diff options
Diffstat (limited to 'toolchain/gcc')
-rw-r--r-- | toolchain/gcc/Makefile | 7 | ||||
-rw-r--r-- | toolchain/gcc/Makefile.inc | 9 | ||||
-rw-r--r-- | toolchain/gcc/patches/4.4.6/cflags.patch | 269 | ||||
-rw-r--r-- | toolchain/gcc/patches/4.4.6/gcc-avr32.patch | 42651 | ||||
-rw-r--r-- | toolchain/gcc/patches/4.5.3/cflags.patch (renamed from toolchain/gcc/patches/cflags.patch) | 0 | ||||
-rw-r--r-- | toolchain/gcc/patches/4.5.3/mirbsd-compat.patch (renamed from toolchain/gcc/patches/mirbsd-compat.patch) | 0 | ||||
-rw-r--r-- | toolchain/gcc/patches/4.5.3/no-lib64.patch (renamed from toolchain/gcc/patches/no-lib64.patch) | 0 |
7 files changed, 42934 insertions, 2 deletions
diff --git a/toolchain/gcc/Makefile b/toolchain/gcc/Makefile index ec13aadea..b2e8842d9 100644 --- a/toolchain/gcc/Makefile +++ b/toolchain/gcc/Makefile @@ -22,7 +22,6 @@ GCC_CONFOPTS= --prefix=$(STAGING_HOST_DIR) \ --disable-libgomp \ --disable-biarch \ --disable-decimal-float \ - --disable-sjlj-exceptions \ --disable-libstdcxx-pch \ --disable-ppl-version-check \ --disable-cloog-version-check \ @@ -30,6 +29,12 @@ GCC_CONFOPTS= --prefix=$(STAGING_HOST_DIR) \ --without-cloog \ --disable-nls +ifeq ($(ADK_TOOLCHAIN_GCC_SJLJ),y) +GCC_CONFOPTS+= --enable-sjlj-exceptions +else +GCC_CONFOPTS+= --disable-sjlj-exceptions +endif + ifeq ($(ADK_TOOLCHAIN_GCC_SSP),y) GCC_CONFOPTS+= --enable-libssp else diff --git a/toolchain/gcc/Makefile.inc b/toolchain/gcc/Makefile.inc index 0dad1b0fb..eea56050d 100644 --- a/toolchain/gcc/Makefile.inc +++ b/toolchain/gcc/Makefile.inc @@ -2,8 +2,15 @@ # material, please see the LICENCE file in the top-level directory. PKG_NAME:= gcc + +ifeq ($(ADK_LINUX_AVR32),y) +PKG_VERSION:= 4.4.6 +PKG_MD5SUM:= ab525d429ee4425050a554bc9247d6c4 +else PKG_VERSION:= 4.5.3 -PKG_RELEASE:= 1 PKG_MD5SUM:= 8e0b5c12212e185f3e4383106bfa9cc6 +endif + +PKG_RELEASE:= 1 PKG_SITES:= ${MASTER_SITE_GNU:=gcc/gcc-${PKG_VERSION}/} DISTFILES:= $(PKG_NAME)-$(PKG_VERSION).tar.bz2 diff --git a/toolchain/gcc/patches/4.4.6/cflags.patch b/toolchain/gcc/patches/4.4.6/cflags.patch new file mode 100644 index 000000000..1b17e983e --- /dev/null +++ b/toolchain/gcc/patches/4.4.6/cflags.patch @@ -0,0 +1,269 @@ + + This patch brings over a few features from MirBSD: + * -fhonour-copts + If this option is not given, it's warned (depending + on environment variables). This is to catch errors + of misbuilt packages which override CFLAGS themselves. + * -Werror-maybe-reset + Has the effect of -Wno-error if GCC_NO_WERROR is + set and not '0', a no-operation otherwise. This is + to be able to use -Werror in "make" but prevent + GNU autoconf generated configure scripts from + freaking out. + * Make -fno-strict-aliasing and -fno-delete-null-pointer-checks + the default for -O2/-Os, because they trigger gcc bugs + and can delete code with security implications. + + This patch was authored by Thorsten Glaser <tg at mirbsd.de> + with copyright assignment to the FSF in effect. + +--- a/gcc/c-opts.c ++++ b/gcc/c-opts.c +@@ -105,6 +105,9 @@ static size_t deferred_count; + /* Number of deferred options scanned for -include. */ + static size_t include_cursor; + ++/* Check if a port honours COPTS. */ ++static int honour_copts = 0; ++ + static void set_Wimplicit (int); + static void handle_OPT_d (const char *); + static void set_std_cxx98 (int); +@@ -454,6 +457,14 @@ c_common_handle_option (size_t scode, co + enable_warning_as_error ("implicit-function-declaration", value, CL_C | CL_ObjC); + break; + ++ case OPT_Werror_maybe_reset: ++ { ++ char *ev = getenv ("GCC_NO_WERROR"); ++ if ((ev != NULL) && (*ev != '0')) ++ cpp_opts->warnings_are_errors = 0; ++ } ++ break; ++ + case OPT_Wformat: + set_Wformat (value); + break; +@@ -690,6 +701,12 @@ c_common_handle_option (size_t scode, co + flag_exceptions = value; + break; + ++ case OPT_fhonour_copts: ++ if (c_language == clk_c) { ++ honour_copts++; ++ } ++ break; ++ + case OPT_fimplement_inlines: + flag_implement_inlines = value; + break; +@@ -1209,6 +1226,47 @@ c_common_init (void) + return false; + } + ++ if (c_language == clk_c) { ++ char *ev = getenv ("GCC_HONOUR_COPTS"); ++ int evv; ++ if (ev == NULL) ++ evv = -1; ++ else if ((*ev == '0') || (*ev == '\0')) ++ evv = 0; ++ else if (*ev == '1') ++ evv = 1; ++ else if (*ev == '2') ++ evv = 2; ++ else if (*ev == 's') ++ evv = -1; ++ else { ++ warning (0, "unknown GCC_HONOUR_COPTS value, assuming 1"); ++ evv = 1; /* maybe depend this on something like MIRBSD_NATIVE? */ ++ } ++ if (evv == 1) { ++ if (honour_copts == 0) { ++ error ("someone does not honour COPTS at all in lenient mode"); ++ return false; ++ } else if (honour_copts != 1) { ++ warning (0, "someone does not honour COPTS correctly, passed %d times", ++ honour_copts); ++ } ++ } else if (evv == 2) { ++ if (honour_copts == 0) { ++ error ("someone does not honour COPTS at all in strict mode"); ++ return false; ++ } else if (honour_copts != 1) { ++ error ("someone does not honour COPTS correctly, passed %d times", ++ honour_copts); ++ return false; ++ } ++ } else if (evv == 0) { ++ if (honour_copts != 1) ++ inform (0, "someone does not honour COPTS correctly, passed %d times", ++ honour_copts); ++ } ++ } ++ + return true; + } + +--- a/gcc/c.opt ++++ b/gcc/c.opt +@@ -215,6 +215,10 @@ Werror-implicit-function-declaration + C ObjC RejectNegative Warning + This switch is deprecated; use -Werror=implicit-function-declaration instead + ++Werror-maybe-reset ++C ObjC C++ ObjC++ ++; Documented in common.opt ++ + Wfloat-equal + C ObjC C++ ObjC++ Var(warn_float_equal) Warning + Warn if testing floating point numbers for equality +@@ -613,6 +617,9 @@ C++ ObjC++ Optimization + fhonor-std + C++ ObjC++ + ++fhonour-copts ++C ObjC C++ ObjC++ RejectNegative ++ + fhosted + C ObjC + Assume normal C execution environment +--- a/gcc/common.opt ++++ b/gcc/common.opt +@@ -102,6 +102,10 @@ Werror= + Common Joined + Treat specified warning as error + ++Werror-maybe-reset ++Common ++If environment variable GCC_NO_WERROR is set, act as -Wno-error ++ + Wextra + Common Warning + Print extra (possibly unwanted) warnings +@@ -573,6 +577,9 @@ fguess-branch-probability + Common Report Var(flag_guess_branch_prob) Optimization + Enable guessing of branch probabilities + ++fhonour-copts ++Common RejectNegative ++ + ; Nonzero means ignore `#ident' directives. 