This table gives an error message for each of the error codes listed + in regex.h. Obviously the order here has to be same as there. + POSIX doesn't require that we do anything for REG_NOERROR, + but why not be nice? */ +static const char re_error_msgid[] = { +#define REG_NOERROR_IDX 0 + gettext_noop("Success") /* REG_NOERROR */ + "\0" +#define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") + gettext_noop("No match") /* REG_NOMATCH */ + "\0" +#define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") + gettext_noop("Invalid regular expression") /* REG_BADPAT */ + "\0" +#define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") + gettext_noop("Invalid collation character") /* REG_ECOLLATE */ + "\0" +#define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") + gettext_noop("Invalid character class name") /* REG_ECTYPE */ + "\0" +#define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") + gettext_noop("Trailing backslash") /* REG_EESCAPE */ + "\0" +#define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") + gettext_noop("Invalid back reference") /* REG_ESUBREG */ + "\0" +#define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") + gettext_noop("Unmatched [ or [^") /* REG_EBRACK */ + "\0" +#define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") + gettext_noop("Unmatched ( or \\(") /* REG_EPAREN */ + "\0" +#define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") + gettext_noop("Unmatched \\{") /* REG_EBRACE */ + "\0" +#define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") + gettext_noop("Invalid content of \\{\\}") /* REG_BADBR */ + "\0" +#define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") + gettext_noop("Invalid range end") /* REG_ERANGE */ + "\0" +#define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") + gettext_noop("Memory exhausted") /* REG_ESPACE */ + "\0" +#define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") + gettext_noop("Invalid preceding regular expression") /* REG_BADRPT */ + "\0" +#define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") + gettext_noop("Premature end of regular expression") /* REG_EEND */ + "\0" +#define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") + gettext_noop("Regular expression too big") /* REG_ESIZE */ + "\0" +#define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") + gettext_noop("Unmatched ) or \\)") /* REG_ERPAREN */ +}; + +static const size_t re_error_msgid_idx[] = { + REG_NOERROR_IDX, + REG_NOMATCH_IDX, + REG_BADPAT_IDX, + REG_ECOLLATE_IDX, + REG_ECTYPE_IDX, + REG_EESCAPE_IDX, + REG_ESUBREG_IDX, + REG_EBRACK_IDX, + REG_EPAREN_IDX, + REG_EBRACE_IDX, + REG_BADBR_IDX, + REG_ERANGE_IDX, + REG_ESPACE_IDX, + REG_BADRPT_IDX, + REG_EEND_IDX, + REG_ESIZE_IDX, + REG_ERPAREN_IDX +}; + +/* Avoiding alloca during matching, to placate r_alloc. */ + +/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the + searching and matching functions should not call alloca. On some + systems, alloca is implemented in terms of malloc, and if we're + using the relocating allocator routines, then malloc could cause a + relocation, which might (if the strings being searched are in the + ralloc heap) shift the data out from underneath the regexp + routines. + + Here's another reason to avoid allocation: Emacs + processes input from X in a signal handler; processing X input may + call malloc; if input arrives while a matching routine is calling + malloc, then we're scrod. But Emacs can't just block input while + calling matching routines; then we don't notice interrupts when + they come in. So, Emacs blocks input around all regexp calls + except the matching calls, which it leaves unprotected, in the + faith that they will not malloc. */ + +/* Normally, this is fine. */ +#define MATCH_MAY_ALLOCATE + +/* When using GNU C, we are not REALLY using the C alloca, no matter + what config.h may say. So don't take precautions for it. */ +#ifdef __GNUC__ +# undef C_ALLOCA +#endif + +/* The match routines may not allocate if (1) they would do it with malloc + and (2) it's not safe for them to use malloc. + Note that if REL_ALLOC is defined, matching would not use malloc for the + failure stack, but we would still use it for the register vectors; + so REL_ALLOC should not affect this. */ +#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs +# undef MATCH_MAY_ALLOCATE +#endif + + +/* Failure stack declarations and macros; both re_compile_fastmap and + re_match_2 use a failure stack. These have to be macros because of + REGEX_ALLOCATE_STACK. */ + + +/* Number of failure points for which to initially allocate space + when matching. If this number is exceeded, we allocate more + space, so it is not a hard limit. */ +#ifndef INIT_FAILURE_ALLOC +# define INIT_FAILURE_ALLOC 5 +#endif + +/* Roughly the maximum number of failure points on the stack. Would be + exactly that if always used MAX_FAILURE_ITEMS items each time we failed. + This is a variable only so users of regex can assign to it; we never + change it ourselves. */ + +#ifdef INT_IS_16BIT + +# if defined MATCH_MAY_ALLOCATE +/* 4400 was enough to cause a crash on Alpha OSF/1, + whose default stack limit is 2mb. */ +long int re_max_failures = 4000; +# else +long int re_max_failures = 2000; +# endif + +union fail_stack_elt { + unsigned char *pointer; + long int integer; +}; + +typedef union fail_stack_elt fail_stack_elt_t; + +typedef struct { + fail_stack_elt_t *stack; + unsigned long int size; + unsigned long int avail; /* Offset of next open position. */ +} fail_stack_type; + +#else /* not INT_IS_16BIT */ + +# if defined MATCH_MAY_ALLOCATE +/* 4400 was enough to cause a crash on Alpha OSF/1, + whose default stack limit is 2mb. */ +int re_max_failures = 20000; +# else +int re_max_failures = 2000; +# endif + +union fail_stack_elt { + unsigned char *pointer; + int integer; +}; + +typedef union fail_stack_elt fail_stack_elt_t; + +typedef struct { + fail_stack_elt_t *stack; + unsigned size; + unsigned avail; /* Offset of next open position. */ +} fail_stack_type; + +#endif /* INT_IS_16BIT */ + +#define FAIL_STACK_EMPTY() (fail_stack.avail == 0) +#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) +#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) + + +/* Define macros to initialize and free the failure stack. + Do `return -2' if the alloc fails. */ + +#ifdef MATCH_MAY_ALLOCATE +# define INIT_FAIL_STACK() \ + do { \ + fail_stack.stack = (fail_stack_elt_t *) \ + REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ + \ + if (fail_stack.stack == NULL) \ + return -2; \ + \ + fail_stack.size = INIT_FAILURE_ALLOC; \ + fail_stack.avail = 0; \ + } while (0) + +# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) +#else +# define INIT_FAIL_STACK() \ + do { \ + fail_stack.avail = 0; \ + } while (0) + +# define RESET_FAIL_STACK() +#endif + + +/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. + + Return 1 if succeeds, and 0 if either ran out of memory + allocating space for it or it was already too large. + + REGEX_REALLOCATE_STACK requires `destination' be declared. */ + +#define DOUBLE_FAIL_STACK(fail_stack) \ + ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \ + ? 0 \ + : ((fail_stack).stack = (fail_stack_elt_t *) \ + REGEX_REALLOCATE_STACK ((fail_stack).stack, \ + (fail_stack).size * sizeof (fail_stack_elt_t), \ + ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ + \ + (fail_stack).stack == NULL \ + ? 0 \ + : ((fail_stack).size <<= 1, \ + 1))) + + +/* Push pointer POINTER on FAIL_STACK. + Return 1 if was able to do so and 0 if ran out of memory allocating + space to do so. */ +#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ + ((FAIL_STACK_FULL () \ + && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ + ? 0 \ + : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ + 1)) + +/* Push a pointer value onto the failure stack. + Assumes the variable `fail_stack'. Probably should only + be called from within `PUSH_FAILURE_POINT'. */ +#define PUSH_FAILURE_POINTER(item) \ + fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) + +/* This pushes an integer-valued item onto the failure stack. + Assumes the variable `fail_stack'. Probably should only + be called from within `PUSH_FAILURE_POINT'. */ +#define PUSH_FAILURE_INT(item) \ + fail_stack.stack[fail_stack.avail++].integer = (item) + +/* Push a fail_stack_elt_t value onto the failure stack. + Assumes the variable `fail_stack'. Probably should only + be called from within `PUSH_FAILURE_POINT'. */ +#define PUSH_FAILURE_ELT(item) \ + fail_stack.stack[fail_stack.avail++] = (item) + +/* These three POP... operations complement the three PUSH... operations. + All assume that `fail_stack' is nonempty. */ +#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer +#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer +#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] + +/* Used to omit pushing failure point id's when we're not debugging. */ +#ifdef DEBUG +# define DEBUG_PUSH PUSH_FAILURE_INT +# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () +#else +# define DEBUG_PUSH(item) +# define DEBUG_POP(item_addr) +#endif + + +/* Push the information about the state we will need + if we ever fail back to it. + + Requires variables fail_stack, regstart, regend, reg_info, and + num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination' + be declared. + + Does `return FAILURE_CODE' if runs out of memory. */ + +#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ + do { \ + char *destination; \ + /* Must be int, so when we don't save any registers, the arithmetic \ + of 0 + -1 isn't done as unsigned. */ \ + /* Can't be int, since there is not a shred of a guarantee that int \ + is wide enough to hold a value of something to which pointer can \ + be assigned */ \ + active_reg_t this_reg; \ + \ + DEBUG_STATEMENT (failure_id++); \ + DEBUG_STATEMENT (nfailure_points_pushed++); \ + DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ + DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ + DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ + \ + DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \ + DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ + \ + /* Ensure we have enough space allocated for what we will push. */ \ + while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ + { \ + if (!DOUBLE_FAIL_STACK (fail_stack)) \ + return failure_code; \ + \ + DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ + (fail_stack).size); \ + DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ + } \ + \ + /* Push the info, starting with the registers. */ \ + DEBUG_PRINT1 ("\n"); \ + \ + if (1) \ + for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ + this_reg++) \ + { \ + DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \ + DEBUG_STATEMENT (num_regs_pushed++); \ + \ + DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ + PUSH_FAILURE_POINTER (regstart[this_reg]); \ + \ + DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ + PUSH_FAILURE_POINTER (regend[this_reg]); \ + \ + DEBUG_PRINT2 (" info: %p\n ", \ + reg_info[this_reg].word.pointer); \ + DEBUG_PRINT2 (" match_null=%d", \ + REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ + DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ + DEBUG_PRINT2 (" matched_something=%d", \ + MATCHED_SOMETHING (reg_info[this_reg])); \ + DEBUG_PRINT2 (" ever_matched=%d", \ + EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ + DEBUG_PRINT1 ("\n"); \ + PUSH_FAILURE_ELT (reg_info[this_reg].word); \ + } \ + \ + DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\ + PUSH_FAILURE_INT (lowest_active_reg); \ + \ + DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\ + PUSH_FAILURE_INT (highest_active_reg); \ + \ + DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \ + DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ + PUSH_FAILURE_POINTER (pattern_place); \ + \ + DEBUG_PRINT2 (" Pushing string %p: `", string_place); \ + DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ + size2); \ + DEBUG_PRINT1 ("'\n"); \ + PUSH_FAILURE_POINTER (string_place); \ + \ + DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ + DEBUG_PUSH (failure_id); \ + } while (0) + +/* This is the number of items that are pushed and popped on the stack + for each register. */ +#define NUM_REG_ITEMS 3 + +/* Individual items aside from the registers. */ +#ifdef DEBUG +# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ +#else +# define NUM_NONREG_ITEMS 4 +#endif + +/* We push at most this many items on the stack. */ +/* We used to use (num_regs - 1), which is the number of registers + this regexp will save; but that was changed to 5 + to avoid stack overflow for a regexp with lots of parens. */ +#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) + +/* We actually push this many items. */ +#define NUM_FAILURE_ITEMS \ + (((0 \ + ? 0 : highest_active_reg - lowest_active_reg + 1) \ + * NUM_REG_ITEMS) \ + + NUM_NONREG_ITEMS) + +/* How many items can still be added to the stack without overflowing it. */ +#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) + + +/* Pops what PUSH_FAIL_STACK pushes. + + We restore into the parameters, all of which should be lvalues: + STR -- the saved data position. + PAT -- the saved pattern position. + LOW_REG, HIGH_REG -- the highest and lowest active registers. + REGSTART, REGEND -- arrays of string positions. + REG_INFO -- array of information about each subexpression. + + Also assumes the variables `fail_stack' and (if debugging), `bufp', + `pend', `string1', `size1', `string2', and `size2'. */ + +#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ +{ \ + DEBUG_STATEMENT (unsigned failure_id;) \ + active_reg_t this_reg; \ + const unsigned char *string_temp; \ + \ + assert (!FAIL_STACK_EMPTY ()); \ + \ + /* Remove failure points and point to how many regs pushed. */ \ + DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ + DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ + DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ + \ + assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ + \ + DEBUG_POP (&failure_id); \ + DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ + \ + /* If the saved string location is NULL, it came from an \ + on_failure_keep_string_jump opcode, and we want to throw away the \ + saved NULL, thus retaining our current position in the string. */ \ + string_temp = POP_FAILURE_POINTER (); \ + if (string_temp != NULL) \ + str = (const char *) string_temp; \ + \ + DEBUG_PRINT2 (" Popping string %p: `", str); \ + DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ + DEBUG_PRINT1 ("'\n"); \ + \ + pat = (unsigned char *) POP_FAILURE_POINTER (); \ + DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \ + DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ + \ + /* Restore register info. */ \ + high_reg = (active_reg_t) POP_FAILURE_INT (); \ + DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \ + \ + low_reg = (active_reg_t) POP_FAILURE_INT (); \ + DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \ + \ + if (1) \ + for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ + { \ + DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \ + \ + reg_info[this_reg].word = POP_FAILURE_ELT (); \ + DEBUG_PRINT2 (" info: %p\n", \ + reg_info[this_reg].word.pointer); \ + \ + regend[this_reg] = (const char *) POP_FAILURE_POINTER (); \ + DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ + \ + regstart[this_reg] = (const char *) POP_FAILURE_POINTER (); \ + DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ + } \ + else \ + { \ + for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ + { \ + reg_info[this_reg].word.integer = 0; \ + regend[this_reg] = 0; \ + regstart[this_reg] = 0; \ + } \ + highest_active_reg = high_reg; \ + } \ + \ + set_regs_matched_done = 0; \ + DEBUG_STATEMENT (nfailure_points_popped++); \ +} /* POP_FAILURE_POINT */ + + + +/* Structure for per-register (a.k.a. per-group) information. + Other register information, such as the + starting and ending positions (which are addresses), and the list of + inner groups (which is a bits list) are maintained in separate + variables. + + We are making a (strictly speaking) nonportable assumption here: that + the compiler will pack our bit fields into something that fits into + the type of `word', i.e., is something that fits into one item on the + failure stack. */ + + +/* Declarations and macros for re_match_2. */ + +typedef union { + fail_stack_elt_t word; + struct { + /* This field is one if this group can match the empty string, + zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ +#define MATCH_NULL_UNSET_VALUE 3 + unsigned match_null_string_p:2; + unsigned is_active:1; + unsigned matched_something:1; + unsigned ever_matched_something:1; + } bits; +} register_info_type; + +#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) +#define IS_ACTIVE(R) ((R).bits.is_active) +#define