1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
/*-
* Copyright (c) 2007
* Thorsten Glaser <tg@mirbsd.de>
*
* Provided that these terms and disclaimer and all copyright notices
* are retained or reproduced in an accompanying document, permission
* is granted to deal in this work without restriction, including un-
* limited rights to use, publicly perform, distribute, sell, modify,
* merge, give away, or sublicence.
*
* Advertising materials mentioning features or use of this work must
* display the following acknowledgement:
* This product includes material provided by Thorsten Glaser.
* This product includes software developed by Niels Provos.
*
* This work is provided "AS IS" and WITHOUT WARRANTY of any kind, to
* the utmost extent permitted by applicable law, neither express nor
* implied; without malicious intent or gross negligence. In no event
* may a licensor, author or contributor be held liable for indirect,
* direct, other damage, loss, or other issues arising in any way out
* of dealing in the work, even if advised of the possibility of such
* damage or existence of a defect, except proven that it results out
* of said person's immediate fault when using the work as intended.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
#define MD5_BLOCK_LENGTH 64
#define MD5_DIGEST_LENGTH 16
#define MD5_DIGEST_STRING_LENGTH (MD5_DIGEST_LENGTH * 2 + 1)
typedef struct MD5Context {
u_int32_t state[4];
u_int64_t count;
u_int8_t buffer[MD5_BLOCK_LENGTH];
} MD5_CTX;
/* low-level MD5 functions from md5c.c */
void MD5Init(MD5_CTX *);
void MD5Update(MD5_CTX *, const u_int8_t *, size_t);
void MD5Pad(MD5_CTX *);
void MD5Final(u_int8_t [MD5_DIGEST_LENGTH], MD5_CTX *);
void MD5Transform(u_int32_t [4], const u_int8_t [MD5_BLOCK_LENGTH]);
/* high-level functions from mdXhl.c */
char *MD5End(MD5_CTX *, char *);
char *MD5File(const char *, char *);
char *MD5FileChunk(const char *, char *, off_t, off_t);
char *MD5Data(const u_int8_t *, size_t, char *);
void to64(char *, u_int32_t, int);
char *md5crypt(const char *pw, const char *salt);
int pwd_gensalt(char *, int);
static unsigned char itoa64[] = /* 0 ... 63 => ascii - 64 */
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
void
to64(char *s, u_int32_t v, int n)
{
while (--n >= 0) {
*s++ = itoa64[v&0x3f];
v >>= 6;
}
}
#define PUT_64BIT_LE(cp, value) do { \
(cp)[7] = (value) >> 56; \
(cp)[6] = (value) >> 48; \
(cp)[5] = (value) >> 40; \
(cp)[4] = (value) >> 32; \
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
#define PUT_32BIT_LE(cp, value) do { \
(cp)[3] = (value) >> 24; \
(cp)[2] = (value) >> 16; \
(cp)[1] = (value) >> 8; \
(cp)[0] = (value); } while (0)
static u_int8_t PADDING[MD5_BLOCK_LENGTH] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void
MD5Init(MD5_CTX *ctx)
{
ctx->count = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xefcdab89;
ctx->state[2] = 0x98badcfe;
ctx->state[3] = 0x10325476;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void
MD5Update(MD5_CTX *ctx, const unsigned char *input, size_t len)
{
size_t have, need;
/* Check how many bytes we already have and how many more we need. */
have = (size_t)((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
need = MD5_BLOCK_LENGTH - have;
/* Update bitcount */
ctx->count += (u_int64_t)len << 3;
if (len >= need) {
if (have != 0) {
memcpy(ctx->buffer + have, input, need);
MD5Transform(ctx->state, ctx->buffer);
input += need;
len -= need;
have = 0;
}
/* Process data in MD5_BLOCK_LENGTH-byte chunks. */
while (len >= MD5_BLOCK_LENGTH) {
MD5Transform(ctx->state, input);
input += MD5_BLOCK_LENGTH;
len -= MD5_BLOCK_LENGTH;
}
}
/* Handle any remaining bytes of data. */
if (len != 0)
memcpy(ctx->buffer + have, input, len);
}
/*
* Pad pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void
MD5Pad(MD5_CTX *ctx)
{
u_int8_t count[8];
size_t padlen;
/* Convert count to 8 bytes in little endian order. */
PUT_64BIT_LE(count, ctx->count);
/* Pad out to 56 mod 64. */
padlen = MD5_BLOCK_LENGTH -
((ctx->count >> 3) & (MD5_BLOCK_LENGTH - 1));
if (padlen < 1 + 8)
padlen += MD5_BLOCK_LENGTH;
MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
MD5Update(ctx, count, 8);
}
/*
* Final wrapup--call MD5Pad, fill in digest and zero out ctx.