0 means handle them. + ; Generate position-independent code for executables if possible + ; On SVR4 targets, it also controls whether or not to emit a +--- a/gcc/opts.c ++++ b/gcc/opts.c +@@ -898,9 +898,6 @@ decode_options (unsigned int argc, const + flag_schedule_insns_after_reload = opt2; + #endif + flag_regmove = opt2; +- flag_strict_aliasing = opt2; +- flag_strict_overflow = opt2; +- flag_delete_null_pointer_checks = opt2; + flag_reorder_blocks = opt2; + flag_reorder_functions = opt2; + flag_tree_vrp = opt2; +@@ -924,6 +921,9 @@ decode_options (unsigned int argc, const + + /* -O3 optimizations. */ + opt3 = (optimize >= 3); ++ flag_strict_aliasing = opt3; ++ flag_strict_overflow = opt3; ++ flag_delete_null_pointer_checks = opt3; + flag_predictive_commoning = opt3; + flag_inline_functions = opt3; + flag_unswitch_loops = opt3; +@@ -1603,6 +1603,17 @@ common_handle_option (size_t scode, cons + enable_warning_as_error (arg, value, lang_mask); + break; + ++ case OPT_Werror_maybe_reset: ++ { ++ char *ev = getenv ("GCC_NO_WERROR"); ++ if ((ev != NULL) && (*ev != '0')) ++ warnings_are_errors = 0; ++ } ++ break; ++ ++ case OPT_fhonour_copts: ++ break; ++ + case OPT_Wextra: + set_Wextra (value); + break; +--- a/gcc/doc/cppopts.texi ++++ b/gcc/doc/cppopts.texi +@@ -164,6 +164,11 @@ in older programs. This warning is on b + Make all warnings into hard errors. Source code which triggers warnings + will be rejected. + ++ at item -Werror-maybe-reset ++ at opindex Werror-maybe-reset ++Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment ++variable is set to anything other than 0 or empty. ++ + @item -Wsystem-headers + @opindex Wsystem-headers + Issue warnings for code in system headers. These are normally unhelpful +--- a/gcc/doc/invoke.texi ++++ b/gcc/doc/invoke.texi +@@ -234,7 +234,7 @@ Objective-C and Objective-C++ Dialects}. + -Wconversion -Wcoverage-mismatch -Wno-deprecated @gol + -Wno-deprecated-declarations -Wdisabled-optimization @gol + -Wno-div-by-zero -Wempty-body -Wenum-compare -Wno-endif-labels @gol +--Werror -Werror=* @gol ++-Werror -Werror=* -Werror-maybe-reset @gol + -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol + -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol + -Wformat-security -Wformat-y2k @gol +@@ -4182,6 +4182,22 @@ This option is only supported for C and + @option{-Wall} and by @option{-pedantic}, which can be disabled with + @option{-Wno-pointer-sign}. + ++ at item -Werror-maybe-reset ++ at opindex Werror-maybe-reset ++Act like @samp{-Wno-error} if the @env{GCC_NO_WERROR} environment ++variable is set to anything other than 0 or empty. ++ ++ at item -fhonour-copts ++ at opindex fhonour-copts ++If @env{GCC_HONOUR_COPTS} is set to 1, abort if this option is not ++given at least once, and warn if it is given more than once. ++If @env{GCC_HONOUR_COPTS} is set to 2, abort if this option is not ++given exactly once. ++If @env{GCC_HONOUR_COPTS} is set to 0 or unset, warn if this option ++is not given exactly once. ++The warning is quelled if @env{GCC_HONOUR_COPTS} is set to @samp{s}. ++This flag and environment variable only affect the C language. ++ + @item -Wstack-protector + @opindex Wstack-protector + @opindex Wno-stack-protector +@@ -5721,7 +5737,7 @@ so, the first branch is redirected to ei + second branch or a point immediately following it, depending on whether + the condition is known to be true or false. + +-Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++Enabled at levels @option{-O3}. + + @item -fsplit-wide-types + @opindex fsplit-wide-types +@@ -5866,7 +5882,7 @@ safely dereference null pointers. Use + @option{-fno-delete-null-pointer-checks} to disable this optimization + for programs which depend on that behavior. + +-Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++Enabled at levels @option{-O3}. + + @item -fexpensive-optimizations + @opindex fexpensive-optimizations +--- a/gcc/java/jvspec.c ++++ b/gcc/java/jvspec.c +@@ -670,6 +670,7 @@ lang_specific_pre_link (void) + class name. Append dummy `.c' that can be stripped by set_input so %b + is correct. */ + set_input (concat (main_class_name, "main.c", NULL)); ++ putenv ("GCC_HONOUR_COPTS=s"); /* XXX hack! */ + err = do_spec (jvgenmain_spec); + if (err == 0) + { diff --git a/toolchain/gcc/patches/4.4.6/gcc-avr32.patch b/toolchain/gcc/patches/4.4.6/gcc-avr32.patch new file mode 100644 index 000000000..0b092c07c --- /dev/null +++ b/toolchain/gcc/patches/4.4.6/gcc-avr32.patch @@ -0,0 +1,42651 @@ +diff -Nur gcc-4.4.6.orig/gcc/builtins.c gcc-4.4.6/gcc/builtins.c +--- gcc-4.4.6.orig/gcc/builtins.c 2010-12-07 19:56:56.000000000 +0100 ++++ gcc-4.4.6/gcc/builtins.c 2011-08-27 19:45:42.559232404 +0200 +@@ -11108,7 +11108,7 @@ + + do + { +- code = va_arg (ap, enum tree_code); ++ code = va_arg (ap, int); + switch (code) + { + case 0: +diff -Nur gcc-4.4.6.orig/gcc/calls.c gcc-4.4.6/gcc/calls.c +--- gcc-4.4.6.orig/gcc/calls.c 2010-09-24 17:07:36.000000000 +0200 ++++ gcc-4.4.6/gcc/calls.c 2011-08-27 19:45:42.589240794 +0200 +@@ -3447,7 +3447,7 @@ + for (; count < nargs; count++) + { + rtx val = va_arg (p, rtx); +- enum machine_mode mode = va_arg (p, enum machine_mode); ++ enum machine_mode mode = va_arg (p, int); + + /* We cannot convert the arg value to the mode the library wants here; + must do it earlier where we know the signedness of the arg. */ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/avr32.c gcc-4.4.6/gcc/config/avr32/avr32.c +--- gcc-4.4.6.orig/gcc/config/avr32/avr32.c 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/avr32.c 2011-08-27 19:45:59.051740454 +0200 +@@ -0,0 +1,8087 @@ ++/* ++ Target hooks and helper functions for AVR32. ++ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#include "config.h" ++#include "system.h" ++#include "coretypes.h" ++#include "tm.h" ++#include "rtl.h" ++#include "tree.h" ++#include "obstack.h" ++#include "regs.h" ++#include "hard-reg-set.h" ++#include "real.h" ++#include "insn-config.h" ++#include "conditions.h" ++#include "output.h" ++#include "insn-attr.h" ++#include "flags.h" ++#include "reload.h" ++#include "function.h" ++#include "expr.h" ++#include "optabs.h" ++#include "toplev.h" ++#include "recog.h" ++#include "ggc.h" ++#include "except.h" ++#include "c-pragma.h" ++#include "integrate.h" ++#include "tm_p.h" ++#include "langhooks.h" ++#include "hooks.h" ++#include "df.h" ++ ++#include "target.h" ++#include "target-def.h" ++ ++#include <ctype.h> ++ ++ ++ ++/* Global variables. */ ++typedef struct minipool_node Mnode; ++typedef struct minipool_fixup Mfix; ++ ++/* Obstack for minipool constant handling. */ ++static struct obstack minipool_obstack; ++static char *minipool_startobj; ++static rtx minipool_vector_label; ++ ++/* True if we are currently building a constant table. */ ++int making_const_table; ++ ++tree fndecl_attribute_args = NULL_TREE; ++ ++ ++/* Function prototypes. */ ++static unsigned long avr32_isr_value (tree); ++static unsigned long avr32_compute_func_type (void); ++static tree avr32_handle_isr_attribute (tree *, tree, tree, int, bool *); ++static tree avr32_handle_acall_attribute (tree *, tree, tree, int, bool *); ++static tree avr32_handle_fndecl_attribute (tree * node, tree name, tree args, ++ int flags, bool * no_add_attrs); ++static void avr32_reorg (void); ++bool avr32_return_in_msb (tree type); ++bool avr32_vector_mode_supported (enum machine_mode mode); ++static void avr32_init_libfuncs (void); ++static void avr32_file_end (void); ++static void flashvault_decl_list_add (unsigned int vector_num, const char *name); ++ ++ ++ ++static void ++avr32_add_gc_roots (void) ++{ ++ gcc_obstack_init (&minipool_obstack); ++ minipool_startobj = (char *) obstack_alloc (&minipool_obstack, 0); ++} ++ ++ ++/* List of all known AVR32 parts */ ++static const struct part_type_s avr32_part_types[] = { ++ /* name, part_type, architecture type, macro */ ++ {"none", PART_TYPE_AVR32_NONE, ARCH_TYPE_AVR32_AP, "__AVR32__"}, ++ {"ap7000", PART_TYPE_AVR32_AP7000, ARCH_TYPE_AVR32_AP, "__AVR32_AP7000__"}, ++ {"ap7001", PART_TYPE_AVR32_AP7001, ARCH_TYPE_AVR32_AP, "__AVR32_AP7001__"}, ++ {"ap7002", PART_TYPE_AVR32_AP7002, ARCH_TYPE_AVR32_AP, "__AVR32_AP7002__"}, ++ {"ap7200", PART_TYPE_AVR32_AP7200, ARCH_TYPE_AVR32_AP, "__AVR32_AP7200__"}, ++ {"uc3a0128", PART_TYPE_AVR32_UC3A0128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0128__"}, ++ {"uc3a0256", PART_TYPE_AVR32_UC3A0256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0256__"}, ++ {"uc3a0512", PART_TYPE_AVR32_UC3A0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A0512__"}, ++ {"uc3a0512es", PART_TYPE_AVR32_UC3A0512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A0512ES__"}, ++ {"uc3a1128", PART_TYPE_AVR32_UC3A1128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1128__"}, ++ {"uc3a1256", PART_TYPE_AVR32_UC3A1256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1256__"}, ++ {"uc3a1512", PART_TYPE_AVR32_UC3A1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A1512__"}, ++ {"uc3a1512es", PART_TYPE_AVR32_UC3A1512ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3A1512ES__"}, ++ {"uc3a3revd", PART_TYPE_AVR32_UC3A3REVD, ARCH_TYPE_AVR32_UCR2NOMUL, "__AVR32_UC3A3256S__"}, ++ {"uc3a364", PART_TYPE_AVR32_UC3A364, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364__"}, ++ {"uc3a364s", PART_TYPE_AVR32_UC3A364S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A364S__"}, ++ {"uc3a3128", PART_TYPE_AVR32_UC3A3128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128__"}, ++ {"uc3a3128s", PART_TYPE_AVR32_UC3A3128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3128S__"}, ++ {"uc3a3256", PART_TYPE_AVR32_UC3A3256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256__"}, ++ {"uc3a3256s", PART_TYPE_AVR32_UC3A3256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A3256S__"}, ++ {"uc3a464", PART_TYPE_AVR32_UC3A464, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464__"}, ++ {"uc3a464s", PART_TYPE_AVR32_UC3A464S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A464S__"}, ++ {"uc3a4128", PART_TYPE_AVR32_UC3A4128, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128__"}, ++ {"uc3a4128s", PART_TYPE_AVR32_UC3A4128S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4128S__"}, ++ {"uc3a4256", PART_TYPE_AVR32_UC3A4256, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256__"}, ++ {"uc3a4256s", PART_TYPE_AVR32_UC3A4256S, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3A4256S__"}, ++ {"uc3b064", PART_TYPE_AVR32_UC3B064, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B064__"}, ++ {"uc3b0128", PART_TYPE_AVR32_UC3B0128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0128__"}, ++ {"uc3b0256", PART_TYPE_AVR32_UC3B0256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256__"}, ++ {"uc3b0256es", PART_TYPE_AVR32_UC3B0256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B0256ES__"}, ++ {"uc3b0512", PART_TYPE_AVR32_UC3B0512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512__"}, ++ {"uc3b0512revc", PART_TYPE_AVR32_UC3B0512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B0512REVC__"}, ++ {"uc3b164", PART_TYPE_AVR32_UC3B164, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B164__"}, ++ {"uc3b1128", PART_TYPE_AVR32_UC3B1128, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1128__"}, ++ {"uc3b1256", PART_TYPE_AVR32_UC3B1256, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256__"}, ++ {"uc3b1256es", PART_TYPE_AVR32_UC3B1256ES, ARCH_TYPE_AVR32_UCR1, "__AVR32_UC3B1256ES__"}, ++ {"uc3b1512", PART_TYPE_AVR32_UC3B1512, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512__"}, ++ {"uc3b1512revc", PART_TYPE_AVR32_UC3B1512REVC, ARCH_TYPE_AVR32_UCR2, "__AVR32_UC3B1512REVC__"}, ++ {"uc64d3", PART_TYPE_AVR32_UC64D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D3__"}, ++ {"uc128d3", PART_TYPE_AVR32_UC128D3, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D3__"}, ++ {"uc64d4", PART_TYPE_AVR32_UC64D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64D4__"}, ++ {"uc128d4", PART_TYPE_AVR32_UC128D4, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128D4__"}, ++ {"uc3c0512crevc", PART_TYPE_AVR32_UC3C0512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C0512CREVC__"}, ++ {"uc3c1512crevc", PART_TYPE_AVR32_UC3C1512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C1512CREVC__"}, ++ {"uc3c2512crevc", PART_TYPE_AVR32_UC3C2512CREVC, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3C2512CREVC__"}, ++ {"uc3l0256", PART_TYPE_AVR32_UC3L0256, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0256__"}, ++ {"uc3l0128", PART_TYPE_AVR32_UC3L0128, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L0128__"}, ++ {"uc3l064", PART_TYPE_AVR32_UC3L064, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064__"}, ++ {"uc3l032", PART_TYPE_AVR32_UC3L032, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L032__"}, ++ {"uc3l016", PART_TYPE_AVR32_UC3L016, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L016__"}, ++ {"uc3l064revb", PART_TYPE_AVR32_UC3L064REVB, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC3L064REVB__"}, ++ {"uc64l3u", PART_TYPE_AVR32_UC64L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L3U__"}, ++ {"uc128l3u", PART_TYPE_AVR32_UC128L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L3U__"}, ++ {"uc256l3u", PART_TYPE_AVR32_UC256L3U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L3U__"}, ++ {"uc64l4u", PART_TYPE_AVR32_UC64L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC64L4U__"}, ++ {"uc128l4u", PART_TYPE_AVR32_UC128L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC128L4U__"}, ++ {"uc256l4u", PART_TYPE_AVR32_UC256L4U, ARCH_TYPE_AVR32_UCR3, "__AVR32_UC256L4U__"}, ++ {"uc3c064c", PART_TYPE_AVR32_UC3C064C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C064C__"}, ++ {"uc3c0128c", PART_TYPE_AVR32_UC3C0128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0128C__"}, ++ {"uc3c0256c", PART_TYPE_AVR32_UC3C0256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0256C__"}, ++ {"uc3c0512c", PART_TYPE_AVR32_UC3C0512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C0512C__"}, ++ {"uc3c164c", PART_TYPE_AVR32_UC3C164C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C164C__"}, ++ {"uc3c1128c", PART_TYPE_AVR32_UC3C1128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1128C__"}, ++ {"uc3c1256c", PART_TYPE_AVR32_UC3C1256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1256C__"}, ++ {"uc3c1512c", PART_TYPE_AVR32_UC3C1512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C1512C__"}, ++ {"uc3c264c", PART_TYPE_AVR32_UC3C264C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C264C__"}, ++ {"uc3c2128c", PART_TYPE_AVR32_UC3C2128C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2128C__"}, ++ {"uc3c2256c", PART_TYPE_AVR32_UC3C2256C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2256C__"}, ++ {"uc3c2512c", PART_TYPE_AVR32_UC3C2512C, ARCH_TYPE_AVR32_UCR3FP, "__AVR32_UC3C2512C__"}, ++ {"mxt768e", PART_TYPE_AVR32_MXT768E, ARCH_TYPE_AVR32_UCR3, "__AVR32_MXT768E__"}, ++ {NULL, 0, 0, NULL} ++}; ++ ++/* List of all known AVR32 architectures */ ++static const struct arch_type_s avr32_arch_types[] = { ++ /* name, architecture type, microarchitecture type, feature flags, macro */ ++ {"ap", ARCH_TYPE_AVR32_AP, UARCH_TYPE_AVR32B, ++ (FLAG_AVR32_HAS_DSP ++ | FLAG_AVR32_HAS_SIMD ++ | FLAG_AVR32_HAS_UNALIGNED_WORD ++ | FLAG_AVR32_HAS_BRANCH_PRED | FLAG_AVR32_HAS_RETURN_STACK ++ | FLAG_AVR32_HAS_CACHES), ++ "__AVR32_AP__"}, ++ {"ucr1", ARCH_TYPE_AVR32_UCR1, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW), ++ "__AVR32_UC__=1"}, ++ {"ucr2", ARCH_TYPE_AVR32_UCR2, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=2"}, ++ {"ucr2nomul", ARCH_TYPE_AVR32_UCR2NOMUL, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS | FLAG_AVR32_HAS_NO_MUL_INSNS), ++ "__AVR32_UC__=2"}, ++ {"ucr3", ARCH_TYPE_AVR32_UCR3, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=3"}, ++ {"ucr3fp", ARCH_TYPE_AVR32_UCR3FP, UARCH_TYPE_AVR32A, ++ (FLAG_AVR32_HAS_DSP | FLAG_AVR32_HAS_RMW | FLAG_AVR32_HAS_FPU ++ | FLAG_AVR32_HAS_V2_INSNS), ++ "__AVR32_UC__=3"}, ++ {NULL, 0, 0, 0, NULL} ++}; ++ ++/* Default arch name */ ++const char *avr32_arch_name = "none"; ++const char *avr32_part_name = "none"; ++ ++const struct part_type_s *avr32_part; ++const struct arch_type_s *avr32_arch; ++ ++ ++/* FIXME: needs to use GC. */ ++struct flashvault_decl_list ++{ ++ struct flashvault_decl_list *next; ++ unsigned int vector_num; ++ const char *name; ++}; ++ ++static struct