MATCHED_SOMETHING(R) ((R).bits.matched_something) +#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) + + +/* Call this when have matched a real character; it sets `matched' flags + for the subexpressions which we are currently inside. Also records + that those subexprs have matched. */ +#define SET_REGS_MATCHED() \ + do \ + { \ + if (!set_regs_matched_done) \ + { \ + active_reg_t r; \ + set_regs_matched_done = 1; \ + for (r = lowest_active_reg; r <= highest_active_reg; r++) \ + { \ + MATCHED_SOMETHING (reg_info[r]) \ + = EVER_MATCHED_SOMETHING (reg_info[r]) \ + = 1; \ + } \ + } \ + } \ + while (0) + +/* Registers are set to a sentinel when they haven't yet matched. */ +static char reg_unset_dummy; + +#define REG_UNSET_VALUE (®_unset_dummy) +#define REG_UNSET(e) ((e) == REG_UNSET_VALUE) + +/* Subroutine declarations and macros for regex_compile. */ + +static reg_errcode_t regex_compile +_RE_ARGS( + (const char *pattern, size_t size, reg_syntax_t syntax, + struct re_pattern_buffer * bufp)); +static void store_op1 + +_RE_ARGS((re_opcode_t op, unsigned char *loc, int arg)); +static void store_op2 +_RE_ARGS((re_opcode_t op, unsigned char *loc, int arg1, int arg2)); +static void insert_op1 +_RE_ARGS( + + (re_opcode_t op, unsigned char *loc, int arg, + unsigned char *end)); +static void insert_op2 +_RE_ARGS( + (re_opcode_t op, unsigned char *loc, int arg1, int arg2, + + unsigned char *end)); +static boolean at_begline_loc_p +_RE_ARGS((const char *pattern, const char *p, reg_syntax_t syntax)); +static boolean at_endline_loc_p +_RE_ARGS((const char *p, const char *pend, reg_syntax_t syntax)); +static reg_errcode_t compile_range +_RE_ARGS( + (const char **p_ptr, const char *pend, char *translate, + reg_syntax_t syntax, unsigned char *b)); + +/* Fetch the next character in the uncompiled pattern---translating it + if necessary. Also cast from a signed character in the constant + string passed to us by the user to an unsigned char that we can use + as an array index (in, e.g., `translate'). */ +#ifndef PATFETCH +# define PATFETCH(c) \ + do {if (p == pend) return REG_EEND; \ + c = (unsigned char) *p++; \ + if (translate) c = (unsigned char) translate[c]; \ + } while (0) +#endif + +/* Fetch the next character in the uncompiled pattern, with no + translation. */ +#define PATFETCH_RAW(c) \ + do {if (p == pend) return REG_EEND; \ + c = (unsigned char) *p++; \ + } while (0) + +/* Go backwards one character in the pattern. */ +#define PATUNFETCH p-- + + +/* If `translate' is non-null, return translate[D], else just D. We + cast the subscript to translate because some data is declared as + `char *', to avoid warnings when a string constant is passed. But + when we use a character as a subscript we must make it unsigned. */ +#ifndef TRANSLATE +# define TRANSLATE(d) \ + (translate ? (char) translate[(unsigned char) (d)] : (d)) +#endif + + +/* Macros for outputting the compiled pattern into `buffer'. */ + +/* If the buffer isn't allocated when it comes in, use this. */ +#define INIT_BUF_SIZE 32 + +/* Make sure we have at least N more bytes of space in buffer. */ +#define GET_BUFFER_SPACE(n) \ + while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \ + EXTEND_BUFFER () + +/* Make sure we have one more byte of buffer space and then add C to it. */ +#define BUF_PUSH(c) \ + do { \ + GET_BUFFER_SPACE (1); \ + *b++ = (unsigned char) (c); \ + } while (0) + + +/* Ensure we have two more bytes of buffer space and then append C1 and C2. */ +#define BUF_PUSH_2(c1, c2) \ + do { \ + GET_BUFFER_SPACE (2); \ + *b++ = (unsigned char) (c1); \ + *b++ = (unsigned char) (c2); \ + } while (0) + + +/* As with BUF_PUSH_2, except for three bytes. */ +#define BUF_PUSH_3(c1, c2, c3) \ + do { \ + GET_BUFFER_SPACE (3); \ + *b++ = (unsigned char) (c1); \ + *b++ = (unsigned char) (c2); \ + *b++ = (unsigned char) (c3); \ + } while (0) + + +/* Store a jump with opcode OP at LOC to location TO. We store a + relative address offset by the three bytes the jump itself occupies. */ +#define STORE_JUMP(op, loc, to) \ + store_op1 (op, loc, (int) ((to) - (loc) - 3)) + +/* Likewise, for a two-argument jump. */ +#define STORE_JUMP2(op, loc, to, arg) \ + store_op2 (op, loc, (int) ((to) - (loc) - 3), arg) + +/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ +#define INSERT_JUMP(op, loc, to) \ + insert_op1 (op, loc, (int) ((to) - (loc) - 3), b) + +/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ +#define INSERT_JUMP2(op, loc, to, arg) \ + insert_op2 (op, loc, (int) ((to) - (loc) - 3), arg, b) + + +/* This is not an arbitrary limit: the arguments which represent offsets + into the pattern are two bytes long. So if 2^16 bytes turns out to + be too small, many things would have to change. */ +/* Any other compiler which, like MSC, has allocation limit below 2^16 + bytes will have to use approach similar to what was done below for + MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up + reallocating to 0 bytes. Such thing is not going to work too well. + You have been warned!! */ +#if defined _MSC_VER && !defined WIN32 +/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. + The REALLOC define eliminates a flurry of conversion warnings, + but is not required. */ +# define MAX_BUF_SIZE 65500L +# define REALLOC(p,s) realloc ((p), (size_t) (s)) +#else +# define MAX_BUF_SIZE (1L << 16) +# define REALLOC(p,s) realloc ((p), (s)) +#endif + +/* Extend the buffer by twice its current size via realloc and + reset the pointers that pointed into the old block to point to the + correct places in the new one. If extending the buffer results in it + being larger than MAX_BUF_SIZE, then flag memory exhausted. */ +#define EXTEND_BUFFER() \ + do { \ + unsigned char *old_buffer = bufp->buffer; \ + if (bufp->allocated == MAX_BUF_SIZE) \ + return REG_ESIZE; \ + bufp->allocated <<= 1; \ + if (bufp->allocated > MAX_BUF_SIZE) \ + bufp->allocated = MAX_BUF_SIZE; \ + bufp->buffer = (unsigned char *) REALLOC (bufp->buffer, bufp->allocated);\ + if (bufp->buffer == NULL) \ + return REG_ESPACE; \ + /* If the buffer moved, move all the pointers into it. */ \ + if (old_buffer != bufp->buffer) \ + { \ + b = (b - old_buffer) + bufp->buffer; \ + begalt = (begalt - old_buffer) + bufp->buffer; \ + if (fixup_alt_jump) \ + fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ + if (laststart) \ + laststart = (laststart - old_buffer) + bufp->buffer; \ + if (pending_exact) \ + pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ + } \ + } while (0) + + +/* Since we have one byte reserved for the register number argument to + {start,stop}_memory, the maximum number of groups we can report + things about is what fits in that byte. */ +#define MAX_REGNUM 255 + +/* But patterns can have more than `MAX_REGNUM' registers. We just + ignore the excess. */ +typedef unsigned regnum_t; + + +/* Macros for the compile stack. */ + +/* Since offsets can go either forwards or backwards, this type needs to + be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ +/* int may be not enough when sizeof(int) == 2. */ +typedef long pattern_offset_t; + +typedef struct { + pattern_offset_t begalt_offset; + pattern_offset_t fixup_alt_jump; + pattern_offset_t inner_group_offset; + pattern_offset_t laststart_offset; + regnum_t regnum; +} compile_stack_elt_t; + + +typedef struct { + compile_stack_elt_t *stack; + unsigned size; + unsigned avail; /* Offset of next open position. */ +} compile_stack_type; + + +#define INIT_COMPILE_STACK_SIZE 32 + +#define COMPILE_STACK_EMPTY (compile_stack.avail == 0) +#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) + +/* The next available element. */ +#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) + + +/* Set the bit for character C in a list. */ +#define SET_LIST_BIT(c) \ + (b[((unsigned char) (c)) / BYTEWIDTH] \ + |= 1 << (((unsigned char) c) % BYTEWIDTH)) + + +/* Get the next unsigned number in the uncompiled pattern. */ +#define GET_UNSIGNED_NUMBER(num) \ + { if (p != pend) \ + { \ + PATFETCH (c); \ + while ('0' <= c && c <= '9') \ + { \ + if (num < 0) \ + num = 0; \ + num = num * 10 + c - '0'; \ + if (p == pend) \ + break; \ + PATFETCH (c); \ + } \ + } \ + } + +#if defined _LIBC || WIDE_CHAR_SUPPORT +/* The GNU C library provides support for user-defined character classes + and the functions from ISO C amendement 1. */ +# ifdef CHARCLASS_NAME_MAX +# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX +# else +/* This shouldn't happen but some implementation might still have this + problem. Use a reasonable default value. */ +# define CHAR_CLASS_MAX_LENGTH 256 +# endif + +# ifdef _LIBC +# define IS_CHAR_CLASS(string) __wctype (string) +# else +# define IS_CHAR_CLASS(string) wctype (string) +# endif +#else +# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ + +# define IS_CHAR_CLASS(string) \ + (STREQ (string, "alpha") || STREQ (string, "upper") \ + || STREQ (string, "lower") || STREQ (string, "digit") \ + || STREQ (string, "alnum") || STREQ (string, "xdigit") \ + || STREQ (string, "space") || STREQ (string, "print") \ + || STREQ (string, "punct") || STREQ (string, "graph") \ + || STREQ (string, "cntrl") || STREQ (string, "blank")) +#endif + +#ifndef MATCH_MAY_ALLOCATE + +/* If we cannot allocate large objects within re_match_2_internal, + we make the fail stack and register vectors global. + The fail stack, we grow to the maximum size when a regexp + is compiled. + The register vectors, we adjust in size each time we + compile a regexp, according to the number of registers it needs. */ + +static fail_stack_type fail_stack; + +/* Size with which the following vectors are currently allocated. + That is so we can make them bigger as needed, + but never make them smaller. */ +static int regs_allocated_size; + +static const char **regstart, **regend; +static const char **old_regstart, **old_regend; +static const char **best_regstart, **best_regend; +static register_info_type *reg_info; +static const char **reg_dummy; +static register_info_type *reg_info_dummy; + +/* Make the register vectors big enough for NUM_REGS registers, + but don't make them smaller. */ + +static regex_grow_registers(num_regs) +int num_regs; +{ + if (num_regs > regs_allocated_size) { + RETALLOC_IF(regstart, num_regs, const char *); + RETALLOC_IF(regend, num_regs, const char *); + RETALLOC_IF(old_regstart, num_regs, const char *); + RETALLOC_IF(old_regend, num_regs, const char *); + RETALLOC_IF(best_regstart, num_regs, const char *); + RETALLOC_IF(best_regend, num_regs, const char *); + + RETALLOC_IF(reg_info, num_regs, register_info_type); + RETALLOC_IF(reg_dummy, num_regs, const char *); + + RETALLOC_IF(reg_info_dummy, num_regs, register_info_type); + + regs_allocated_size = num_regs; + } +} + +#endif /* not MATCH_MAY_ALLOCATE */ + +static boolean group_in_compile_stack _RE_ARGS((compile_stack_type + compile_stack, + + regnum_t regnum)); + +/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. + Returns one of error codes defined in `regex.h', or zero for success. + + Assumes the `allocated' (and perhaps `buffer') and `translate' + fields are set in BUFP on entry. + + If it succeeds, results are put in BUFP (if it returns an error, the + contents of BUFP are undefined): + `buffer' is the compiled pattern; + `syntax' is set to SYNTAX; + `used' is set to the length of the compiled pattern; + `fastmap_accurate' is zero; + `re_nsub' is the number of subexpressions in PATTERN; + `not_bol' and `not_eol' are zero; + + The `fastmap' and `newline_anchor' fields are neither + examined nor set. */ + +/* Return, freeing storage we allocated. */ +#define FREE_STACK_RETURN(value) \ + return (free (compile_stack.stack), value) + +static reg_errcode_t regex_compile(pattern, size, syntax, bufp) +const char *pattern; +size_t size; +reg_syntax_t syntax; +struct re_pattern_buffer *bufp; +{ + /* We fetch characters from PATTERN here. Even though PATTERN is + `char *' (i.e., signed), we declare these variables as unsigned, so + they can be reliably used as array indices. */ + register unsigned char c, c1; + + /* A random temporary spot in PATTERN. */ + const char *p1; + + /* Points to the end of the buffer, where we should append. */ + register unsigned char *b; + + /* Keeps track of unclosed groups. */ + compile_stack_type compile_stack; + + /* Points to the current (ending) position in the pattern. */ + const char *p = pattern; + const char *pend = pattern + size; + + /* How to translate the characters in the pattern. */ + RE_TRANSLATE_TYPE translate = bufp->translate; + + /* Address of the count-byte of the most recently inserted `exactn' + command. This makes it possible to tell if a new exact-match + character can be added to that command or if the character requires + a new `exactn' command. */ + unsigned char *pending_exact = 0; + + /* Address of start of the most recently finished expression. + This tells, e.g., postfix * where to find the start of its + operand. Reset at the beginning of groups and alternatives. */ + unsigned char *laststart = 0; + + /* Address of beginning of regexp, or inside of last group. */ + unsigned char *begalt; + + /* Place in the uncompiled pattern (i.e., the {) to + which to go back if the interval is invalid. */ + const char *beg_interval; + + /* Address of the place where a forward jump should go to the end of + the containing expression. Each alternative of an `or' -- except the + last -- ends with a forward jump of this sort. */ + unsigned char *fixup_alt_jump = 0; + + /* Counts open-groups as they are encountered. Remembered for the + matching close-group on the compile stack, so the same register + number is put in the stop_memory as the start_memory. */ + regnum_t regnum = 0; + +#ifdef DEBUG + DEBUG_PRINT1("\nCompiling pattern: "); + if (debug) { + unsigned debug_count; + + for (debug_count = 0; debug_count < size; debug_count++) + putchar(pattern[debug_count]); + putchar('\n'); + } +#endif /* DEBUG */ + + /* Initialize the compile stack. */ + compile_stack.stack = + TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); + if (compile_stack.stack == NULL) + return REG_ESPACE; + + compile_stack.size = INIT_COMPILE_STACK_SIZE; + compile_stack.avail = 0; + + /* Initialize the pattern buffer. */ + bufp->syntax = syntax; + bufp->fastmap_accurate = 0; + bufp->not_bol = bufp->not_eol = 0; + + /* Set `used' to zero, so that if we return an error, the pattern + printer (for debugging) will think there's no pattern. We reset it + at the end. */ + bufp->used = 0; + + /* Always count groups, whether or not bufp->no_sub is set. */ + bufp->re_nsub = 0; + +#if !defined emacs && !defined SYNTAX_TABLE + /* Initialize the syntax table. */ + init_syntax_once(); +#endif + + if (bufp->allocated == 0) { + if (bufp->buffer) { /* If zero allocated, but buffer is non-null, try to realloc + enough space. This loses if buffer's address is bogus, but + that is the user's responsibility. */ + RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char); + } else { /* Caller did not allocate a buffer. Do it for them. */ + bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char); + } + if (!bufp->buffer) + FREE_STACK_RETURN(REG_ESPACE); + + bufp->allocated = INIT_BUF_SIZE; + } + + begalt = b = bufp->buffer; + + /* Loop through the uncompiled pattern until we're at the end. */ + while (p != pend) { + PATFETCH(c); + + switch (c) { + case '^': + { + if ( /* If at start of pattern, it's an operator. */ + p == pattern + 1 + /* If context independent, it's an operator. */ + || syntax & RE_CONTEXT_INDEP_ANCHORS + /* Otherwise, depends on what's come before. */ + || at_begline_loc_p(pattern, p, syntax)) + BUF_PUSH(begline); + else + goto normal_char; + } + break; + + + case '$': + { + if ( /* If at end of pattern, it's an operator. */ + p == pend + /* If context independent, it's an operator. */ + || syntax & RE_CONTEXT_INDEP_ANCHORS + /* Otherwise, depends on what's next. */ + || at_endline_loc_p(p, pend, syntax)) + BUF_PUSH(endline); + else + goto normal_char; + } + break; + + + case '+': + case '?': + if ((syntax & RE_BK_PLUS_QM) + || (syntax & RE_LIMITED_OPS)) + goto normal_char; + handle_plus: + case '*': + /* If there is no previous pattern... */ + if (!laststart) { + if (syntax & RE_CONTEXT_INVALID_OPS) + FREE_STACK_RETURN(REG_BADRPT); + else if (!(syntax & RE_CONTEXT_INDEP_OPS)) + goto normal_char; + } + + { + /* Are we optimizing this jump? */ + boolean keep_string_p = false; + + /* 1 means zero (many) matches is allowed. */ + char zero_times_ok = 0, many_times_ok = 0; + + /* If there is a sequence of repetition chars, collapse it + down to just one (the right one). We can't combine + interval operators with these because of, e.g., `a{2}*', + which should only match an even number of `a's. */ + + for (;;) { + zero_times_ok |= c != '+'; + many_times_ok |= c != '?'; + + if (p == pend) + break; + + PATFETCH(c); + + if (c == '*' + || (!