*/
void
MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
{
int i;
MD5Pad(ctx);
if (digest != NULL) {
for (i = 0; i < 4; i++)
PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
memset(ctx, 0, sizeof(*ctx));
}
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
void
MD5Transform(u_int32_t state[4], const u_int8_t block[MD5_BLOCK_LENGTH])
{
u_int32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
#if BYTE_ORDER == LITTLE_ENDIAN
memcpy(in, block, sizeof(in));
#else
for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
in[a] = (u_int32_t)(
(u_int32_t)(block[a * 4 + 0]) |
(u_int32_t)(block[a * 4 + 1]) << 8 |
(u_int32_t)(block[a * 4 + 2]) << 16 |
(u_int32_t)(block[a * 4 + 3]) << 24);
}
#endif
a = state[0];
b = state[1];
c = state[2];
d = state[3];
MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
/*
* UNIX password
*
* Use MD5 for what it is best at...
*/
char *
md5crypt(const char *pw, const char *salt)
{
/*
* This string is magic for this algorithm. Having
* it this way, we can get get better later on
*/
static const unsigned char *magic = (const unsigned char *)"$1$";
static char passwd[120], *p;
static const unsigned char *sp,*ep;
unsigned char final[16];
int sl,pl,i;
MD5_CTX ctx,ctx1;
u_int32_t l;
/* Refine the Salt first */
sp = (const unsigned char *)salt;
/* If it starts with the magic string, then skip that */
if(!strncmp((const char *)sp,(const char *)magic,strlen((const char *)magic)))
sp += strlen((const char *)magic);
/* It stops at the first '$', max 8 chars */
for(ep=sp;*ep && *ep != '$' && ep < (sp+8);ep++)
continue;
/* get the length of the true salt */
sl = ep - sp;
MD5Init(&ctx);
/* The password first, since that is what is most unknown */
MD5Update(&ctx,(const unsigned char *)pw,strlen(pw));
/* Then our magic string */
MD5Update(&ctx,magic,strlen((const char *)magic));
/* Then the raw salt */
MD5Update(&ctx,sp,sl);
/* Then just as many characters of the MD5(pw,salt,pw) */
MD5Init(&ctx1);
MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));
MD5Update(&ctx1,sp,sl);
MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));
MD5Final(final,&ctx1);
for(pl = strlen(pw); pl > 0; pl -= 16)
MD5Update(&ctx,final,pl>16 ? 16 : pl);
/* Don't leave anything around in vm they could use. */
memset(final,0,sizeof final);
/* Then something really weird... */
for (i = strlen(pw); i ; i >>= 1)
if(i&1)
MD5Update(&ctx, final, 1);
else
MD5Update(&ctx, (const unsigned char *)pw, 1);
/* Now make the output string */
snprintf(passwd, sizeof(passwd), "%s%.*s$", magic,
sl, (const char *)sp);
MD5Final(final,&ctx);
/*
* and now, just to make sure things don't run too fast
* On a 60 Mhz Pentium this takes 34 msec, so you would
* need 30 seconds to build a 1000 entry dictionary...
*/
for(i=0;i<1000;i++) {
MD5Init(&ctx1);
if(i & 1)
MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));
else
MD5Update(&ctx1,final,16);
if(i % 3)
MD5Update(&ctx1,sp,sl);
if(i % 7)
MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));
if(i & 1)
MD5Update(&ctx1,final,16);
else
MD5Update(&ctx1,(const unsigned char *)pw,strlen(pw));
MD5Final(final,&ctx1);
}
p = passwd + strlen(passwd);
l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p,l,4); p += 4;
l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p,l,4); p += 4;
l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p,l,4); p += 4;
l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p,l,4); p += 4;
l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p,l,4); p += 4;
l = final[11] ; to64(p,l,2); p += 2;
*p = '\0';
/* Don't leave anything around in vm they could use. */
memset(final, 0, sizeof final);
return passwd;
}
int pwd_gensalt(char *salt, int saltlen) {
*salt = '\0';
if (saltlen < 13) { /* $1$8salt$\0 */
return 0;
}
strcpy(salt, "$1$");
to64(&salt[3], random(), 4);
to64(&salt[7], random(), 4);
strcpy(&salt[11], "$");
return 1;
}
int main(int argc, char *argv[]) {
char salt[16];
char *pw;
if (!argv[1]) {
fprintf(stderr, "Syntax Error!\n");
return (1);
}
if (!pwd_gensalt(salt, sizeof (salt)))
return (255);
if ((pw = md5crypt(argv[1], salt)) == NULL) {
fprintf(stderr, "Error generating password!\n");
return (1);
}
printf("%s\n", pw);
return (0);
}
|