flashvault_decl_list *flashvault_decl_list_head = NULL; ++ ++ ++/* Set default target_flags. */ ++#undef TARGET_DEFAULT_TARGET_FLAGS ++#define TARGET_DEFAULT_TARGET_FLAGS \ ++ (MASK_HAS_ASM_ADDR_PSEUDOS | MASK_MD_REORG_OPTIMIZATION | MASK_COND_EXEC_BEFORE_RELOAD) ++ ++void ++avr32_optimization_options (int level, int size) ++{ ++ if (AVR32_ALWAYS_PIC) ++ flag_pic = 1; ++ ++ /* Enable section anchors if optimization is enabled. */ ++ if (level > 0 || size) ++ flag_section_anchors = 2; ++} ++ ++ ++/* Override command line options */ ++void ++avr32_override_options (void) ++{ ++ const struct part_type_s *part; ++ const struct arch_type_s *arch, *part_arch; ++ ++ /*Add backward compability*/ ++ if (strcmp ("uc", avr32_arch_name)== 0) ++ { ++ fprintf (stderr, "Warning: Deprecated arch `%s' specified. " ++ "Please use '-march=ucr1' instead. " ++ "Using arch 'ucr1'\n", ++ avr32_arch_name); ++ avr32_arch_name="ucr1"; ++ } ++ ++ /* Check if arch type is set. */ ++ for (arch = avr32_arch_types; arch->name; arch++) ++ { ++ if (strcmp (arch->name, avr32_arch_name) == 0) ++ break; ++ } ++ avr32_arch = arch; ++ ++ if (!arch->name && strcmp("none", avr32_arch_name) != 0) ++ { ++ fprintf (stderr, "Unknown arch `%s' specified\n" ++ "Known arch names:\n" ++ "\tuc (deprecated)\n", ++ avr32_arch_name); ++ for (arch = avr32_arch_types; arch->name; arch++) ++ fprintf (stderr, "\t%s\n", arch->name); ++ avr32_arch = &avr32_arch_types[ARCH_TYPE_AVR32_AP]; ++ } ++ ++ /* Check if part type is set. */ ++ for (part = avr32_part_types; part->name; part++) ++ if (strcmp (part->name, avr32_part_name) == 0) ++ break; ++ ++ avr32_part = part; ++ if (!part->name) ++ { ++ fprintf (stderr, "Unknown part `%s' specified\nKnown part names:\n", ++ avr32_part_name); ++ for (part = avr32_part_types; part->name; part++) ++ { ++ if (strcmp("none", part->name) != 0) ++ fprintf (stderr, "\t%s\n", part->name); ++ } ++ /* Set default to NONE*/ ++ avr32_part = &avr32_part_types[PART_TYPE_AVR32_NONE]; ++ } ++ ++ /* NB! option -march= overrides option -mpart ++ * if both are used at the same time */ ++ if (!arch->name) ++ avr32_arch = &avr32_arch_types[avr32_part->arch_type]; ++ ++ /* When architecture implied by -mpart and one passed in -march are ++ * conflicting, issue an error message */ ++ part_arch = &avr32_arch_types[avr32_part->arch_type]; ++ if (strcmp("none",avr32_part_name) && strcmp("none", avr32_arch_name) && strcmp(avr32_arch_name,part_arch->name)) ++ error ("Conflicting architectures implied by -mpart and -march\n"); ++ ++ /* If optimization level is two or greater, then align start of loops to a ++ word boundary since this will allow folding the first insn of the loop. ++ Do this only for targets supporting branch prediction. */ ++ if (optimize >= 2 && TARGET_BRANCH_PRED) ++ align_loops = 2; ++ ++ ++ /* Enable fast-float library if unsafe math optimizations ++ are used. */ ++ if (flag_unsafe_math_optimizations) ++ target_flags |= MASK_FAST_FLOAT; ++ ++ /* Check if we should set avr32_imm_in_const_pool ++ based on if caches are present or not. */ ++ if ( avr32_imm_in_const_pool == -1 ) ++ { ++ if ( TARGET_CACHES ) ++ avr32_imm_in_const_pool = 1; ++ else ++ avr32_imm_in_const_pool = 0; ++ } ++ ++ if (TARGET_NO_PIC) ++ flag_pic = 0; ++ avr32_add_gc_roots (); ++} ++ ++ ++/* ++If defined, a function that outputs the assembler code for entry to a ++function. The prologue is responsible for setting up the stack frame, ++initializing the frame pointer register, saving registers that must be ++saved, and allocating size additional bytes of storage for the ++local variables. size is an integer. file is a stdio ++stream to which the assembler code should be output. ++ ++The label for the beginning of the function need not be output by this ++macro. That has already been done when the macro is run. ++ ++To determine which registers to save, the macro can refer to the array ++regs_ever_live: element r is nonzero if hard register ++r is used anywhere within the function. This implies the function ++prologue should save register r, provided it is not one of the ++call-used registers. (TARGET_ASM_FUNCTION_EPILOGUE must likewise use ++regs_ever_live.) ++ ++On machines that have ``register windows'', the function entry code does ++not save on the stack the registers that are in the windows, even if ++they are supposed to be preserved by function calls; instead it takes ++appropriate steps to ``push'' the register stack, if any non-call-used ++registers are used in the function. ++ ++On machines where functions may or may not have frame-pointers, the ++function entry code must vary accordingly; it must set up the frame ++pointer if one is wanted, and not otherwise. To determine whether a ++frame pointer is in wanted, the macro can refer to the variable ++frame_pointer_needed. The variable's value will be 1 at run ++time in a function that needs a frame pointer. (see Elimination). ++ ++The function entry code is responsible for allocating any stack space ++required for the function. This stack space consists of the regions ++listed below. In most cases, these regions are allocated in the ++order listed, with the last listed region closest to the top of the ++stack (the lowest address if STACK_GROWS_DOWNWARD is defined, and ++the highest address if it is not defined). You can use a different order ++for a machine if doing so is more convenient or required for ++compatibility reasons. Except in cases where required by standard ++or by a debugger, there is no reason why the stack layout used by GCC ++need agree with that used by other compilers for a machine. ++*/ ++ ++#undef TARGET_ASM_FUNCTION_PROLOGUE ++#define TARGET_ASM_FUNCTION_PROLOGUE