(syntax & RE_BK_PLUS_QM) + && (c == '+' || c == '?'))); + + else if (syntax & RE_BK_PLUS_QM && c == '\\') { + if (p == pend) + FREE_STACK_RETURN(REG_EESCAPE); + + PATFETCH(c1); + if (!(c1 == '+' || c1 == '?')) { + PATUNFETCH; + PATUNFETCH; + break; + } + + c = c1; + } else { + PATUNFETCH; + break; + } + + /* If we get here, we found another repeat character. */ + } + + /* Star, etc. applied to an empty pattern is equivalent + to an empty pattern. */ + if (!laststart) + break; + + /* Now we know whether or not zero matches is allowed + and also whether or not two or more matches is allowed. */ + if (many_times_ok) { /* More than one repetition is allowed, so put in at the + end a backward relative jump from `b' to before the next + jump we're going to put in below (which jumps from + laststart to after this jump). + + But if we are at the `*' in the exact sequence `.*\n', + insert an unconditional jump backwards to the ., + instead of the beginning of the loop. This way we only + push a failure point once, instead of every time + through the loop. */ + assert(p - 1 > pattern); + + /* Allocate the space for the jump. */ + GET_BUFFER_SPACE(3); + + /* We know we are not at the first character of the pattern, + because laststart was nonzero. And we've already + incremented `p', by the way, to be the character after + the `*'. Do we have to do something analogous here + for null bytes, because of RE_DOT_NOT_NULL? */ + if (TRANSLATE(*(p - 2)) == TRANSLATE('.') + && zero_times_ok + && p < pend && TRANSLATE(*p) == TRANSLATE('\n') + && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */ + STORE_JUMP(jump, b, laststart); + keep_string_p = true; + } else + /* Anything else. */ + STORE_JUMP(maybe_pop_jump, b, laststart - 3); + + /* We've added more stuff to the buffer. */ + b += 3; + } + + /* On failure, jump from laststart to b + 3, which will be the + end of the buffer after this jump is inserted. */ + GET_BUFFER_SPACE(3); + INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump + : on_failure_jump, laststart, b + 3); + pending_exact = 0; + b += 3; + + if (!zero_times_ok) { + /* At least one repetition is required, so insert a + `dummy_failure_jump' before the initial + `on_failure_jump' instruction of the loop. This + effects a skip over that instruction the first time + we hit that loop. */ + GET_BUFFER_SPACE(3); + INSERT_JUMP(dummy_failure_jump, laststart, + laststart + 6); + b += 3; + } + } + break; + + + case '.': + laststart = b; + BUF_PUSH(anychar); + break; + + + case '[': + { + boolean had_char_class = false; + + if (p == pend) + FREE_STACK_RETURN(REG_EBRACK); + + /* Ensure that we have enough space to push a charset: the + opcode, the length count, and the bitset; 34 bytes in all. */ + GET_BUFFER_SPACE(34); + + laststart = b; + + /* We test `*p == '^' twice, instead of using an if + statement, so we only need one BUF_PUSH. */ + BUF_PUSH(*p == '^' ? charset_not : charset); + if (*p == '^') + p++; + + /* Remember the first position in the bracket expression. */ + p1 = p; + + /* Push the number of bytes in the bitmap. */ + BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH); + + /* Clear the whole map. */ + bzero(b, (1 << BYTEWIDTH) / BYTEWIDTH); + + /* charset_not matches newline according to a syntax bit. */ + if ((re_opcode_t) b[-2] == charset_not + && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) SET_LIST_BIT('\n'); + + /* Read in characters and ranges, setting map bits. */ + for (;;) { + if (p == pend) + FREE_STACK_RETURN(REG_EBRACK); + + PATFETCH(c); + + /* \ might escape characters inside [...] and [^...]. */ + if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') { + if (p == pend) + FREE_STACK_RETURN(REG_EESCAPE); + + PATFETCH(c1); + SET_LIST_BIT(c1); + continue; + } + + /* Could be the end of the bracket expression. If it's + not (i.e., when the bracket expression is `[]' so + far), the ']' character bit gets set way below. */ + if (c == ']' && p != p1 + 1) + break; + + /* Look ahead to see if it's a range when the last thing + was a character class. */ + if (had_char_class && c == '-' && *p != ']') + FREE_STACK_RETURN(REG_ERANGE); + + /* Look ahead to see if it's a range when the last thing + was a character: if this is a hyphen not at the + beginning or the end of a list, then it's the range + operator. */ + if (c == '-' && !(p - 2 >= pattern && p[-2] == '[') + && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') + && *p != ']') { + reg_errcode_t ret + = compile_range(&p, pend, translate, syntax, b); + + if (ret != REG_NOERROR) + FREE_STACK_RETURN(ret); + } + + else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */ + reg_errcode_t ret; + + /* Move past the `-'. */ + PATFETCH(c1); + + ret = compile_range(&p, pend, translate, syntax, b); + if (ret != REG_NOERROR) + FREE_STACK_RETURN(ret); + } + + /* See if we're at the beginning of a possible character + class. */ + + else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */ + char str[CHAR_CLASS_MAX_LENGTH + 1]; + + PATFETCH(c); + c1 = 0; + + /* If pattern is `[[:'. */ + if (p == pend) + FREE_STACK_RETURN(REG_EBRACK); + + for (;;) { + PATFETCH(c); + if ((c == ':' && *p == ']') || p == pend) + break; + if (c1 < CHAR_CLASS_MAX_LENGTH) + str[c1++] = c; + else + /* This is in any case an invalid class name. */ + str[0] = '\0'; + } + str[c1] = '\0'; + + /* If isn't a word bracketed by `[:' and `:]': + undo the ending character, the letters, and leave + the leading `:' and `[' (but set bits for them). */ + if (c == ':' && *p == ']') { +#if defined _LIBC || WIDE_CHAR_SUPPORT + boolean is_lower = STREQ(str, "lower"); + boolean is_upper = STREQ(str, "upper"); + wctype_t wt; + int ch; + + wt = IS_CHAR_CLASS(str); + if (wt == 0) + FREE_STACK_RETURN(REG_ECTYPE); + + /* Throw away the ] at the end of the character + class. */ + PATFETCH(c); + + if (p == pend) + FREE_STACK_RETURN(REG_EBRACK); + + for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) { +# ifdef _LIBC + if (__iswctype(__btowc(ch), wt)) + SET_LIST_BIT(ch); +# else + if (iswctype(btowc(ch), wt)) + SET_LIST_BIT(ch); +# endif + + if (translate && (is_upper || is_lower) + && (ISUPPER(ch) || ISLOWER(ch))) + SET_LIST_BIT(ch); + } + + had_char_class = true; +#else + int ch; + boolean is_alnum = STREQ(str, "alnum"); + boolean is_alpha = STREQ(str, "alpha"); + boolean is_blank = STREQ(str, "blank"); + boolean is_cntrl = STREQ(str, "cntrl"); + boolean is_digit = STREQ(str, "digit"); + boolean is_graph = STREQ(str, "graph"); + boolean is_lower = STREQ(str, "lower"); + boolean is_print = STREQ(str, "print"); + boolean is_punct = STREQ(str, "punct"); + boolean is_space = STREQ(str, "space"); + boolean is_upper = STREQ(str, "upper"); + boolean is_xdigit = STREQ(str, "xdigit"); + + if (!IS_CHAR_CLASS(str)) + FREE_STACK_RETURN(REG_ECTYPE); + + /* Throw away the ] at the end of the character + class. */ + PATFETCH(c); + + if (p == pend) + FREE_STACK_RETURN(REG_EBRACK); + + for (ch = 0; ch < 1 << BYTEWIDTH; ch++) { + /* This was split into 3 if's to + avoid an arbitrary limit in some compiler. */ + if ((is_alnum && ISALNUM(ch)) + || (is_alpha && ISALPHA(ch)) + || (is_blank && ISBLANK(ch)) + || (is_cntrl && ISCNTRL(ch))) + SET_LIST_BIT(ch); + if ((is_digit && ISDIGIT(ch)) + || (is_graph && ISGRAPH(ch)) + || (is_lower && ISLOWER(ch)) + || (is_print && ISPRINT(ch))) + SET_LIST_BIT(ch); + if ((is_punct && ISPUNCT(ch)) + || (is_space && ISSPACE(ch)) + || (is_upper && ISUPPER(ch)) + || (is_xdigit && ISXDIGIT(ch))) + SET_LIST_BIT(ch); + if (translate && (is_upper || is_lower) + && (ISUPPER(ch) || ISLOWER(ch))) + SET_LIST_BIT(ch); + } + had_char_class = true; +#endif /* libc || wctype.h */ + } else { + c1++; + while (c1--) + PATUNFETCH; + SET_LIST_BIT('['); + SET_LIST_BIT(':'); + had_char_class = false; + } + } else { + had_char_class = false; + SET_LIST_BIT(c); + } + } + + /* Discard any (non)matching list bytes that are all 0 at the + end of the map. Decrease the map-length byte too. */ + while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) + b[-1]--; + b += b[-1]; + } + break; + + + case '(': + if (syntax & RE_NO_BK_PARENS) + goto handle_open; + else + goto normal_char; + + + case ')': + if (syntax & RE_NO_BK_PARENS) + goto handle_close; + else + goto normal_char; + + + case '\n': + if (syntax & RE_NEWLINE_ALT) + goto handle_alt; + else + goto normal_char; + + + case '|': + if (syntax & RE_NO_BK_VBAR) + goto handle_alt; + else + goto normal_char; + + + case '{': + if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) + goto handle_interval; + else + goto normal_char; + + + case '\\': + if (p == pend) + FREE_STACK_RETURN(REG_EESCAPE); + + /* Do not translate the character after the \, so that we can + distinguish, e.g., \B from \b, even if we normally would + translate, e.g., B to b. */ + PATFETCH_RAW(c); + + switch (c) { + case '(': + if (syntax & RE_NO_BK_PARENS) + goto normal_backslash; + + handle_open: + bufp->re_nsub++; + regnum++; + + if (COMPILE_STACK_FULL) { + RETALLOC(compile_stack.stack, compile_stack.size << 1, + compile_stack_elt_t); + if (compile_stack.stack == NULL) + return REG_ESPACE; + + compile_stack.size <<= 1; + } + + /* These are the values to restore when we hit end of this + group. They are all relative offsets, so that if the + whole pattern moves because of realloc, they will still + be valid. */ + COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; + COMPILE_STACK_TOP.fixup_alt_jump + = + fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; + COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; + COMPILE_STACK_TOP.regnum = regnum; + + /* We will eventually replace the 0 with the number of + groups inner to this one. But do not push a + start_memory for groups beyond the last one we can + represent in the compiled pattern. */ + if (regnum <= MAX_REGNUM) { + COMPILE_STACK_TOP.inner_group_offset = + b - bufp->buffer + 2; + BUF_PUSH_3(start_memory, regnum, 0); + } + + compile_stack.avail++; + + fixup_alt_jump = 0; + laststart = 0; + begalt = b; + /* If we've reached MAX_REGNUM groups, then this open + won't actually generate any code, so we'll have to + clear pending_exact explicitly. */ + pending_exact = 0; + break; + + + case ')': + if (syntax & RE_NO_BK_PARENS) + goto normal_backslash; + + if (COMPILE_STACK_EMPTY) { + if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) + goto normal_backslash; + else + FREE_STACK_RETURN(REG_ERPAREN); + } + + handle_close: + if (fixup_alt_jump) { /* Push a dummy failure point at the end of the + alternative for a possible future + `pop_failure_jump' to pop. See comments at + `push_dummy_failure' in `re_match_2'. */ + BUF_PUSH(push_dummy_failure); + + /* We allocated space for this jump when we assigned + to `fixup_alt_jump', in the `handle_alt' case below. */ + STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1); + } + + /* See similar code for backslashed left paren above. */ + if (COMPILE_STACK_EMPTY) { + if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) + goto normal_char; + else + FREE_STACK_RETURN(REG_ERPAREN); + } + + /* Since we just checked for an empty stack above, this + ``can't happen''. */ + assert(compile_stack.avail != 0); + { + /* We don't just want to restore into `regnum', because + later groups should continue to be numbered higher, + as in `(ab)c(de)' -- the second group is #2. */ + regnum_t this_group_regnum; + + compile_stack.avail--; + begalt = + bufp->buffer + COMPILE_STACK_TOP.begalt_offset; + fixup_alt_jump = + COMPILE_STACK_TOP.fixup_alt_jump ? bufp->buffer + + COMPILE_STACK_TOP.fixup_alt_jump - 1 : 0; + laststart = + bufp->buffer + COMPILE_STACK_TOP.laststart_offset; + this_group_regnum = COMPILE_STACK_TOP.regnum; + /* If we've reached MAX_REGNUM groups, then this open + won't actually generate any code, so we'll have to + clear pending_exact explicitly. */ + pending_exact = 0; + + /* We're at the end of the group, so now we know how many + groups were inside this one. */ + if (this_group_regnum <= MAX_REGNUM) { + unsigned char *inner_group_loc + + = + bufp->buffer + + COMPILE_STACK_TOP.inner_group_offset; + + *inner_group_loc = regnum - this_group_regnum; + BUF_PUSH_3(stop_memory, this_group_regnum, + regnum - this_group_regnum); + } + } + break; + + + case '|': /* `\|'. */ + if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) + goto normal_backslash; + handle_alt: + if (syntax & RE_LIMITED_OPS) + goto normal_char; + + /* Insert before the previous alternative a jump which + jumps to this alternative if the former fails. */ + GET_BUFFER_SPACE(3); + INSERT_JUMP(on_failure_jump, begalt, b + 6); + pending_exact = 0; + b += 3; + + /* The alternative before this one has a jump after it + which gets executed if it gets matched. Adjust that + jump so it will jump to this alternative's analogous + jump (put in below, which in turn will jump to the next + (if any) alternative's such jump, etc.). The last such + jump jumps to the correct final destination. A picture: + _____ _____ + | | | | + | v | v + a | b | c + + If we are at `b', then fixup_alt_jump right now points to a + three-byte space after `a'. We'll put in the jump, set + fixup_alt_jump to right after `b', and leave behind three + bytes which we'll fill in when we get to after `c'. */ + + if (fixup_alt_jump) + STORE_JUMP(jump_past_alt, fixup_alt_jump, b); + + /* Mark and leave space for a jump after this alternative, + to be filled in later either by next alternative or + when know we're at the end of a series of alternatives. */ + fixup_alt_jump = b; + GET_BUFFER_SPACE(3); + b += 3; + + laststart = 0; + begalt = b; + break; + + + case '{': + /* If \{ is a literal. */ + if (!(syntax & RE_INTERVALS) + /* If we're at `\{' and it's not the open-interval + operator. */ + || ((syntax & RE_INTERVALS) + && (syntax & RE_NO_BK_BRACES)) || (p - 2 == pattern + && p == pend)) + goto normal_backslash; + + handle_interval: + { + /* If got here, then the syntax allows intervals. */ + + /* At least (most) this many matches must be made. */ + int lower_bound = -1, upper_bound = -1; + + beg_interval = p - 1; + + if (p == pend) { + if (!(syntax & RE_INTERVALS) + && (syntax & RE_NO_BK_BRACES)) goto + unfetch_interval; + else + FREE_STACK_RETURN(REG_EBRACE); + } + + GET_UNSIGNED_NUMBER(lower_bound); + + if (c == ',') { + GET_UNSIGNED_NUMBER(upper_bound); + if ((!(syntax & RE_NO_BK_BRACES) && c != '\\') + || ((syntax & RE_NO_BK_BRACES) && c != '}')) + FREE_STACK_RETURN(REG_BADBR); + + if (upper_bound < 0) + upper_bound = RE_DUP_MAX; + } else + /* Interval such as `{1}' => match exactly once. */ + upper_bound = lower_bound; + + if (lower_bound < 0 || upper_bound > RE_DUP_MAX + || lower_bound > upper_bound) { + if (!(syntax & RE_INTERVALS) + && (syntax & RE_NO_BK_BRACES)) goto + unfetch_interval; + else + FREE_STACK_RETURN(REG_BADBR); + } + + if (!(syntax & RE_NO_BK_BRACES)) { + if (c != '\\') + FREE_STACK_RETURN(REG_EBRACE); + + PATFETCH(c); + } + + if (c != '}') { + if (!(syntax & RE_INTERVALS) + && (syntax & RE_NO_BK_BRACES)) goto + unfetch_interval; + else + FREE_STACK_RETURN(REG_BADBR); + } + + /* We just parsed a valid interval. */ + + /* If it's invalid to have no preceding re. */ + if (!laststart) { + if (syntax & RE_CONTEXT_INVALID_OPS) + FREE_STACK_RETURN(REG_BADRPT); + else if (syntax & RE_CONTEXT_INDEP_OPS) + laststart = b; + else + goto unfetch_interval; + } + + /* If the upper bound is zero, don't want to succeed at + all; jump from `laststart' to `b + 3', which will be + the end of the buffer after we insert the jump. */ + if (upper_bound == 0) { + GET_BUFFER_SPACE(3); + INSERT_JUMP(jump, laststart, b + 3); + b += 3; + } + + /* Otherwise, we have a nontrivial interval. When + we're all done, the pattern will look like: + set_number_at <jump count> <upper bound> + set_number_at <succeed_n count> <lower bound> + succeed_n <after jump addr> <succeed_n count> + <body of loop> + jump_n <succeed_n addr> <jump count> + (The upper bound and `jump_n' are omitted if + `upper_bound' is 1, though.) */ + else { /* If the upper bound is > 1, we need to insert + more at the end of the loop. */ + unsigned nbytes = 10 + (upper_bound > 1) * 10; + + GET_BUFFER_SPACE(nbytes); + + /* Initialize lower bound of the `succeed_n', even + though it will be set during matching by its + attendant `set_number_at' (inserted next), + because `re_compile_fastmap' needs to know. + Jump to the `jump_n' we might insert below. */ + INSERT_JUMP2(succeed_n, laststart, + b + 5 + (upper_bound > 1) * 5, + lower_bound); + b += 5; + + /* Code to initialize the lower bound. Insert + before the `succeed_n'. The `5' is the last two + bytes of this `set_number_at', plus 3 bytes of + the following `succeed_n'. */ + insert_op2(set_number_at, laststart, 5, + lower_bound, b); + b += 5; + + if (upper_bound > 1) { /* More than one repetition is allowed, so + append a backward jump to the `succeed_n' + that starts this interval. + + When we've reached this during matching, + we'll have matched the interval once, so + jump back only `upper_bound - 1' times. */ + STORE_JUMP2(jump_n, b, laststart + 5, + upper_bound - 1); + b += 5; + + /* The location we want to set is the second + parameter of the `jump_n'; that is `b-2' as + an absolute address. `laststart' will be + the `set_number_at' we're about to insert; + `laststart+3' the number to set, the source + for the relative address. But we are + inserting into the middle of the pattern -- + so everything is getting moved up by 5. + Conclusion: (b - 2) - (laststart + 3) + 5, + i.e., b - laststart. + + We insert this at the beginning of the loop + so that if we fail during matching, we'll + reinitialize the bounds. */ + insert_op2(set_number_at, laststart, + b - laststart, upper_bound - 1, b); + b += 5; + } + } + pending_exact = 0; + beg_interval = NULL; + } + break; + + unfetch_interval: + /* If an invalid interval, match the characters as literals. */ + assert(beg_interval); + p = beg_interval; + beg_interval = NULL; + + /* normal_char and normal_backslash need `c'. */ + PATFETCH(c); + + if (!