avr32_target_asm_function_prologue ++ ++#undef TARGET_ASM_FILE_END ++#define TARGET_ASM_FILE_END avr32_file_end ++ ++#undef TARGET_DEFAULT_SHORT_ENUMS ++#define TARGET_DEFAULT_SHORT_ENUMS hook_bool_void_false ++ ++#undef TARGET_PROMOTE_FUNCTION_ARGS ++#define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true ++ ++#undef TARGET_PROMOTE_FUNCTION_RETURN ++#define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true ++ ++#undef TARGET_PROMOTE_PROTOTYPES ++#define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true ++ ++#undef TARGET_MUST_PASS_IN_STACK ++#define TARGET_MUST_PASS_IN_STACK avr32_must_pass_in_stack ++ ++#undef TARGET_PASS_BY_REFERENCE ++#define TARGET_PASS_BY_REFERENCE avr32_pass_by_reference ++ ++#undef TARGET_STRICT_ARGUMENT_NAMING ++#define TARGET_STRICT_ARGUMENT_NAMING avr32_strict_argument_naming ++ ++#undef TARGET_VECTOR_MODE_SUPPORTED_P ++#define TARGET_VECTOR_MODE_SUPPORTED_P avr32_vector_mode_supported ++ ++#undef TARGET_RETURN_IN_MEMORY ++#define TARGET_RETURN_IN_MEMORY avr32_return_in_memory ++ ++#undef TARGET_RETURN_IN_MSB ++#define TARGET_RETURN_IN_MSB avr32_return_in_msb ++ ++#undef TARGET_ENCODE_SECTION_INFO ++#define TARGET_ENCODE_SECTION_INFO avr32_encode_section_info ++ ++#undef TARGET_ARG_PARTIAL_BYTES ++#define TARGET_ARG_PARTIAL_BYTES avr32_arg_partial_bytes ++ ++#undef TARGET_STRIP_NAME_ENCODING ++#define TARGET_STRIP_NAME_ENCODING avr32_strip_name_encoding ++ ++#define streq(string1, string2) (strcmp (string1, string2) == 0) ++ ++#undef TARGET_NARROW_VOLATILE_BITFIELD ++#define TARGET_NARROW_VOLATILE_BITFIELD hook_bool_void_false ++ ++#undef TARGET_ATTRIBUTE_TABLE ++#define TARGET_ATTRIBUTE_TABLE avr32_attribute_table ++ ++#undef TARGET_COMP_TYPE_ATTRIBUTES ++#define TARGET_COMP_TYPE_ATTRIBUTES avr32_comp_type_attributes ++ ++ ++#undef TARGET_RTX_COSTS ++#define TARGET_RTX_COSTS avr32_rtx_costs ++ ++#undef TARGET_CANNOT_FORCE_CONST_MEM ++#define TARGET_CANNOT_FORCE_CONST_MEM avr32_cannot_force_const_mem ++ ++#undef TARGET_ASM_INTEGER ++#define TARGET_ASM_INTEGER avr32_assemble_integer ++ ++#undef TARGET_FUNCTION_VALUE ++#define TARGET_FUNCTION_VALUE avr32_function_value ++ ++#undef TARGET_MIN_ANCHOR_OFFSET ++#define TARGET_MIN_ANCHOR_OFFSET (0) ++ ++#undef TARGET_MAX_ANCHOR_OFFSET ++#define TARGET_MAX_ANCHOR_OFFSET ((1 << 15) - 1) ++#undef TARGET_SECONDARY_RELOAD ++#define TARGET_SECONDARY_RELOAD avr32_secondary_reload ++ ++ ++/* ++ * Defining the option, -mlist-devices to list the devices supported by gcc. ++ * This option should be used while printing target-help to list all the ++ * supported devices. ++ */ ++#undef TARGET_HELP ++#define TARGET_HELP avr32_target_help ++ ++void avr32_target_help () ++{ ++ if (avr32_list_supported_parts) ++ { ++ const struct part_type_s *list; ++ fprintf (stdout, "List of parts supported by avr32-gcc:\n"); ++ for (list = avr32_part_types; list->name; list++) ++ { ++ if (strcmp("none", list->name) != 0) ++ fprintf (stdout, "%-20s%s\n", list->name, list->macro); ++ } ++ fprintf (stdout, "\n\n"); ++ } ++} ++ ++enum reg_class ++avr32_secondary_reload (bool in_p, rtx x, enum reg_class class, ++ enum machine_mode mode, secondary_reload_info *sri) ++{ ++ ++ if ( avr32_rmw_memory_operand (x, mode) ) ++ { ++ if (!in_p) ++ sri->icode = CODE_FOR_reload_out_rmw_memory_operand; ++ else ++ sri->icode = CODE_FOR_reload_in_rmw_memory_operand; ++ } ++ return NO_REGS; ++ ++} ++/* ++ * Switches to the appropriate section for output of constant pool ++ * entry x in mode. You can assume that x is some kind of constant in ++ * RTL. The argument mode is redundant except in the case of a ++ * const_int rtx. Select the section by calling readonly_data_ section ++ * or one of the alternatives for other sections. align is the ++ * constant alignment in bits. ++ * ++ * The default version of this function takes care of putting symbolic ++ * constants in flag_ pic mode in data_section and everything else in ++ * readonly_data_section. ++ */ ++//#undef TARGET_ASM_SELECT_RTX_SECTION ++//#define TARGET_ASM_SELECT_RTX_SECTION avr32_select_rtx_section ++ ++ ++/* ++ * If non-null, this hook performs a target-specific pass over the ++ * instruction stream. The compiler will run it at all optimization ++ * levels, just before the point at which it normally does ++ * delayed-branch scheduling. ++ * ++ * The exact purpose of the hook varies from target to target. Some ++ * use it to do transformations that are necessary for correctness, ++ * such as laying out in-function constant pools or avoiding hardware ++ * hazards. Others use it as an opportunity to do some ++ * machine-dependent optimizations. ++ * ++ * You need not implement the hook if it has nothing to do. The ++ * default definition is null. ++ */ ++#undef TARGET_MACHINE_DEPENDENT_REORG ++#define TARGET_MACHINE_DEPENDENT_REORG avr32_reorg ++ ++/* Target hook for assembling integer objects. ++ Need to handle integer vectors */ ++static bool ++avr32_assemble_integer (rtx x, unsigned int size, int aligned_p) ++{ ++ if (avr32_vector_mode_supported (GET_MODE (x))) ++ { ++ int i, units; ++ ++ if (GET_CODE (x) != CONST_VECTOR) ++ abort (); ++ ++ units = CONST_VECTOR_NUNITS (x); ++ ++ switch (GET_MODE (x)) ++ { ++ case V2HImode: ++ size = 2; ++ break; ++ case V4QImode: ++ size = 1; ++ break; ++ default: ++ abort (); ++ } ++ ++ for (i = 0; i < units; i++) ++ { ++ rtx elt; ++ ++ elt = CONST_VECTOR_ELT (x, i); ++ assemble_integer (elt, size, i == 0 ? 