(syntax & RE_NO_BK_BRACES)) { + if (p > pattern && p[-1] == '\\') + goto normal_backslash; + } + goto normal_char; + +#ifdef emacs + /* There is no way to specify the before_dot and after_dot + operators. rms says this is ok. --karl */ + case '=': + BUF_PUSH(at_dot); + break; + + case 's': + laststart = b; + PATFETCH(c); + BUF_PUSH_2(syntaxspec, syntax_spec_code[c]); + break; + + case 'S': + laststart = b; + PATFETCH(c); + BUF_PUSH_2(notsyntaxspec, syntax_spec_code[c]); + break; +#endif /* emacs */ + + + case 'w': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + laststart = b; + BUF_PUSH(wordchar); + break; + + + case 'W': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + laststart = b; + BUF_PUSH(notwordchar); + break; + + + case '<': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + BUF_PUSH(wordbeg); + break; + + case '>': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + BUF_PUSH(wordend); + break; + + case 'b': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + BUF_PUSH(wordbound); + break; + + case 'B': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + BUF_PUSH(notwordbound); + break; + + case '`': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + BUF_PUSH(begbuf); + break; + + case '\'': + if (syntax & RE_NO_GNU_OPS) + goto normal_char; + BUF_PUSH(endbuf); + break; + + case '1': + case '2': + case '3': + case '4': + case '5': + case '6': + case '7': + case '8': + case '9': + if (syntax & RE_NO_BK_REFS) + goto normal_char; + + c1 = c - '0'; + + if (c1 > regnum) + FREE_STACK_RETURN(REG_ESUBREG); + + /* Can't back reference to a subexpression if inside of it. */ + if (group_in_compile_stack(compile_stack, (regnum_t) c1)) + goto normal_char; + + laststart = b; + BUF_PUSH_2(duplicate, c1); + break; + + + case '+': + case '?': + if (syntax & RE_BK_PLUS_QM) + goto handle_plus; + else + goto normal_backslash; + + default: + normal_backslash: + /* You might think it would be useful for \ to mean + not to translate; but if we don't translate it + it will never match anything. */ + c = TRANSLATE(c); + goto normal_char; + } + break; + + + default: + /* Expects the character in `c'. */ + normal_char: + /* If no exactn currently being built. */ + if (!pending_exact + /* If last exactn not at current position. */ + || pending_exact + *pending_exact + 1 != b + /* We have only one byte following the exactn for the count. */ + || *pending_exact == (1 << BYTEWIDTH) - 1 + /* If followed by a repetition operator. */ + || *p == '*' || *p == '^' || ((syntax & RE_BK_PLUS_QM) + ? *p == '\\' && (p[1] == '+' + || p[1] == + '?') : (*p + == + '+' + || + *p + == + '?')) + || ((syntax & RE_INTERVALS) + && ((syntax & RE_NO_BK_BRACES) + ? *p == '{' : (p[0] == '\\' && p[1] == '{')))) { + /* Start building a new exactn. */ + + laststart = b; + + BUF_PUSH_2(exactn, 0); + pending_exact = b - 1; + } + + BUF_PUSH(c); + (*pending_exact)++; + break; + } /* switch (c) */ + } /* while p != pend */ + + + /* Through the pattern now. */ + + if (fixup_alt_jump) + STORE_JUMP(jump_past_alt, fixup_alt_jump, b); + + if (!COMPILE_STACK_EMPTY) + FREE_STACK_RETURN(REG_EPAREN); + + /* If we don't want backtracking, force success + the first time we reach the end of the compiled pattern. */ + if (syntax & RE_NO_POSIX_BACKTRACKING) + BUF_PUSH(succeed); + + free(compile_stack.stack); + + /* We have succeeded; set the length of the buffer. */ + bufp->used = b - bufp->buffer; + +#ifdef DEBUG + if (debug) { + DEBUG_PRINT1("\nCompiled pattern: \n"); + print_compiled_pattern(bufp); + } +#endif /* DEBUG */ + +#ifndef MATCH_MAY_ALLOCATE + /* Initialize the failure stack to the largest possible stack. This + isn't necessary unless we're trying to avoid calling alloca in + the search and match routines. */ + { + int num_regs = bufp->re_nsub + 1; + + /* Since DOUBLE_FAIL_STACK refuses to double only if the current size + is strictly greater than re_max_failures, the largest possible stack + is 2 * re_max_failures failure points. */ + if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) { + fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); + +# ifdef emacs + if (!fail_stack.stack) + fail_stack.stack + = (fail_stack_elt_t *) xmalloc(fail_stack.size + * + sizeof + (fail_stack_elt_t)); + else + fail_stack.stack = + (fail_stack_elt_t *) xrealloc(fail_stack.stack, + (fail_stack.size * + sizeof + (fail_stack_elt_t))); +# else /* not emacs */ + if (!fail_stack.stack) + fail_stack.stack + = (fail_stack_elt_t *) malloc(fail_stack.size + * + sizeof + (fail_stack_elt_t)); + else + fail_stack.stack = + (fail_stack_elt_t *) realloc(fail_stack.stack, + (fail_stack.size * + sizeof + (fail_stack_elt_t))); +# endif /* not emacs */ + } + + regex_grow_registers(num_regs); + } +#endif /* not MATCH_MAY_ALLOCATE */ + + return REG_NOERROR; +} /* regex_compile */ + +/* Subroutines for `regex_compile'. */ + +/* Store OP at LOC followed by two-byte integer parameter ARG. */ + +static void store_op1(op, loc, arg) +re_opcode_t op; +unsigned char *loc; +int arg; +{ + *loc = (unsigned char) op; + STORE_NUMBER(loc + 1, arg); +} + + +/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ + +static void store_op2(op, loc, arg1, arg2) +re_opcode_t op; +unsigned char *loc; +int arg1, arg2; +{ + *loc = (unsigned char) op; + STORE_NUMBER(loc + 1, arg1); + STORE_NUMBER(loc + 3, arg2); +} + + +/* Copy the bytes from LOC to END to open up three bytes of space at LOC + for OP followed by two-byte integer parameter ARG. */ + +static void insert_op1(op, loc, arg, end) +re_opcode_t op; +unsigned char *loc; +int arg; +unsigned char *end; +{ + register unsigned char *pfrom = end; + register unsigned char *pto = end + 3; + + while (pfrom != loc) + *--pto = *--pfrom; + + store_op1(op, loc, arg); +} + + +/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ + +static void insert_op2(op, loc, arg1, arg2, end) +re_opcode_t op; +unsigned char *loc; +int arg1, arg2; +unsigned char *end; +{ + register unsigned char *pfrom = end; + register unsigned char *pto = end + 5; + + while (pfrom != loc) + *--pto = *--pfrom; + + store_op2(op, loc, arg1, arg2); +} + + +/* P points to just after a ^ in PATTERN. Return true if that ^ comes + after an alternative or a begin-subexpression. We assume there is at + least one character before the ^. */ + +static boolean at_begline_loc_p(pattern, p, syntax) +const char *pattern, *p; +reg_syntax_t syntax; +{ + const char *prev = p - 2; + boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; + + return + /* After a subexpression? */ + (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) + /* After an alternative? */ + || (*prev == '|' + && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); +} + + +/* The dual of at_begline_loc_p. This one is for $. We assume there is + at least one character after the $, i.e., `P < PEND'. */ + +static boolean at_endline_loc_p(p, pend, syntax) +const char *p, *pend; +reg_syntax_t syntax; +{ + const char *next = p; + boolean next_backslash = *next == '\\'; + const char *next_next = p + 1 < pend ? p + 1 : 0; + + return + /* Before a subexpression? */ + (syntax & RE_NO_BK_PARENS ? *next == ')' + : next_backslash && next_next && *next_next == ')') + /* Before an alternative? */ + || (syntax & RE_NO_BK_VBAR ? *next == '|' + : next_backslash && next_next && *next_next == '|'); +} + + +/* Returns true if REGNUM is in one of COMPILE_STACK's elements and + false if it's not. */ + +static boolean group_in_compile_stack(compile_stack, regnum) +compile_stack_type compile_stack; +regnum_t regnum; +{ + int this_element; + + for (this_element = compile_stack.avail - 1; + this_element >= 0; this_element--) + if (compile_stack.stack[this_element].regnum == regnum) + return true; + + return false; +} + + +/* Read the ending character of a range (in a bracket expression) from the + uncompiled pattern *P_PTR (which ends at PEND). We assume the + starting character is in `P[-2]'. (`P[-1]' is the character `-'.) + Then we set the translation of all bits between the starting and + ending characters (inclusive) in the compiled pattern B. + + Return an error code. + + We use these short variable names so we can use the same macros as + `regex_compile' itself. */ + +static reg_errcode_t compile_range(p_ptr, pend, translate, syntax, b) +const char **p_ptr, *pend; +RE_TRANSLATE_TYPE translate; +reg_syntax_t syntax; +unsigned char *b; +{ + unsigned this_char; + + const char *p = *p_ptr; + reg_errcode_t ret; + char range_start[2]; + char range_end[2]; + char ch[2]; + + if (p == pend) + return REG_ERANGE; + + /* Fetch the endpoints without translating them; the + appropriate translation is done in the bit-setting loop below. */ + range_start[0] = p[-2]; + range_start[1] = '\0'; + range_end[0] = p[0]; + range_end[1] = '\0'; + + /* Have to increment the pointer into the pattern string, so the + caller isn't still at the ending character. */ + (*p_ptr)++; + + /* Report an error if the range is empty and the syntax prohibits this. */ + ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; + + /* Here we see why `this_char' has to be larger than an `unsigned + char' -- we would otherwise go into an infinite loop, since all + characters <= 0xff. */ + ch[1] = '\0'; + for (this_char = 0; this_char <= (unsigned char) -1; ++this_char) { + ch[0] = this_char; + if (strcoll(range_start, ch) <= 0 && strcoll(ch, range_end) <= 0) { + SET_LIST_BIT(TRANSLATE(this_char)); + ret = REG_NOERROR; + } + } + + return ret; +} + +/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in + BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible + characters can start a string that matches the pattern. This fastmap + is used by re_search to skip quickly over impossible starting points. + + The caller must supply the address of a (1 << BYTEWIDTH)-byte data + area as BUFP->fastmap. + + We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in + the pattern buffer. + + Returns 0 if we succeed, -2 if an internal error. */ + +int re_compile_fastmap(bufp) +struct re_pattern_buffer *bufp; +{ + int j, k; + +#ifdef MATCH_MAY_ALLOCATE + fail_stack_type fail_stack; +#endif +#ifndef REGEX_MALLOC + char *destination; +#endif + + register char *fastmap = bufp->fastmap; + unsigned char *pattern = bufp->buffer; + unsigned char *p = pattern; + register unsigned char *pend = pattern + bufp->used; + +#ifdef REL_ALLOC + /* This holds the pointer to the failure stack, when + it is allocated relocatably. */ + fail_stack_elt_t *failure_stack_ptr; +#endif + + /* Assume that each path through the pattern can be null until + proven otherwise. We set this false at the bottom of switch + statement, to which we get only if a particular path doesn't + match the empty string. */ + boolean path_can_be_null = true; + + /* We aren't doing a `succeed_n' to begin with. */ + boolean succeed_n_p = false; + + assert(fastmap != NULL && p != NULL); + + INIT_FAIL_STACK(); + bzero(fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ + bufp->fastmap_accurate = 1; /* It will be when we're done. */ + bufp->can_be_null = 0; + + while (1) { + if (p == pend || *p == succeed) { + /* We have reached the (effective) end of pattern. */ + if (!FAIL_STACK_EMPTY()) { + bufp->can_be_null |= path_can_be_null; + + /* Reset for next path. */ + path_can_be_null = true; + + p = fail_stack.stack[--fail_stack.avail].pointer; + + continue; + } else + break; + } + + /* We should never be about to go beyond the end of the pattern. */ + assert(p < pend); + + switch (SWITCH_ENUM_CAST((re_opcode_t) * p++)) { + + /* I guess the idea here is to simply not bother with a fastmap + if a backreference is used, since it's too hard to figure out + the fastmap for the corresponding group. Setting + `can_be_null' stops `re_search_2' from using the fastmap, so + that is all we do. */ + case duplicate: + bufp->can_be_null = 1; + goto done; + + + /* Following are the cases which match a character. These end + with `break'. */ + + case exactn: + fastmap[p[1]] = 1; + break; + + + case charset: + for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) + if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) + fastmap[j] = 1; + break; + + + case charset_not: + /* Chars beyond end of map must be allowed. */ + for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) + fastmap[j] = 1; + + for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) + if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) + fastmap[j] = 1; + break; + + + case wordchar: + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (SYNTAX(j) == Sword) + fastmap[j] = 1; + break; + + + case notwordchar: + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (SYNTAX(j) != Sword) + fastmap[j] = 1; + break; + + + case anychar: + { + int fastmap_newline = fastmap['\n']; + + /* `.' matches anything ... */ + for (j = 0; j < (1 << BYTEWIDTH); j++) + fastmap[j] = 1; + + /* ... except perhaps newline. */ + if (!(bufp->syntax & RE_DOT_NEWLINE)) + fastmap['\n'] = fastmap_newline; + + /* Return if we have already set `can_be_null'; if we have, + then the fastmap is irrelevant. Something's wrong here. */ + else if (bufp->can_be_null) + goto done; + + /* Otherwise, have to check alternative paths. */ + break; + } + +#ifdef emacs + case syntaxspec: + k = *p++; + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (SYNTAX(j) == (enum syntaxcode) k) + fastmap[j] = 1; + break; + + + case notsyntaxspec: + k = *p++; + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (SYNTAX(j) != (enum syntaxcode) k) + fastmap[j] = 1; + break; + + + /* All cases after this match the empty string. These end with + `continue'. */ + + + case before_dot: + case at_dot: + case after_dot: + continue; +#endif /* emacs */ + + + case no_op: + case begline: + case endline: + case begbuf: + case endbuf: + case wordbound: + case notwordbound: + case wordbeg: + case wordend: + case push_dummy_failure: + continue; + + + case jump_n: + case pop_failure_jump: + case maybe_pop_jump: + case jump: + case jump_past_alt: + case dummy_failure_jump: + EXTRACT_NUMBER_AND_INCR(j, p); + p += j; + if (j > 0) + continue; + + /* Jump backward implies we just went through the body of a + loop and matched nothing. Opcode jumped to should be + `on_failure_jump' or `succeed_n'. Just treat it like an + ordinary jump. For a * loop, it has pushed its failure + point already; if so, discard that as redundant. */ + if ((re_opcode_t) * p != on_failure_jump + && (re_opcode_t) * p != succeed_n) + continue; + + p++; + EXTRACT_NUMBER_AND_INCR(j, p); + p += j; + + /* If what's on the stack is where we are now, pop it. */ + if (!FAIL_STACK_EMPTY() + && fail_stack.stack[fail_stack.avail - 1].pointer == p) + fail_stack.avail--; + + continue; + + + case on_failure_jump: + case on_failure_keep_string_jump: + handle_on_failure_jump: + EXTRACT_NUMBER_AND_INCR(j, p); + + /* For some patterns, e.g., `(a?)?', `p+j' here points to the + end of the pattern. We don't want to push such a point, + since when we restore it above, entering the switch will + increment `p' past the end of the pattern. We don't need + to push such a point since we obviously won't find any more + fastmap entries beyond `pend'. Such a pattern can match + the null string, though. */ + if (p + j < pend) { + if (!PUSH_PATTERN_OP(p + j, fail_stack)) { + RESET_FAIL_STACK(); + return -2; + } + } else + bufp->can_be_null = 1; + + if (succeed_n_p) { + EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */ + succeed_n_p = false; + } + + continue; + + + case succeed_n: + /* Get to the number of times to succeed. */ + p += 2; + + /* Increment p past the n for when k != 0. */ + EXTRACT_NUMBER_AND_INCR(k, p); + if (k == 0) { + p -= 4; + succeed_n_p = true; /* Spaghetti code alert. */ + goto handle_on_failure_jump; + } + continue; + + + case set_number_at: + p += 4; + continue; + + + case start_memory: + case stop_memory: + p += 2; + continue; + + + default: + abort(); /* We have listed all the cases. */ + } /* switch *p++ */ + + /* Getting here means we have found the possible starting + characters for one path of the pattern -- and that the empty + string does not match. We need not follow this path further. + Instead, look at the next alternative (remembered on the + stack), or quit if no more. The test at the top of the loop + does these things. */ + path_can_be_null = false; + p = pend; + } /* while p */ + + /* Set `can_be_null' for the last path (also the first path, if the + pattern is empty). */ + bufp->can_be_null |= path_can_be_null; + + done: + RESET_FAIL_STACK(); + return 0; +} /* re_compile_fastmap */ + +#ifdef _LIBC +weak_alias(__re_compile_fastmap, re_compile_fastmap) +#endif +/* Set REGS to hold NUM_REGS registers, storing them in STARTS and + ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use + this memory for recording register information. STARTS and ENDS + must be allocated using the malloc library routine, and must each + be at least NUM_REGS * sizeof (regoff_t) bytes long. + + If NUM_REGS == 0, then subsequent matches should allocate their own + register data. + + Unless this function is called, the first search or match using + PATTERN_BUFFER will allocate its own register data, without + freeing the old data. */ +void re_set_registers(bufp, regs, num_regs, starts, ends) +struct re_pattern_buffer *bufp; +struct re_registers *regs; +unsigned num_regs; +regoff_t *starts, *ends; +{ + if (num_regs) { + bufp->regs_allocated = REGS_REALLOCATE; + regs->num_regs = num_regs; + regs->start = starts; + regs->end = ends; + } else { + bufp->regs_allocated = REGS_UNALLOCATED; + regs->num_regs = 0; + regs->start = regs->end = (regoff_t *) 0; + } +} + +#ifdef _LIBC +weak_alias(__re_set_registers, re_set_registers) +#endif +/* Searching routines. */ +/* Like re_search_2, below, but only one string is specified, and + doesn't let you say where to stop matching. */ +int re_search(bufp, string, size, startpos, range, regs) +struct re_pattern_buffer *bufp; +const char *string; +int size, startpos, range; +struct re_registers *regs; +{ + return re_search_2(bufp, NULL, 0, string, size, startpos, range, + regs, size); +} + +#ifdef _LIBC +weak_alias(__re_search, re_search) +#endif +/* Using the compiled pattern in BUFP->buffer, first tries to match the + virtual concatenation of STRING1 and STRING2, starting first at index + STARTPOS, then at STARTPOS + 1, and so on. + + STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. + + RANGE is how far to scan while trying to match. RANGE = 0 means try + only at STARTPOS; in general, the last start tried is STARTPOS + + RANGE. + + In REGS, return the indices of the virtual concatenation of STRING1 + and STRING2 that matched the entire BUFP->buffer and its contained + subexpressions. + + Do not consider matching one past the index STOP in the virtual + concatenation of STRING1 and STRING2. + + We return either the position in the strings at which the match was + found, -1 if no match, or -2 if error (such as failure + stack overflow). */ +int +re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, + stop) +struct re_pattern_buffer *bufp; +const char *string1, *string2; +int size1, size2; +int startpos; +int range; +struct re_registers *regs; +int stop; +{ + int val; + register char *fastmap = bufp->fastmap; + register RE_TRANSLATE_TYPE translate = bufp->translate; + int total_size = size1 + size2; + int endpos = startpos + range; + + /* Check for out-of-range STARTPOS. */ + if (startpos < 0 || startpos > total_size) + return -1; + + /* Fix up RANGE if it might eventually take us outside + the virtual concatenation of STRING1 and STRING2. + Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ + if (endpos < 0) + range = 0 - startpos; + else if (endpos > total_size) + range = total_size - startpos; + + /* If the search isn't to be a backwards one, don't waste time in a + search for a pattern that must be anchored. */ + if (bufp->used > 0 && range > 0 + && ((re_opcode_t) bufp->buffer[0] == begbuf + /* `begline' is like `begbuf' if it cannot match at newlines. */ + || ((re_opcode_t) bufp->buffer[0] == begline + && !bufp->newline_anchor))) { + if (startpos > 0) + return -1; + else + range = 1; + } +#ifdef emacs + /* In a forward search for something that starts with \=. + don't keep searching past point. */ + if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot + && range > 0) { + range = PT - startpos; + if (range <= 0) + return -1; + } +#endif /* emacs */ + + /* Update the fastmap now if not correct already. */ + if (fastmap && !bufp->fastmap_accurate) + if (re_compile_fastmap(bufp) == -2) + return -2; + + /* Loop through the string, looking for a place to start matching. */ + for (;;) { + /* If a fastmap is supplied, skip quickly over characters that + cannot be the start of a match. If the pattern can match the + null string, however, we don't need to skip characters; we want + the first null string. */ + if (fastmap && startpos < total_size && !bufp->can_be_null) { + if (range > 0) { /* Searching forwards. */ + register const char *d; + register int lim = 0; + int irange = range; + + if (startpos < size1 && startpos + range >= size1) + lim = range - (size1 - startpos); + + d = + (startpos >= + size1 ? string2 - size1 : string1) + startpos; + + /* Written out as an if-else to avoid testing `translate' + inside the loop. */ + if (translate) + while (range > lim && !fastmap[(unsigned char) + translate[ + (unsigned + char) *d++]]) + range--; + else + while (range > lim && !fastmap[(unsigned char) *d++]) + range--; + + startpos += irange - range; + } else { /* Searching backwards. */ + + register char c = (size1 == 0 || startpos >= size1 + ? string2[startpos - size1] + : string1[startpos]); + + if (!fastmap[(unsigned char) TRANSLATE(c)]) + goto advance; + } + } + + /* If can't match the null string, and that's all we have left, fail. */ + if (range >= 0 && startpos == total_size && fastmap + && !bufp->can_be_null) return -1; + + val = re_match_2_internal(bufp, string1, size1, string2, size2, + startpos, regs, stop); +#ifndef REGEX_MALLOC +# ifdef C_ALLOCA + alloca(0); +# endif +#endif + + if (val >= 0) + return startpos; + + if (val == -2) + return -2; + + advance: + if (!range) + break; + else if (range > 0) { + range--; + startpos++; + } else { + range++; + startpos--; + } + } + return -1; +} /* re_search_2 */ + +#ifdef _LIBC +weak_alias(__re_search_2, re_search_2) +#endif +/* This converts PTR, a pointer into one of the search strings `string1' + and `string2' into an offset from the beginning of that string. */ +#define POINTER_TO_OFFSET(ptr) \ + (FIRST_STRING_P (ptr) \ + ? ((regoff_t) ((ptr) - string1)) \ + : ((regoff_t) ((ptr) - string2 + size1))) +/* Macros for dealing with the split strings in re_match_2. */ +#define MATCHING_IN_FIRST_STRING (dend == end_match_1) +/* Call before fetching a character with *d. This switches over to + string2 if necessary. */ +#define PREFETCH() \ + while (d == dend) \ + { \ + /* End of string2 => fail. */ \ + if (dend == end_match_2) \ + goto fail; \ + /* End of string1 => advance to string2. */ \ + d = string2; \ + dend = end_match_2; \ + } +/* Test if at very beginning or at very end of the virtual concatenation + of `string1' and `string2'. If only one string, it's `string2'. */ +#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) +#define AT_STRINGS_END(d) ((d) == end2) +/* Test if D points to a character which is word-constituent. We have + two special cases to check for: if past the end of string1, look at + the first character in string2; and if before the beginning of + string2, look at the last character in string1. */ +#define WORDCHAR_P(d) \ + (SYNTAX ((d) == end1 ? *string2 \ + : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ + == Sword) +/* Disabled due to a compiler bug -- see comment at case wordbound */ +#if 0 +/* Test if the character before D and the one at D differ with respect + to being word-constituent. */ +#define AT_WORD_BOUNDARY(d) \ + (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ + || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) +#endif +/* Free everything we malloc. */ +#ifdef MATCH_MAY_ALLOCATE +# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL +# define FREE_VARIABLES() \ + do { \ + REGEX_FREE_STACK (fail_stack.stack); \ + FREE_VAR (regstart); \ + FREE_VAR (regend); \ + FREE_VAR (old_regstart); \ + FREE_VAR (old_regend); \ + FREE_VAR (best_regstart); \ + FREE_VAR (best_regend); \ + FREE_VAR (reg_info); \ + FREE_VAR (reg_dummy); \ + FREE_VAR (reg_info_dummy); \ + } while (0) +#else +# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ +#endif /* not MATCH_MAY_ALLOCATE */ +/* These values must meet several constraints. They must not be valid + register values; since we have a limit of 255 registers (because + we use only one byte in the pattern for the register number), we can + use numbers larger than 255. They must differ by 1, because of + NUM_FAILURE_ITEMS above. And the value for the lowest register must + be larger than the value for the highest register, so we do not try + to actually save any registers when none are active. */ +#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) +#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) +/* Matching routines. */ +#ifndef emacs /* Emacs never uses this. */ +/* re_match is like re_match_2 except it takes only a single string. */ +int re_match(bufp, string, size, pos, regs) +struct re_pattern_buffer *bufp; +const char *string; +int size, pos; +struct re_registers *regs; +{ + int result = re_match_2_internal(bufp, NULL, 0, string, size, + pos, regs, size); + +# ifndef REGEX_MALLOC +# ifdef C_ALLOCA + alloca(0); +# endif +# endif + return result; +} + +# ifdef _LIBC +weak_alias(__re_match, re_match) +# endif +#endif /* not emacs */ +static boolean group_match_null_string_p _RE_ARGS((unsigned char **p, + unsigned char *end, + register_info_type * + + reg_info)); +static boolean alt_match_null_string_p +_RE_ARGS( + + (unsigned char *p, unsigned char *end, + register_info_type * reg_info)); +static boolean common_op_match_null_string_p +_RE_ARGS( + + (unsigned char **p, unsigned char *end, + register_info_type * reg_info)); +static int bcmp_translate +_RE_ARGS((const char *s1, const char *s2, int len, char *translate)); + +/* re_match_2 matches the compiled pattern in BUFP against the + the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 + and SIZE2, respectively). We start matching at POS, and stop + matching at STOP. + + If REGS is non-null and the `no_sub' field of BUFP is nonzero, we + store offsets for the substring each group matched in REGS. See the + documentation for exactly how many groups we fill. + + We return -1 if no match, -2 if an internal error (such as the + failure stack overflowing). Otherwise, we return the length of the + matched substring. */ + +int re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) +struct re_pattern_buffer *bufp; +const char *string1, *string2; +int size1, size2; +int pos; +struct re_registers *regs; +int stop; +{ + int result = re_match_2_internal(bufp, string1, size1, string2, size2, + pos, regs, stop); + +#ifndef REGEX_MALLOC +# ifdef C_ALLOCA + alloca(0); +# endif +#endif + return result; +} + +#ifdef _LIBC +weak_alias(__re_match_2, re_match_2) +#endif +/* This is a separate function so that we can force an alloca cleanup + afterwards. */ +static int +re_match_2_internal(bufp, string1, size1, string2, size2, pos, regs, stop) +struct re_pattern_buffer *bufp; +const char *string1, *string2; +int size1, size2; +int pos; +struct re_registers *regs; +int stop; +{ + /* General temporaries. */ + int mcnt; + unsigned char *p1; + + /* Just past the end of the corresponding string. */ + const char *end1, *end2; + + /* Pointers into string1 and string2, just past the last characters in + each to consider matching. */ + const char *end_match_1, *end_match_2; + + /* Where we are in the data, and the end of the current string. */ + const char *d, *dend; + + /* Where we are in the pattern, and the end of the pattern. */ + unsigned char *p = bufp->buffer; + register unsigned char *pend = p + bufp->used; + + /* Mark the opcode just after a start_memory, so we can test for an + empty subpattern when we get to the stop_memory. */ + unsigned char *just_past_start_mem = 0; + + /* We use this to map every character in the string. */ + RE_TRANSLATE_TYPE translate = bufp->translate; + + /* Failure point stack. Each place that can handle a failure further + down the line pushes a failure point on this stack. It consists of + restart, regend, and reg_info for all registers corresponding to + the subexpressions we're currently inside, plus the number of such + registers, and, finally, two char *'s. The first char * is where + to resume scanning the pattern; the second one is where to resume + scanning the strings. If the latter is zero, the failure point is + a ``dummy''; if a failure happens and the failure point is a dummy, + it gets discarded and the next next one is tried. */ +#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ + fail_stack_type fail_stack; +#endif +#ifdef DEBUG + static unsigned failure_id; + unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; +#endif + +#ifdef REL_ALLOC + /* This holds the pointer to the failure stack, when + it is allocated relocatably. */ + fail_stack_elt_t *failure_stack_ptr; +#endif + + /* We fill all the registers internally, independent of what we + return, for use in backreferences. The number here includes + an element for register zero. */ + size_t num_regs = bufp->re_nsub + 1; + + /* The currently active registers. */ + active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG; + active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG; + + /* Information on the contents of registers. These are pointers into + the input strings; they record just what was matched (on this + attempt) by a subexpression part of the pattern, that is, the + regnum-th regstart pointer points to where in the pattern we began + matching and the regnum-th regend points to right after where we + stopped matching the regnum-th subexpression. (The zeroth register + keeps track of what the whole pattern matches.) */ +#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ + const char **regstart, **regend; +#endif + + /* If a group that's operated upon by a repetition operator fails to + match anything, then the register for its start will need to be + restored because it will have been set to wherever in the string we + are when we last see its open-group operator. Similarly for a + register's end. */ +#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ + const char **old_regstart, **old_regend; +#endif + + /* The is_active field of reg_info helps us keep track of which (possibly + nested) subexpressions we are currently in. The matched_something + field of reg_info[reg_num] helps us tell whether or not we have + matched any of the pattern so far this time through the reg_num-th + subexpression. These two fields get reset each time through any + loop their register is in. */ +#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ + register_info_type *reg_info; +#endif + + /* The following record the register info as found in the above + variables when we find a match better than any we've seen before. + This happens as we backtrack through the failure points, which in + turn happens only if we have not yet matched the entire string. */ + unsigned best_regs_set = false; + +#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ + const char **best_regstart, **best_regend; +#endif + + /* Logically, this is `best_regend[0]'. But we don't want to have to + allocate space for that if we're not allocating space for anything + else (see below). Also, we never need info about register 0 for + any of the other register vectors, and it seems rather a kludge to + treat `best_regend' differently than the rest. So we keep track of + the end of the best match so far in a separate variable. We + initialize this to NULL so that when we backtrack the first time + and need to test it, it's not garbage. */ + const char *match_end = NULL; + + /* This helps SET_REGS_MATCHED avoid doing redundant work. */ + int set_regs_matched_done = 0; + + /* Used when we pop values we don't care about. */ +#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ + const char **reg_dummy; + register_info_type *reg_info_dummy; +#endif + +#ifdef DEBUG + /* Counts the total number of registers pushed. */ + unsigned num_regs_pushed = 0; +#endif + + DEBUG_PRINT1("\n\nEntering re_match_2.\n"); + + INIT_FAIL_STACK(); + +#ifdef MATCH_MAY_ALLOCATE + /* Do not bother to initialize all the register variables if there are + no groups in the pattern, as it takes a fair amount of time. If + there are groups, we include space for register 0 (the whole + pattern), even though we never use it, since it simplifies the + array indexing. We should fix this. */ + if (bufp->re_nsub) { + regstart = REGEX_TALLOC(num_regs, const char *); + regend = REGEX_TALLOC(num_regs, const char *); + old_regstart = REGEX_TALLOC(num_regs, const char *); + old_regend = REGEX_TALLOC(num_regs, const char *); + best_regstart = REGEX_TALLOC(num_regs, const char *); + best_regend = REGEX_TALLOC(num_regs, const char *); + + reg_info = REGEX_TALLOC(num_regs, register_info_type); + reg_dummy = REGEX_TALLOC(num_regs, const char *); + + reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type); + + if (!(regstart && regend && old_regstart && old_regend && reg_info + && best_regstart && best_regend && reg_dummy + && reg_info_dummy)) { + FREE_VARIABLES(); + return -2; + } + } else { + /* We must initialize all our variables to NULL, so that + `FREE_VARIABLES' doesn't try to free them. */ + regstart = regend = old_regstart = old_regend = best_regstart + = best_regend = reg_dummy = NULL; + reg_info = reg_info_dummy = (register_info_type *) NULL; + } +#endif /* MATCH_MAY_ALLOCATE */ + + /* The starting position is bogus. */ + if (pos < 0 || pos > size1 + size2) { + FREE_VARIABLES(); + return -1; + } + + /* Initialize subexpression text positions to -1 to mark ones that no + start_memory/stop_memory has been seen for. Also initialize the + register information struct. */ + for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) { + regstart[mcnt] = regend[mcnt] + = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; + + REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; + IS_ACTIVE(reg_info[mcnt]) = 0; + MATCHED_SOMETHING(reg_info[mcnt]) = 0; + EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0; + } + + /* We move `string1' into `string2' if the latter's empty -- but not if + `string1' is null. */ + if (size2 == 0 && string1 != NULL) { + string2 = string1; + size2 = size1; + string1 = 0; + size1 = 0; + } + end1 = string1 + size1; + end2 = string2 + size2; + + /* Compute where to stop matching, within the two strings. */ + if (stop <= size1) { + end_match_1 = string1 + stop; + end_match_2 = string2; + } else { + end_match_1 = end1; + end_match_2 = string2 + stop - size1; + } + + /* `p' scans through the pattern as `d' scans through the data. + `dend' is the end of the input string that `d' points within. `d' + is advanced into the following input string whenever necessary, but + this happens before fetching; therefore, at the beginning of the + loop, `d' can be pointing at the end of a string, but it cannot + equal `string2'. */ + if (size1 > 0 && pos <= size1) { + d = string1 + pos; + dend = end_match_1; + } else { + d = string2 + pos - size1; + dend = end_match_2; + } + + DEBUG_PRINT1("The compiled pattern is:\n"); + DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend); + DEBUG_PRINT1("The string to match is: `"); + DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2); + DEBUG_PRINT1("'\n"); + + /* This loops over pattern commands. It exits by returning from the + function if the match is complete, or it drops through if the match + fails at this starting point in the input data. */ + for (;;) { +#ifdef _LIBC + DEBUG_PRINT2("\n%p: ", p); +#else + DEBUG_PRINT2("\n0x%x: ", p); +#endif + + if (p == pend) { /* End of pattern means we might have succeeded. */ + DEBUG_PRINT1("end of pattern ... "); + + /* If we haven't matched the entire string, and we want the + longest match, try backtracking. */ + if (d != end_match_2) { + /* 1 if this match ends in the same string (string1 or string2) + as the best previous match. */ + boolean same_str_p = (FIRST_STRING_P(match_end) + == MATCHING_IN_FIRST_STRING); + + /* 1 if this match is the best seen so far. */ + boolean best_match_p; + + /* AIX compiler got confused when this was combined + with the previous declaration. */ + if (same_str_p) + best_match_p = d > match_end; + else + best_match_p = !MATCHING_IN_FIRST_STRING; + + DEBUG_PRINT1("backtracking.\n"); + + if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */ + + /* If exceeds best match so far, save it. */ + if (!best_regs_set || best_match_p) { + best_regs_set = true; + match_end = d; + + DEBUG_PRINT1("\nSAVING match as best so far.\n"); + + for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) { + best_regstart[mcnt] = regstart[mcnt]; + best_regend[mcnt] = regend[mcnt]; + } + } + goto fail; + } + + /* If no failure points, don't restore garbage. And if + last match is real best match, don't restore second + best one. */ + else if (best_regs_set && !best_match_p) { + restore_best_regs: + /* Restore best match. It may happen that `dend == + end_match_1' while the restored d is in string2. + For example, the pattern `x.*y.*z' against the + strings `x-' and `y-z-', if the two strings are + not consecutive in memory. */ + DEBUG_PRINT1("Restoring best registers.\n"); + + d = match_end; + dend = ((d >= string1 && d <= end1) + ? end_match_1 : end_match_2); + + for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) { + regstart[mcnt] = best_regstart[mcnt]; + regend[mcnt] = best_regend[mcnt]; + } + } + } + /* d != end_match_2 */ + succeed_label: + DEBUG_PRINT1("Accepting match.\n"); + + /* If caller wants register contents data back, do it. */ + if (regs && !bufp->no_sub) { + /* Have the register data arrays been allocated? */ + if (bufp->regs_allocated == REGS_UNALLOCATED) { /* No. So allocate them with malloc. We need one + extra element beyond `num_regs' for the `-1' marker + GNU code uses. */ + regs->num_regs = MAX(RE_NREGS, num_regs + 1); + regs->start = TALLOC(regs->num_regs, regoff_t); + regs->end = TALLOC(regs->num_regs, regoff_t); + if (regs->start == NULL || regs->end == NULL) { + FREE_VARIABLES(); + return -2; + } + bufp->regs_allocated = REGS_REALLOCATE; + } else if (bufp->regs_allocated == REGS_REALLOCATE) { /* Yes. If we need more elements than were already + allocated, reallocate them. If we need fewer, just + leave it alone. */ + if (regs->num_regs < num_regs + 1) { + regs->num_regs = num_regs + 1; + RETALLOC(regs->start, regs->num_regs, regoff_t); + RETALLOC(regs->end, regs->num_regs, regoff_t); + if (regs->start == NULL || regs->end == NULL) { + FREE_VARIABLES(); + return -2; + } + } + } else { + /* These braces fend off a "empty body in an else-statement" + warning under GCC when assert expands to nothing. */ + assert(bufp->regs_allocated == REGS_FIXED); + } + + /* Convert the pointer data in `regstart' and `regend' to + indices. Register zero has to be set differently, + since we haven't kept track of any info for it. */ + if (regs->num_regs > 0) { + regs->start[0] = pos; + regs->end[0] = (MATCHING_IN_FIRST_STRING + ? ((regoff_t) (d - string1)) + : ((regoff_t) (d - string2 + size1))); + } + + /* Go through the first `min (num_regs, regs->num_regs)' + registers, since that is all we initialized. */ + for (mcnt = 1; + (unsigned) mcnt < MIN(num_regs, regs->num_regs); + mcnt++) { + if (REG_UNSET(regstart[mcnt]) + || REG_UNSET(regend[mcnt])) regs->start[mcnt] = + regs->end[mcnt] = -1; + else { + regs->start[mcnt] + = (regoff_t) POINTER_TO_OFFSET(regstart[mcnt]); + regs->end[mcnt] + = (regoff_t) POINTER_TO_OFFSET(regend[mcnt]); + } + } + + /* If the regs structure we return has more elements than + were in the pattern, set the extra elements to -1. If + we (re)allocated the registers, this is the case, + because we always allocate enough to have at least one + -1 at the end. */ + for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; + mcnt++) + regs->start[mcnt] = regs->end[mcnt] = -1; + } + /* regs && !bufp->no_sub */ + DEBUG_PRINT4 + ("%u failure points pushed, %u popped (%u remain).\n", + nfailure_points_pushed, nfailure_points_popped, + nfailure_points_pushed - nfailure_points_popped); + DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed); + + mcnt = d - pos - (MATCHING_IN_FIRST_STRING + ? string1 : string2 - size1); + + DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt); + + FREE_VARIABLES(); + return mcnt; + } + + /* Otherwise match next pattern command. */ + switch (SWITCH_ENUM_CAST((re_opcode_t) * p++)) { + /* Ignore these. Used to ignore the n of succeed_n's which + currently have n == 0. */ + case no_op: + DEBUG_PRINT1("EXECUTING no_op.\n"); + break; + + case succeed: + DEBUG_PRINT1("EXECUTING succeed.\n"); + goto succeed_label; + + /* Match the next n pattern characters exactly. The following + byte in the pattern defines n, and the n bytes after that + are the characters to match. */ + case exactn: + mcnt = *p++; + DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt); + + /* This is written out as an if-else so we don't waste time + testing `translate' inside the loop. */ + if (translate) { + do { + PREFETCH(); + if ((unsigned char) translate[(unsigned char) *d++] + != (unsigned char) *p++) + goto fail; + } + while (--mcnt); + } else { + do { + PREFETCH(); + if (*d++ != (char) *p++) + goto fail; + } + while (--mcnt); + } + SET_REGS_MATCHED(); + break; + + + /* Match any character except possibly a newline or a null. */ + case anychar: + DEBUG_PRINT1("EXECUTING anychar.\n"); + + PREFETCH(); + + if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n') + || (bufp->syntax & RE_DOT_NOT_NULL + && TRANSLATE(*d) == '\000')) goto fail; + + SET_REGS_MATCHED(); + DEBUG_PRINT2(" Matched `%d'.\n", *d); + d++; + break; + + + case charset: + case charset_not: + { + register unsigned char c; + boolean not = (re_opcode_t) * (p - 1) == charset_not; + + DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : ""); + + PREFETCH(); + c = TRANSLATE(*d); /* The character to match. */ + + /* Cast to `unsigned' instead of `unsigned char' in case the + bit list is a full 32 bytes long. */ + if (c < (unsigned) (*p * BYTEWIDTH) + && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) + not = !not; + + p += 1 + *p; + + if (!not) + goto fail; + + SET_REGS_MATCHED(); + d++; + break; + } + + + /* The beginning of a group is represented by start_memory. + The arguments are the register number in the next byte, and the + number of groups inner to this one in the next. The text + matched within the group is recorded (in the internal + registers data structure) under the register number. */ + case start_memory: + DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]); + + /* Find out if this group can match the empty string. */ + p1 = p; /* To send to group_match_null_string_p. */ + + if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == + MATCH_NULL_UNSET_VALUE) + REG_MATCH_NULL_STRING_P(reg_info[*p]) = + group_match_null_string_p(&p1, pend, reg_info); + + /* Save the position in the string where we were the last time + we were at this open-group operator in case the group is + operated upon by a repetition operator, e.g., with `(a*)*b' + against `ab'; then we want to ignore where we are now in + the string in case this attempt to match fails. */ + old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p]) + ? REG_UNSET(regstart[*p]) ? d : regstart[*p] + : regstart[*p]; + DEBUG_PRINT2(" old_regstart: %d\n", + POINTER_TO_OFFSET(old_regstart[*p])); + + regstart[*p] = d; + DEBUG_PRINT2(" regstart: %d\n", + POINTER_TO_OFFSET(regstart[*p])); + + IS_ACTIVE(reg_info[*p]) = 1; + MATCHED_SOMETHING(reg_info[*p]) = 0; + + /* Clear this whenever we change the register activity status. */ + set_regs_matched_done = 0; + + /* This is the new highest active register. */ + highest_active_reg = *p; + + /* If nothing was active before, this is the new lowest active + register. */ + if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) + lowest_active_reg = *p; + + /* Move past the register number and inner group count. */ + p += 2; + just_past_start_mem = p; + + break; + + + /* The stop_memory opcode represents the end of a group. Its + arguments are the same as start_memory's: the register + number, and the number of inner groups. */ + case stop_memory: + DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]); + + /* We need to save the string position the last time we were at + this close-group operator in case the group is operated + upon by a repetition operator, e.g., with `((a*)*(b*)*)*' + against `aba'; then we want to ignore where we are now in + the string in case this attempt to match fails. */ + old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p]) + ? REG_UNSET(regend[*p]) ? d : regend[*p] + : regend[*p]; + DEBUG_PRINT2(" old_regend: %d\n", + POINTER_TO_OFFSET(old_regend[*p])); + + regend[*p] = d; + DEBUG_PRINT2(" regend: %d\n", + POINTER_TO_OFFSET(regend[*p])); + + /* This register isn't active anymore. */ + IS_ACTIVE(reg_info[*p]) = 0; + + /* Clear this whenever we change the register activity status. */ + set_regs_matched_done = 0; + + /* If this was the only register active, nothing is active + anymore. */ + if (lowest_active_reg == highest_active_reg) { + lowest_active_reg = NO_LOWEST_ACTIVE_REG; + highest_active_reg = NO_HIGHEST_ACTIVE_REG; + } else { /* We must scan for the new highest active register, since + it isn't necessarily one less than now: consider + (a(b)c(d(e)f)g). When group 3 ends, after the f), the + new highest active register is 1. */ + unsigned char r = *p - 1; + + while (r > 0 && !IS_ACTIVE(reg_info[r])) + r--; + + /* If we end up at register zero, that means that we saved + the registers as the result of an `on_failure_jump', not + a `start_memory', and we jumped to past the innermost + `stop_memory'. For example, in ((.)*) we save + registers 1 and 2 as a result of the *, but when we pop + back to the second ), we are at the stop_memory 1. + Thus, nothing is active. */ + if (r == 0) { + lowest_active_reg = NO_LOWEST_ACTIVE_REG; + highest_active_reg = NO_HIGHEST_ACTIVE_REG; + } else + highest_active_reg = r; + } + + /* If just failed to match something this time around with a + group that's operated on by a repetition operator, try to + force exit from the ``loop'', and restore the register + information for this group that we had before trying this + last match. */ + if ((!MATCHED_SOMETHING(reg_info[*p]) + || just_past_start_mem == p - 1) + && (p + 2) < pend) { + boolean is_a_jump_n = false; + + p1 = p + 2; + mcnt = 0; + switch ((re_opcode_t) * p1++) { + case jump_n: + is_a_jump_n = true; + case pop_failure_jump: + case maybe_pop_jump: + case jump: + case dummy_failure_jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + if (is_a_jump_n) + p1 += 2; + break; + + default: + /* do nothing */ ; + } + p1 += mcnt; + + /* If the next operation is a jump backwards in the pattern + to an on_failure_jump right before the start_memory + corresponding to this stop_memory, exit from the loop + by forcing a failure after pushing on the stack the + on_failure_jump's jump in the pattern, and d. */ + if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump + && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) { + /* If this group ever matched anything, then restore + what its registers were before trying this last + failed match, e.g., with `(a*)*b' against `ab' for + regstart[1], and, e.g., with `((a*)*(b*)*)*' + against `aba' for regend[3]. + + Also restore the registers for inner groups for, + e.g., `((a*)(b*))*' against `aba' (register 3 would + otherwise get trashed). */ + + if (EVER_MATCHED_SOMETHING(reg_info[*p])) { + unsigned r; + + EVER_MATCHED_SOMETHING(reg_info[*p]) = 0; + + /* Restore this and inner groups' (if any) registers. */ + for (r = *p; + r < (unsigned) *p + (unsigned) *(p + 1); r++) { + regstart[r] = old_regstart[r]; + + /* xx why this test? */ + if (old_regend[r] >= regstart[r]) + regend[r] = old_regend[r]; + } + } + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + PUSH_FAILURE_POINT(p1 + mcnt, d, -2); + + goto fail; + } + } + + /* Move past the register number and the inner group count. */ + p += 2; + break; + + + /* \<digit> has been turned into a `duplicate' command which is + followed by the numeric value of <digit> as the register number. */ + case duplicate: + { + register const char *d2, *dend2; + int regno = *p++; /* Get which register to match against. */ + + DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno); + + /* Can't back reference a group which we've never matched. */ + if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno])) + goto fail; + + /* Where in input to try to start matching. */ + d2 = regstart[regno]; + + /* Where to stop matching; if both the place to start and + the place to stop matching are in the same string, then + set to the place to stop, otherwise, for now have to use + the end of the first string. */ + + dend2 = ((FIRST_STRING_P(regstart[regno]) + == FIRST_STRING_P(regend[regno])) + ? regend[regno] : end_match_1); + for (;;) { + /* If necessary, advance to next segment in register + contents. */ + while (d2 == dend2) { + if (dend2 == end_match_2) + break; + if (dend2 == regend[regno]) + break; + + /* End of string1 => advance to string2. */ + d2 = string2; + dend2 = regend[regno]; + } + /* At end of register contents => success */ + if (d2 == dend2) + break; + + /* If necessary, advance to next segment in data. */ + PREFETCH(); + + /* How many characters left in this segment to match. */ + mcnt = dend - d; + + /* Want how many consecutive characters we can match in + one shot, so, if necessary, adjust the count. */ + if (mcnt > dend2 - d2) + mcnt = dend2 - d2; + + /* Compare that many; failure if mismatch, else move + past them. */ + if (translate ? bcmp_translate(d, d2, mcnt, translate) + : memcmp(d, d2, mcnt)) + goto fail; + d += mcnt, d2 += mcnt; + + /* Do this because we've match some characters. */ + SET_REGS_MATCHED(); + } + } + break; + + + /* begline matches the empty string at the beginning of the string + (unless `not_bol' is set in `bufp'), and, if + `newline_anchor' is set, after newlines. */ + case begline: + DEBUG_PRINT1("EXECUTING begline.\n"); + + if (AT_STRINGS_BEG(d)) { + if (!bufp->not_bol) + break; + } else if (d[-1] == '\n' && bufp->newline_anchor) { + break; + } + /* In all other cases, we fail. */ + goto fail; + + + /* endline is the dual of begline. */ + case endline: + DEBUG_PRINT1("EXECUTING endline.\n"); + + if (AT_STRINGS_END(d)) { + if (!bufp->not_eol) + break; + } + + /* We have to ``prefetch'' the next character. */ + else if ((d == end1 ? *string2 : *d) == '\n' + && bufp->newline_anchor) { + break; + } + goto fail; + + + /* Match at the very beginning of the data. */ + case begbuf: + DEBUG_PRINT1("EXECUTING begbuf.\n"); + if (AT_STRINGS_BEG(d)) + break; + goto fail; + + + /* Match at the very end of the data. */ + case endbuf: + DEBUG_PRINT1("EXECUTING endbuf.\n"); + if (AT_STRINGS_END(d)) + break; + goto fail; + + + /* on_failure_keep_string_jump is used to optimize `.*\n'. It + pushes NULL as the value for the string on the stack. Then + `pop_failure_point' will keep the current value for the + string, instead of restoring it. To see why, consider + matching `foo\nbar' against `.*\n'. The .* matches the foo; + then the . fails against the \n. But the next thing we want + to do is match the \n against the \n; if we restored the + string value, we would be back at the foo. + + Because this is used only in specific cases, we don't need to + check all the things that `on_failure_jump' does, to make + sure the right things get saved on the stack. Hence we don't + share its code. The only reason to push anything on the + stack at all is that otherwise we would have to change + `anychar's code to do something besides goto fail in this + case; that seems worse than this. */ + case on_failure_keep_string_jump: + DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump"); + + EXTRACT_NUMBER_AND_INCR(mcnt, p); +#ifdef _LIBC + DEBUG_PRINT3(" %d (to %p):\n", mcnt, p + mcnt); +#else + DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt); +#endif + + PUSH_FAILURE_POINT(p + mcnt, NULL, -2); + break; + + + /* Uses of on_failure_jump: + + Each alternative starts with an on_failure_jump that points + to the beginning of the next alternative. Each alternative + except the last ends with a jump that in effect jumps past + the rest of the alternatives. (They really jump to the + ending jump of the following alternative, because tensioning + these jumps is a hassle.) + + Repeats start with an on_failure_jump that points past both + the repetition text and either the following jump or + pop_failure_jump back to this on_failure_jump. */ + case on_failure_jump: + on_failure: + DEBUG_PRINT1("EXECUTING on_failure_jump"); + + EXTRACT_NUMBER_AND_INCR(mcnt, p); +#ifdef _LIBC + DEBUG_PRINT3(" %d (to %p)", mcnt, p + mcnt); +#else + DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt); +#endif + + /* If this on_failure_jump comes right before a group (i.e., + the original * applied to a group), save the information + for that group and all inner ones, so that if we fail back + to this point, the group's information will be correct. + For example, in \(a*\)*\1, we need the preceding group, + and in \(zz\(a*\)b*\)\2, we need the inner group. */ + + /* We can't use `p' to check ahead because we push + a failure point to `p + mcnt' after we do this. */ + p1 = p; + + /* We need to skip no_op's before we look for the + start_memory in case this on_failure_jump is happening as + the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 + against aba. */ + while (p1 < pend && (re_opcode_t) * p1 == no_op) + p1++; + + if (p1 < pend && (re_opcode_t) * p1 == start_memory) { + /* We have a new highest active register now. This will + get reset at the start_memory we are about to get to, + but we will have saved all the registers relevant to + this repetition op, as described above. */ + highest_active_reg = *(p1 + 1) + *(p1 + 2); + if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) + lowest_active_reg = *(p1 + 1); + } + + DEBUG_PRINT1(":\n"); + PUSH_FAILURE_POINT(p + mcnt, d, -2); + break; + + + /* A smart repeat ends with `maybe_pop_jump'. + We change it to either `pop_failure_jump' or `jump'. */ + case maybe_pop_jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p); + DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt); + { + register unsigned char *p2 = p; + + /* Compare the beginning of the repeat with what in the + pattern follows its end. If we can establish that there + is nothing that they would both match, i.e., that we + would have to backtrack because of (as in, e.g., `a*a') + then we can change to pop_failure_jump, because we'll + never have to backtrack. + + This is not true in the case of alternatives: in + `(a|ab)*' we do need to backtrack to the `ab' alternative + (e.g., if the string was `ab'). But instead of trying to + detect that here, the alternative has put on a dummy + failure point which is what we will end up popping. */ + + /* Skip over open/close-group commands. + If what follows this loop is a ...+ construct, + look at what begins its body, since we will have to + match at least one of that. */ + while (1) { + if (p2 + 2 < pend + && ((re_opcode_t) * p2 == stop_memory + || (re_opcode_t) * p2 == start_memory)) + p2 += 3; + else if (p2 + 6 < pend + && (re_opcode_t) * p2 == dummy_failure_jump) + p2 += 6; + else + break; + } + + p1 = p + mcnt; + /* p1[0] ... p1[2] are the `on_failure_jump' corresponding + to the `maybe_finalize_jump' of this case. Examine what + follows. */ + + /* If we're at the end of the pattern, we can change. */ + if (p2 == pend) { + /* Consider what happens when matching ":\(.*\)" + against ":/". I don't really understand this code + yet. */ + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT1 + (" End of pattern: change to `pop_failure_jump'.\n"); + } + + else if ((re_opcode_t) * p2 == exactn + || (bufp->newline_anchor + && (re_opcode_t) * p2 == endline)) { + register unsigned char c = + *p2 == (unsigned char) endline ? '\n' : p2[2]; + + if ((re_opcode_t) p1[3] == exactn && p1[5] != c) { + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT3(" %c != %c => pop_failure_jump.\n", + c, p1[5]); + } + + else if ((re_opcode_t) p1[3] == charset + || (re_opcode_t) p1[3] == charset_not) { + int not = (re_opcode_t) p1[3] == charset_not; + + if (c < (unsigned char) (p1[4] * BYTEWIDTH) + && p1[5 + + c / BYTEWIDTH] & (1 << (c % + BYTEWIDTH))) not + = !not; + + /* `not' is equal to 1 if c would match, which means + that we can't change to pop_failure_jump. */ + if (!not) { + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT1 + (" No match => pop_failure_jump.\n"); + } + } + } else if ((re_opcode_t) * p2 == charset) { + /* We win if the first character of the loop is not part + of the charset. */ + if ((re_opcode_t) p1[3] == exactn + && !((int) p2[1] * BYTEWIDTH > (int) p1[5] + && (p2[2 + p1[5] / BYTEWIDTH] + & (1 << (p1[5] % BYTEWIDTH))))) { + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT1(" No match => pop_failure_jump.\n"); + } + + else if ((re_opcode_t) p1[3] == charset_not) { + int idx; + + /* We win if the charset_not inside the loop + lists every character listed in the charset after. */ + for (idx = 0; idx < (int) p2[1]; idx++) + if (!(p2[2 + idx] == 0 || (idx < (int) p1[4] + && + ((p2 + [2 + + idx] & ~p1[5 + + idx]) + == 0)))) + break; + + if (idx == p2[1]) { + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT1 + (" No match => pop_failure_jump.\n"); + } + } else if ((re_opcode_t) p1[3] == charset) { + int idx; + + /* We win if the charset inside the loop + has no overlap with the one after the loop. */ + for (idx = 0; + idx < (int) p2[1] && idx < (int) p1[4]; idx++) + if ((p2[2 + idx] & p1[5 + idx]) != 0) + break; + + if (idx == p2[1] || idx == p1[4]) { + p[-3] = (unsigned char) pop_failure_jump; + DEBUG_PRINT1 + (" No match => pop_failure_jump.\n"); + } + } + } + } + p -= 2; /* Point at relative address again. */ + if ((re_opcode_t) p[-1] != pop_failure_jump) { + p[-1] = (unsigned char) jump; + DEBUG_PRINT1(" Match => jump.\n"); + goto unconditional_jump; + } + /* Note fall through. */ + + + /* The end of a simple repeat has a pop_failure_jump back to + its matching on_failure_jump, where the latter will push a + failure point. The pop_failure_jump takes off failure + points put on by this pop_failure_jump's matching + on_failure_jump; we got through the pattern to here from the + matching on_failure_jump, so didn't fail. */ + case pop_failure_jump: + { + /* We need to pass separate storage for the lowest and + highest registers, even though we don't care about the + actual values. Otherwise, we will restore only one + register from the stack, since lowest will == highest in + `pop_failure_point'. */ + active_reg_t dummy_low_reg, dummy_high_reg; + unsigned char *pdummy; + const char *sdummy; + + DEBUG_PRINT1("EXECUTING pop_failure_jump.\n"); + POP_FAILURE_POINT(sdummy, pdummy, + dummy_low_reg, dummy_high_reg, + reg_dummy, reg_dummy, reg_info_dummy); + } + /* Note fall through. */ + + unconditional_jump: +#ifdef _LIBC + DEBUG_PRINT2("\n%p: ", p); +#else + DEBUG_PRINT2("\n0x%x: ", p); +#endif + /* Note fall through. */ + + /* Unconditionally jump (without popping any failure points). */ + case jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */ + DEBUG_PRINT2("EXECUTING jump %d ", mcnt); + p += mcnt; /* Do the jump. */ +#ifdef _LIBC + DEBUG_PRINT2("(to %p).\n", p); +#else + DEBUG_PRINT2("(to 0x%x).\n", p); +#endif + break; + + + /* We need this opcode so we can detect where alternatives end + in `group_match_null_string_p' et al. */ + case jump_past_alt: + DEBUG_PRINT1("EXECUTING jump_past_alt.\n"); + goto unconditional_jump; + + + /* Normally, the on_failure_jump pushes a failure point, which + then gets popped at pop_failure_jump. We will end up at + pop_failure_jump, also, and with a pattern of, say, `a+', we + are skipping over the on_failure_jump, so we have to push + something meaningless for pop_failure_jump to pop. */ + case dummy_failure_jump: + DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n"); + /* It doesn't matter what we push for the string here. What + the code at `fail' tests is the value for the pattern. */ + PUSH_FAILURE_POINT(NULL, NULL, -2); + goto unconditional_jump; + + + /* At the end of an alternative, we need to push a dummy failure + point in case we are followed by a `pop_failure_jump', because + we don't want the failure point for the alternative to be + popped. For example, matching `(a|ab)*' against `aab' + requires that we match the `ab' alternative. */ + case push_dummy_failure: + DEBUG_PRINT1("EXECUTING push_dummy_failure.\n"); + /* See comments just above at `dummy_failure_jump' about the + two zeroes. */ + PUSH_FAILURE_POINT(NULL, NULL, -2); + break; + + /* Have to succeed matching what follows at least n times. + After that, handle like `on_failure_jump'. */ + case succeed_n: + EXTRACT_NUMBER(mcnt, p + 2); + DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt); + + assert(mcnt >= 0); + /* Originally, this is how many times we HAVE to succeed. */ + if (mcnt > 0) { + mcnt--; + p += 2; + STORE_NUMBER_AND_INCR(p, mcnt); +#ifdef _LIBC + DEBUG_PRINT3(" Setting %p to %d.\n", p - 2, mcnt); +#else + DEBUG_PRINT3(" Setting 0x%x to %d.\n", p - 2, mcnt); +#endif + } else if (mcnt == 0) { +#ifdef _LIBC + DEBUG_PRINT2(" Setting two bytes from %p to no_op.\n", + p + 2); +#else + DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.\n", + p + 2); +#endif + p[2] = (unsigned char) no_op; + p[3] = (unsigned char) no_op; + goto on_failure; + } + break; + + case jump_n: + EXTRACT_NUMBER(mcnt, p + 2); + DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt); + + /* Originally, this is how many times we CAN jump. */ + if (mcnt) { + mcnt--; + STORE_NUMBER(p + 2, mcnt); +#ifdef _LIBC + DEBUG_PRINT3(" Setting %p to %d.\n", p + 2, mcnt); +#else + DEBUG_PRINT3(" Setting 0x%x to %d.\n", p + 2, mcnt); +#endif + goto unconditional_jump; + } + /* If don't have to jump any more, skip over the rest of command. */ + else + p += 4; + break; + + case set_number_at: + { + DEBUG_PRINT1("EXECUTING set_number_at.\n"); + + EXTRACT_NUMBER_AND_INCR(mcnt, p); + p1 = p + mcnt; + EXTRACT_NUMBER_AND_INCR(mcnt, p); +#ifdef _LIBC + DEBUG_PRINT3(" Setting %p to %d.\n", p1, mcnt); +#else + DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1, mcnt); +#endif + STORE_NUMBER(p1, mcnt); + break; + } + +#if 0 + /* The DEC Alpha C compiler 3.x generates incorrect code for the + test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of + AT_WORD_BOUNDARY, so this code is disabled. Expanding the + macro and introducing temporary variables works around the bug. */ + + case wordbound: + DEBUG_PRINT1("EXECUTING wordbound.\n"); + if (AT_WORD_BOUNDARY(d)) + break; + goto fail; + + case notwordbound: + DEBUG_PRINT1("EXECUTING notwordbound.\n"); + if (AT_WORD_BOUNDARY(d)) + goto fail; + break; +#else + case wordbound: + { + boolean prevchar, thischar; + + DEBUG_PRINT1("EXECUTING wordbound.\n"); + if (AT_STRINGS_BEG(d) || AT_STRINGS_END(d)) + break; + + prevchar = WORDCHAR_P(d - 1); + thischar = WORDCHAR_P(d); + if (prevchar != thischar) + break; + goto fail; + } + + case notwordbound: + { + boolean prevchar, thischar; + + DEBUG_PRINT1("EXECUTING notwordbound.\n"); + if (AT_STRINGS_BEG(d) || AT_STRINGS_END(d)) + goto fail; + + prevchar = WORDCHAR_P(d - 1); + thischar = WORDCHAR_P(d); + if (prevchar != thischar) + goto fail; + break; + } +#endif + + case wordbeg: + DEBUG_PRINT1("EXECUTING wordbeg.\n"); + if (WORDCHAR_P(d) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1))) + break; + goto fail; + + case wordend: + DEBUG_PRINT1("EXECUTING wordend.\n"); + if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1) + && (!WORDCHAR_P(d) || AT_STRINGS_END(d))) + break; + goto fail; + +#ifdef emacs + case before_dot: + DEBUG_PRINT1("EXECUTING before_dot.\n"); + if (PTR_CHAR_POS((unsigned char *) d) >= point) + goto fail; + break; + + case at_dot: + DEBUG_PRINT1("EXECUTING at_dot.\n"); + if (PTR_CHAR_POS((unsigned char *) d) != point) + goto fail; + break; + + case after_dot: + DEBUG_PRINT1("EXECUTING after_dot.\n"); + if (PTR_CHAR_POS((unsigned char *) d) <= point) + goto fail; + break; + + case syntaxspec: + DEBUG_PRINT2("EXECUTING syntaxspec %d.\n", mcnt); + mcnt = *p++; + goto matchsyntax; + + case wordchar: + DEBUG_PRINT1("EXECUTING Emacs wordchar.\n"); + mcnt = (int) Sword; + matchsyntax: + PREFETCH(); + /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ + d++; + if (SYNTAX(d[-1]) != (enum syntaxcode) mcnt) + goto fail; + SET_REGS_MATCHED(); + break; + + case notsyntaxspec: + DEBUG_PRINT2("EXECUTING notsyntaxspec %d.\n", mcnt); + mcnt = *p++; + goto matchnotsyntax; + + case notwordchar: + DEBUG_PRINT1("EXECUTING Emacs notwordchar.\n"); + mcnt = (int) Sword; + matchnotsyntax: + PREFETCH(); + /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ + d++; + if (SYNTAX(d[-1]) == (enum syntaxcode) mcnt) + goto fail; + SET_REGS_MATCHED(); + break; + +#else /* not emacs */ + case wordchar: + DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n"); + PREFETCH(); + if (!WORDCHAR_P(d)) + goto fail; + SET_REGS_MATCHED(); + d++; + break; + + case notwordchar: + DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n"); + PREFETCH(); + if (WORDCHAR_P(d)) + goto fail; + SET_REGS_MATCHED(); + d++; + break; +#endif /* not emacs */ + + default: + abort(); + } + continue; /* Successfully executed one pattern command; keep going. */ + + + /* We goto here if a matching operation fails. */ + fail: + if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */ + DEBUG_PRINT1("\nFAIL:\n"); + POP_FAILURE_POINT(d, p, + lowest_active_reg, highest_active_reg, + regstart, regend, reg_info); + + /* If this failure point is a dummy, try the next one. */ + if (!p) + goto fail; + + /* If we failed to the end of the pattern, don't examine *p. */ + assert(p <= pend); + if (p < pend) { + boolean is_a_jump_n = false; + + /* If failed to a backwards jump that's part of a repetition + loop, need to pop this failure point and use the next one. */ + switch ((re_opcode_t) * p) { + case jump_n: + is_a_jump_n = true; + case maybe_pop_jump: + case pop_failure_jump: + case jump: + p1 = p + 1; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + p1 += mcnt; + + if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n) + || (!is_a_jump_n + && (re_opcode_t) * p1 == on_failure_jump)) + goto fail; + break; + default: + /* do nothing */ ; + } + } + + if (d >= string1 && d <= end1) + dend = end_match_1; + } else + break; /* Matching at this starting point really fails. */ + } /* for (;;) */ + + if (best_regs_set) + goto restore_best_regs; + + FREE_VARIABLES(); + + return -1; /* Failure to match. */ +} /* re_match_2 */ + +/* Subroutine definitions for re_match_2. */ + + +/* We are passed P pointing to a register number after a start_memory. + + Return true if the pattern up to the corresponding stop_memory can + match the empty string, and false otherwise. + + If we find the matching stop_memory, sets P to point to one past its number. + Otherwise, sets P to an undefined byte less than or equal to END. + + We don't handle duplicates properly (yet). */ + +static boolean group_match_null_string_p(p, end, reg_info) +unsigned char **p, *end; +register_info_type *reg_info; +{ + int mcnt; + + /* Point to after the args to the start_memory. */ + unsigned char *p1 = *p + 2; + + while (p1 < end) { + /* Skip over opcodes that can match nothing, and return true or + false, as appropriate, when we get to one that can't, or to the + matching stop_memory. */ + + switch ((re_opcode_t) * p1) { + /* Could be either a loop or a series of alternatives. */ + case on_failure_jump: + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + + /* If the next operation is not a jump backwards in the + pattern. */ + + if (mcnt >= 0) { + /* Go through the on_failure_jumps of the alternatives, + seeing if any of the alternatives cannot match nothing. + The last alternative starts with only a jump, + whereas the rest start with on_failure_jump and end + with a jump, e.g., here is the pattern for `a|b|c': + + /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 + /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 + /exactn/1/c + + So, we have to first go through the first (n-1) + alternatives and then deal with the last one separately. */ + + + /* Deal with the first (n-1) alternatives, which start + with an on_failure_jump (see above) that jumps to right + past a jump_past_alt. */ + + while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) { + /* `mcnt' holds how many bytes long the alternative + is, including the ending `jump_past_alt' and + its number. */ + + if (!alt_match_null_string_p(p1, p1 + mcnt - 3, + reg_info)) return false; + + /* Move to right after this alternative, including the + jump_past_alt. */ + p1 += mcnt; + + /* Break if it's the beginning of an n-th alternative + that doesn't begin with an on_failure_jump. */ + if ((re_opcode_t) * p1 != on_failure_jump) + break; + + /* Still have to check that it's not an n-th + alternative that starts with an on_failure_jump. */ + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) { + /* Get to the beginning of the n-th alternative. */ + p1 -= 3; + break; + } + } + + /* Deal with the last alternative: go back and get number + of the `jump_past_alt' just before it. `mcnt' contains + the length of the alternative. */ + EXTRACT_NUMBER(mcnt, p1 - 2); + + if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info)) + return false; + + p1 += mcnt; /* Get past the n-th alternative. */ + } /* if mcnt > 0 */ + break; + + + case stop_memory: + assert(p1[1] == **p); + *p = p1 + 2; + return true; + + + default: + if (!common_op_match_null_string_p(&p1, end, reg_info)) + return false; + } + } /* while p1 < end */ + + return false; +} /* group_match_null_string_p */ + + +/* Similar to group_match_null_string_p, but doesn't deal with alternatives: + It expects P to be the first byte of a single alternative and END one + byte past the last. The alternative can contain groups. */ + +static boolean alt_match_null_string_p(p, end, reg_info) +unsigned char *p, *end; +register_info_type *reg_info; +{ + int mcnt; + unsigned char *p1 = p; + + while (p1 < end) { + /* Skip over opcodes that can match nothing, and break when we get + to one that can't. */ + + switch ((re_opcode_t) * p1) { + /* It's a loop. */ + case on_failure_jump: + p1++; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + p1 += mcnt; + break; + + default: + if (!common_op_match_null_string_p(&p1, end, reg_info)) + return false; + } + } /* while p1 < end */ + + return true; +} /* alt_match_null_string_p */ + + +/* Deals with the ops common to group_match_null_string_p and + alt_match_null_string_p. + + Sets P to one after the op and its arguments, if any. */ + +static boolean common_op_match_null_string_p(p, end, reg_info) +unsigned char **p, *end; +register_info_type *reg_info; +{ + int mcnt; + boolean ret; + int reg_no; + unsigned char *p1 = *p; + + switch ((re_opcode_t) * p1++) { + case no_op: + case begline: + case endline: + case begbuf: + case endbuf: + case wordbeg: + case wordend: + case wordbound: + case notwordbound: +#ifdef emacs + case before_dot: + case at_dot: + case after_dot: +#endif + break; + + case start_memory: + reg_no = *p1; + assert(reg_no > 0 && reg_no <= MAX_REGNUM); + ret = group_match_null_string_p(&p1, end, reg_info); + + /* Have to set this here in case we're checking a group which + contains a group and a back reference to it. */ + + if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == + MATCH_NULL_UNSET_VALUE) + REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret; + + if (!ret) + return false; + break; + + /* If this is an optimized succeed_n for zero times, make the jump. */ + case jump: + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + if (mcnt >= 0) + p1 += mcnt; + else + return false; + break; + + case succeed_n: + /* Get to the number of times to succeed. */ + p1 += 2; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + + if (mcnt == 0) { + p1 -= 4; + EXTRACT_NUMBER_AND_INCR(mcnt, p1); + p1 += mcnt; + } else + return false; + break; + + case duplicate: + if (!REG_MATCH_NULL_STRING_P(reg_info[*p1])) + return false; + break; + + case set_number_at: + p1 += 4; + + default: + /* All other opcodes mean we cannot match the empty string. */ + return false; + } + + *p = p1; + return true; +} /* common_op_match_null_string_p */ + + +/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN + bytes; nonzero otherwise. */ + +static int bcmp_translate(s1, s2, len, translate) +const char *s1, *s2; +register int len; +RE_TRANSLATE_TYPE translate; +{ + register const unsigned char *p1 = (const unsigned char *) s1; + register const unsigned char *p2 = (const unsigned char *) s2; + + while (len) { + if (translate[*p1++] != translate[*p2++]) + return 1; + len--; + } + return 0; +} + +/* Entry points for GNU code. */ + +/* re_compile_pattern is the GNU regular expression compiler: it + compiles PATTERN (of length SIZE) and puts the result in BUFP. + Returns 0 if the pattern was valid, otherwise an error string. + + Assumes the `allocated' (and perhaps `buffer') and `translate' fields + are set in BUFP on entry. + + We call regex_compile to do the actual compilation. */ + +const char *re_compile_pattern(pattern, length, bufp) +const char *pattern; +size_t length; +struct re_pattern_buffer *bufp; +{ + reg_errcode_t ret; + + /* GNU code is written to assume at least RE_NREGS registers will be set + (and at least one extra will be -1). */ + bufp->regs_allocated = REGS_UNALLOCATED; + + /* And GNU code determines whether or not to get register information + by passing null for the REGS argument to re_match, etc., not by + setting no_sub. */ + bufp->no_sub = 0; + + /* Match anchors at newline. */ + bufp->newline_anchor = 1; + + ret = regex_compile(pattern, length, re_syntax_options, bufp); + + if (!ret) + return NULL; + return gettext(re_error_msgid + re_error_msgid_idx[(int) ret]); +} + +#ifdef _LIBC +weak_alias(__re_compile_pattern, re_compile_pattern) +#endif +/* Entry points compatible with 4.2 BSD regex library. We don't define + them unless specifically requested. */ +#if defined _REGEX_RE_COMP || defined _LIBC +/* BSD has one and only one pattern buffer. */ +static struct re_pattern_buffer re_comp_buf; + +char * +#ifdef _LIBC +/* Make these definitions weak in libc, so POSIX programs can redefine + these names if they don't use our functions, and still use + regcomp/regexec below without link errors. */ weak_function +#endif +re_comp(s) +const char *s; +{ + reg_errcode_t ret; + + if (!s) { + if (!re_comp_buf.buffer) + return gettext("No previous regular expression"); + return 0; + } + + if (!re_comp_buf.buffer) { + re_comp_buf.buffer = (unsigned char *) malloc(200); + if (re_comp_buf.buffer == NULL) + return (char *) gettext(re_error_msgid + + + re_error_msgid_idx[(int) REG_ESPACE]); + re_comp_buf.allocated = 200; + + re_comp_buf.fastmap = (char *) malloc(1 << BYTEWIDTH); + if (re_comp_buf.fastmap == NULL) + return (char *) gettext(re_error_msgid + + + re_error_msgid_idx[(int) REG_ESPACE]); + } + + /* Since `re_exec' always passes NULL for the `regs' argument, we + don't need to initialize the pattern buffer fields which affect it. */ + + /* Match anchors at newlines. */ + re_comp_buf.newline_anchor = 1; + + ret = regex_compile(s, strlen(s), re_syntax_options, &re_comp_buf); + + if (!ret) + return NULL; + + /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ + return (char *) gettext(re_error_msgid + + re_error_msgid_idx[(int) ret]); +} + + +int +#ifdef _LIBC + weak_function +#endif +re_exec(s) +const char *s; +{ + const int len = strlen(s); + + return + 0 <= re_search(&re_comp_buf, s, len, 0, len, + (struct re_registers *) 0); +} + +#endif /* _REGEX_RE_COMP */ + +/* POSIX.2 functions. Don't define these for Emacs. */ + +#ifndef emacs + +/* regcomp takes a regular expression as a string and compiles it. + + PREG is a regex_t *. We do not expect any fields to be initialized, + since POSIX says we shouldn't. Thus, we set + + `buffer' to the compiled pattern; + `used' to the length of the compiled pattern; + `syntax' to RE_SYNTAX_POSIX_EXTENDED if the + REG_EXTENDED bit in CFLAGS is set; otherwise, to + RE_SYNTAX_POSIX_BASIC; + `newline_anchor' to REG_NEWLINE being set in CFLAGS; + `fastmap' to an allocated space for the fastmap; + `fastmap_accurate' to zero; + `re_nsub' to the number of subexpressions in PATTERN. + + PATTERN is the address of the pattern string. + + CFLAGS is a series of bits which affect compilation. + + If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we + use POSIX basic syntax. + + If REG_NEWLINE is set, then . and [^...] don't match newline. + Also, regexec will try a match beginning after every newline. + + If REG_ICASE is set, then we considers upper- and lowercase + versions of letters to be equivalent when matching. + + If REG_NOSUB is set, then when PREG is passed to regexec, that + routine will report only success or failure, and nothing about the + registers. + + It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for + the return codes and their meanings.) */ + +int regcomp(preg, pattern, cflags) +regex_t *preg; +const char *pattern; +int cflags; +{ + reg_errcode_t ret; + reg_syntax_t syntax + = (cflags & REG_EXTENDED) ? + + RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; + + /* regex_compile will allocate the space for the compiled pattern. */ + preg->buffer = 0; + preg->allocated = 0; + preg->used = 0; + + /* Try to allocate space for the fastmap. */ + preg->fastmap = (char *) malloc(1 << BYTEWIDTH); + + if (cflags & REG_ICASE) { + unsigned i; + + preg->translate + = (RE_TRANSLATE_TYPE) malloc(CHAR_SET_SIZE + * sizeof(*(RE_TRANSLATE_TYPE) 0)); + if (preg->translate == NULL) + return (int) REG_ESPACE; + + /* Map uppercase characters to corresponding lowercase ones. */ + for (i = 0; i < CHAR_SET_SIZE; i++) + preg->translate[i] = ISUPPER(i) ? TOLOWER(i) : i; + } else + preg->translate = NULL; + + /* If REG_NEWLINE is set, newlines are treated differently. */ + if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */ + syntax &= ~RE_DOT_NEWLINE; + syntax |= RE_HAT_LISTS_NOT_NEWLINE; + /* It also changes the matching behavior. */ + preg->newline_anchor = 1; + } else + preg->newline_anchor = 0; + + preg->no_sub = !!(cflags & REG_NOSUB); + + /* POSIX says a null character in the pattern terminates it, so we + can use strlen here in compiling the pattern. */ + ret = regex_compile(pattern, strlen(pattern), syntax, preg); + + /* POSIX doesn't distinguish between an unmatched open-group and an + unmatched close-group: both are REG_EPAREN. */ + if (ret == REG_ERPAREN) + ret = REG_EPAREN; + + if (ret == REG_NOERROR && preg->fastmap) { + /* Compute the fastmap now, since regexec cannot modify the pattern + buffer. */ + if (re_compile_fastmap(preg) == -2) { + /* Some error occurred while computing the fastmap, just forget + about it. */ + free(preg->fastmap); + preg->fastmap = NULL; + } + } + + return (int) ret; +} + +#ifdef _LIBC +weak_alias(__regcomp, regcomp) +#endif +/* regexec searches for a given pattern, specified by PREG, in the + string STRING. + + If NMATCH is zero or REG_NOSUB was set in the cflags argument to + `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at + least NMATCH elements, and we set them to the offsets of the + corresponding matched substrings. + + EFLAGS specifies `execution flags' which affect matching: if + REG_NOTBOL is set, then ^ does not match at the beginning of the + string; if REG_NOTEOL is set, then $ does not match at the end. + + We return 0 if we find a match and REG_NOMATCH if not. */ +int regexec(preg, string, nmatch, pmatch, eflags) +const regex_t *preg; +const char *string; +size_t nmatch; +regmatch_t pmatch[]; +int eflags; +{ + int ret; + struct re_registers regs; + regex_t private_preg; + int len = strlen(string); + boolean want_reg_info = !preg->no_sub && nmatch > 0; + + private_preg = *preg; + + private_preg.not_bol = !!(eflags & REG_NOTBOL); + private_preg.not_eol = !!(eflags & REG_NOTEOL); + + /* The user has told us exactly how many registers to return + information about, via `nmatch'. We have to pass that on to the + matching routines. */ + private_preg.regs_allocated = REGS_FIXED; + + if (want_reg_info) { + regs.num_regs = nmatch; + regs.start = TALLOC(nmatch * 2, regoff_t); + if (regs.start == NULL) + return (int) REG_NOMATCH; + regs.end = regs.start + nmatch; + } + + /* Perform the searching operation. */ + ret = re_search(&private_preg, string, len, + /* start: */ 0, /* range: */ len, + want_reg_info ? ®s : (struct re_registers *) 0); + + /* Copy the register information to the POSIX structure. */ + if (want_reg_info) { + if (ret >= 0) { + unsigned r; + + for (r = 0; r < nmatch; r++) { + pmatch[r].rm_so = regs.start[r]; + pmatch[r].rm_eo = regs.end[r]; + } + } + + /* If we needed the temporary register info, free the space now. */ + free(regs.start); + } + + /* We want zero return to mean success, unlike `re_search'. */ + return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; +} + +#ifdef _LIBC +weak_alias(__regexec, regexec) +#endif +/* Returns a message corresponding to an error code, ERRCODE, returned + from either regcomp or regexec. We don't use PREG here. */ + size_t regerror(errcode, preg, errbuf, errbuf_size) +int errcode; +const regex_t *preg; +char *errbuf; +size_t errbuf_size; +{ + const char *msg; + size_t msg_size; + + if (errcode < 0 || errcode >= (int) (sizeof(re_error_msgid_idx) + / sizeof(re_error_msgid_idx[0]))) + /* Only error codes returned by the rest of the code should be passed + to this routine. If we are given anything else, or if other regex + code generates an invalid error code, then the program has a bug. + Dump core so we can fix it. */ + abort(); + + msg = gettext(re_error_msgid + re_error_msgid_idx[errcode]); + + msg_size = strlen(msg) + 1; /* Includes the null. */ + + if (errbuf_size != 0) { + if (msg_size > errbuf_size) { +#if defined HAVE_MEMPCPY || defined _LIBC + *((char *) __mempcpy(errbuf, msg, errbuf_size - 1)) = '\0'; +#else + memcpy(errbuf, msg, errbuf_size - 1); + errbuf[errbuf_size - 1] = 0; +#endif + } else + memcpy(errbuf, msg, msg_size); + } + + return msg_size; +} + +#ifdef _LIBC +weak_alias(__regerror, regerror) +#endif +/* Free dynamically allocated space used by PREG. */ +void regfree(preg) +regex_t *preg; +{ + if (preg->buffer != NULL) + free(preg->buffer); + preg->buffer = NULL; + + preg->allocated = 0; + preg->used = 0; + + if (preg->fastmap != NULL) + free(preg->fastmap); + preg->fastmap = NULL; + preg->fastmap_accurate = 0; + + if (preg->translate != NULL) + free(preg->translate); + preg->translate = NULL; +} + +#ifdef _LIBC +weak_alias(__regfree, regfree) +#endif +#endif /* not emacs */ |