32 : size * BITS_PER_UNIT, 1); ++ } ++ ++ return true; ++ } ++ ++ return default_assemble_integer (x, size, aligned_p); ++} ++ ++ ++/* ++ * This target hook describes the relative costs of RTL expressions. ++ * ++ * The cost may depend on the precise form of the expression, which is ++ * available for examination in x, and the rtx code of the expression ++ * in which it is contained, found in outer_code. code is the ++ * expression code--redundant, since it can be obtained with GET_CODE ++ * (x). ++ * ++ * In implementing this hook, you can use the construct COSTS_N_INSNS ++ * (n) to specify a cost equal to n fast instructions. ++ * ++ * On entry to the hook, *total contains a default estimate for the ++ * cost of the expression. The hook should modify this value as ++ * necessary. Traditionally, the default costs are COSTS_N_INSNS (5) ++ * for multiplications, COSTS_N_INSNS (7) for division and modulus ++ * operations, and COSTS_N_INSNS (1) for all other operations. ++ * ++ * When optimizing for code size, i.e. when optimize_size is non-zero, ++ * this target hook should be used to estimate the relative size cost ++ * of an expression, again relative to COSTS_N_INSNS. ++ * ++ * The hook returns true when all subexpressions of x have been ++ * processed, and false when rtx_cost should recurse. ++ */ ++ ++/* Worker routine for avr32_rtx_costs. */ ++static inline int ++avr32_rtx_costs_1 (rtx x, enum rtx_code code ATTRIBUTE_UNUSED, ++ enum rtx_code outer ATTRIBUTE_UNUSED) ++{ ++ enum machine_mode mode = GET_MODE (x); ++ ++ switch (GET_CODE (x)) ++ { ++ case MEM: ++ /* Using pre decrement / post increment memory operations on the ++ avr32_uc architecture means that two writebacks must be performed ++ and hence two cycles are needed. */ ++ if (!optimize_size ++ && GET_MODE_SIZE (mode) <= 2 * UNITS_PER_WORD ++ && TARGET_ARCH_UC ++ && (GET_CODE (XEXP (x, 0)) == PRE_DEC ++ || GET_CODE (XEXP (x, 0)) == POST_INC)) ++ return COSTS_N_INSNS (5); ++ ++ /* Memory costs quite a lot for the first word, but subsequent words ++ load at the equivalent of a single insn each. */ ++ if (GET_MODE_SIZE (mode) > UNITS_PER_WORD) ++ return COSTS_N_INSNS (3 + (GET_MODE_SIZE (mode) / UNITS_PER_WORD)); ++ ++ return COSTS_N_INSNS (4); ++ case SYMBOL_REF: ++ case CONST: ++ /* These are valid for the pseudo insns: lda.w and call which operates ++ on direct addresses. We assume that the cost of a lda.w is the same ++ as the cost of a ld.w insn. */ ++ return (outer == SET) ? COSTS_N_INSNS (4) : COSTS_N_INSNS (1); ++ case DIV: ++ case MOD: ++ case UDIV: ++ case UMOD: ++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); ++ ++ case ROTATE: ++ case ROTATERT: ++ if (mode == TImode) ++ return COSTS_N_INSNS (100); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (10); ++ return COSTS_N_INSNS (4); ++ case ASHIFT: ++ case LSHIFTRT: ++ case ASHIFTRT: ++ case NOT: ++ if (mode == TImode) ++ return COSTS_N_INSNS (10); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (4); ++ return COSTS_N_INSNS (1); ++ case PLUS: ++ case MINUS: ++ case NEG: ++ case COMPARE: ++ case ABS: ++ if (GET_MODE_CLASS (mode) == MODE_FLOAT) ++ return COSTS_N_INSNS (100); ++ ++ if (mode == TImode) ++ return COSTS_N_INSNS (50); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (2); ++ return COSTS_N_INSNS (1); ++ ++ case MULT: ++ { ++ if (GET_MODE_CLASS (mode) == MODE_FLOAT) ++ return COSTS_N_INSNS (300); ++ ++ if (mode == TImode) ++ return COSTS_N_INSNS (16); ++ ++ if (mode == DImode) ++ return COSTS_N_INSNS (4); ++ ++ if (mode == HImode) ++ return COSTS_N_INSNS (2); ++ ++ return COSTS_N_INSNS (3); ++ } ++ case IF_THEN_ELSE: ++ if (GET_CODE (XEXP (x, 1)) == PC || GET_CODE (XEXP (x, 2)) == PC) ++ return COSTS_N_INSNS (4); ++ return COSTS_N_INSNS (1); ++ case SIGN_EXTEND: ++ case ZERO_EXTEND: ++ /* Sign/Zero extensions of registers cost quite much since these ++ instrcutions only take one register operand which means that gcc ++ often must insert some move instrcutions */ ++ if (mode == QImode || mode == HImode) ++ return (COSTS_N_INSNS (GET_CODE (XEXP (x, 0)) == MEM ? 0 : 1)); ++ return COSTS_N_INSNS (4); ++ case UNSPEC: ++ /* divmod operations */ ++ if (XINT (x, 1) == UNSPEC_UDIVMODSI4_INTERNAL ++ || XINT (x, 1) == UNSPEC_DIVMODSI4_INTERNAL) ++ { ++ return optimize_size ? COSTS_N_INSNS (1) : COSTS_N_INSNS (16); ++ } ++ /* Fallthrough */ ++ default: ++ return COSTS_N_INSNS (1); ++ } ++} ++ ++ ++static bool ++avr32_rtx_costs (rtx x, int code, int outer_code, int *total) ++{ ++ *total = avr32_rtx_costs_1 (x, code, outer_code); ++ return true; ++} ++ ++ ++bool ++avr32_cannot_force_const_mem (rtx x ATTRIBUTE_UNUSED) ++{ ++ /* Do not want symbols in the constant pool when compiling pic or if using ++ address pseudo instructions. */ ++ return ((flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) ++ && avr32_find_symbol (x) != NULL_RTX); ++} ++ ++ ++/* Table of machine attributes. */ ++const struct attribute_spec avr32_attribute_table[] = { ++ /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ ++ /* Interrupt Service Routines have special prologue and epilogue ++ requirements. */ ++ {"isr", 0, 1, false, false, false, avr32_handle_isr_attribute}, ++ {"interrupt", 0, 1, false, false, false, avr32_handle_isr_attribute}, ++ {"acall", 0, 1, false, true, true, avr32_handle_acall_attribute}, ++ {"naked", 0, 0, true, false, false, avr32_handle_fndecl_attribute}, ++ {"rmw_addressable", 0, 0, true, false, false, NULL}, ++ {"flashvault", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, ++ {"flashvault_impl", 0, 1, true, false, false, avr32_handle_fndecl_attribute}, ++ {NULL, 0, 0, false, false, false, NULL} ++}; ++ ++ ++typedef struct ++{ ++ const char *const arg; ++ const unsigned long return_value; ++} ++isr_attribute_arg; ++ ++ ++static const isr_attribute_arg isr_attribute_args[] = { ++ {"FULL", AVR32_FT_ISR_FULL}, ++ {"full", AVR32_FT_ISR_FULL}, ++ {"HALF", AVR32_FT_ISR_HALF}, ++ {"half", AVR32_FT_ISR_HALF}, ++ {"NONE", AVR32_FT_ISR_NONE}, ++ {"none", AVR32_FT_ISR_NONE}, ++ {"UNDEF", AVR32_FT_ISR_NONE}, ++ {"undef", AVR32_FT_ISR_NONE}, ++ {"SWI", AVR32_FT_ISR_NONE}, ++ {"swi", AVR32_FT_ISR_NONE}, ++ {NULL, AVR32_FT_ISR_NONE} ++}; ++ ++ ++/* Returns the (interrupt) function type of the current ++ function, or AVR32_FT_UNKNOWN if the type cannot be determined. */ ++static unsigned long ++avr32_isr_value (tree argument) ++{ ++ const isr_attribute_arg *ptr; ++ const char *arg; ++ ++ /* No argument - default to ISR_NONE. */ ++ if (argument == NULL_TREE) ++ return AVR32_FT_ISR_NONE; ++ ++ /* Get the value of the argument. */ ++ if (TREE_VALUE (argument) == NULL_TREE ++ || TREE_CODE (TREE_VALUE (argument)) != STRING_CST) ++ return AVR32_FT_UNKNOWN; ++ ++ arg = TREE_STRING_POINTER (TREE_VALUE (argument)); ++ ++ /* Check it against the list of known arguments. */ ++ for (ptr = isr_attribute_args; ptr->arg != NULL; ptr++) ++ if (streq (arg, ptr->arg)) ++ return ptr->return_value; ++ ++ /* An unrecognized interrupt type. */ ++ return AVR32_FT_UNKNOWN; ++} ++ ++ ++/* ++These hooks specify assembly directives for creating certain kinds ++of integer object. The TARGET_ASM_BYTE_OP directive creates a ++byte-sized object, the TARGET_ASM_ALIGNED_HI_OP one creates an ++aligned two-byte object, and so on. Any of the hooks may be ++NULL, indicating that no suitable directive is available. ++ ++The compiler will print these strings at the start of a new line, ++followed immediately by the object's initial value. In most cases, ++the string should contain a tab, a pseudo-op, and then another tab. ++*/ ++#undef TARGET_ASM_BYTE_OP ++#define TARGET_ASM_BYTE_OP "\t.byte\t" ++#undef TARGET_ASM_ALIGNED_HI_OP ++#define TARGET_ASM_ALIGNED_HI_OP "\t.align 1\n\t.short\t" ++#undef TARGET_ASM_ALIGNED_SI_OP ++#define TARGET_ASM_ALIGNED_SI_OP "\t.align 2\n\t.int\t" ++#undef TARGET_ASM_ALIGNED_DI_OP ++#define TARGET_ASM_ALIGNED_DI_OP NULL ++#undef TARGET_ASM_ALIGNED_TI_OP ++#define TARGET_ASM_ALIGNED_TI_OP NULL ++#undef TARGET_ASM_UNALIGNED_HI_OP ++#define TARGET_ASM_UNALIGNED_HI_OP "\t.short\t" ++#undef TARGET_ASM_UNALIGNED_SI_OP ++#define TARGET_ASM_UNALIGNED_SI_OP "\t.int\t" ++#undef TARGET_ASM_UNALIGNED_DI_OP ++#define TARGET_ASM_UNALIGNED_DI_OP NULL ++#undef TARGET_ASM_UNALIGNED_TI_OP ++#define TARGET_ASM_UNALIGNED_TI_OP NULL ++ ++#undef TARGET_ASM_OUTPUT_MI_THUNK ++#define TARGET_ASM_OUTPUT_MI_THUNK avr32_output_mi_thunk ++ ++#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK ++#define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true ++ ++ ++static void ++avr32_output_mi_thunk (FILE * file, ++ tree thunk ATTRIBUTE_UNUSED, ++ HOST_WIDE_INT delta, ++ HOST_WIDE_INT vcall_offset, tree function) ++ { ++ int mi_delta = delta; ++ int this_regno = ++ (aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function) ? ++ INTERNAL_REGNUM (11) : INTERNAL_REGNUM (12)); ++ ++ ++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") ++ || vcall_offset) ++ { ++ fputs ("\tpushm\tlr\n", file); ++ } ++ ++ ++ if (mi_delta != 0) ++ { ++ if (avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21")) ++ { ++ fprintf (file, "\tsub\t%s, %d\n", reg_names[this_regno], -mi_delta); ++ } ++ else ++ { ++ /* Immediate is larger than k21 we must make us a temp register by ++ pushing a register to the stack. */ ++ fprintf (file, "\tmov\tlr, lo(%d)\n", mi_delta); ++ fprintf (file, "\torh\tlr, hi(%d)\n", mi_delta); ++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); ++ } ++ } ++ ++ ++ if (vcall_offset != 0) ++ { ++ fprintf (file, "\tld.w\tlr, %s[0]\n", reg_names[this_regno]); ++ fprintf (file, "\tld.w\tlr, lr[%i]\n", (int) vcall_offset); ++ fprintf (file, "\tadd\t%s, lr\n", reg_names[this_regno]); ++ } ++ ++ ++ if (!avr32_const_ok_for_constraint_p (mi_delta, 'I', "Is21") ++ || vcall_offset) ++ { ++ fputs ("\tpopm\tlr\n", file); ++ } ++ ++ /* Jump to the function. We assume that we can use an rjmp since the ++ function to jump to is local and probably not too far away from ++ the thunk. If this assumption proves to be wrong we could implement ++ this jump by calculating the offset between the jump source and destination ++ and put this in the constant pool and then perform an add to pc. ++ This would also be legitimate PIC code. But for now we hope that an rjmp ++ will be sufficient... ++ */ ++ fputs ("\trjmp\t", file); ++ assemble_name (file, XSTR (XEXP (DECL_RTL (function), 0), 0)); ++ fputc ('\n', file); ++ } ++ ++ ++/* Implements target hook vector_mode_supported. */ ++bool ++avr32_vector_mode_supported (enum machine_mode mode) ++{ ++ if ((mode == V2HImode) || (mode == V4QImode)) ++ return true; ++ ++ return false; ++} ++ ++ ++#undef TARGET_INIT_LIBFUNCS ++#define TARGET_INIT_LIBFUNCS avr32_init_libfuncs ++ ++#undef TARGET_INIT_BUILTINS ++#define TARGET_INIT_BUILTINS avr32_init_builtins ++ ++#undef TARGET_EXPAND_BUILTIN ++#define TARGET_EXPAND_BUILTIN avr32_expand_builtin ++ ++tree int_ftype_int, int_ftype_void, short_ftype_short, void_ftype_int_int, ++ void_ftype_ptr_int; ++tree void_ftype_int, void_ftype_ulong, void_ftype_void, int_ftype_ptr_int; ++tree short_ftype_short, int_ftype_int_short, int_ftype_short_short, ++ short_ftype_short_short; ++tree int_ftype_int_int, longlong_ftype_int_short, longlong_ftype_short_short; ++tree void_ftype_int_int_int_int_int, void_ftype_int_int_int; ++tree longlong_ftype_int_int, void_ftype_int_int_longlong; ++tree int_ftype_int_int_int, longlong_ftype_longlong_int_short; ++tree longlong_ftype_longlong_short_short, int_ftype_int_short_short; ++ ++#define def_builtin(NAME, TYPE, CODE) \ ++ add_builtin_function ((NAME), (TYPE), (CODE), \ ++ BUILT_IN_MD, NULL, NULL_TREE) ++ ++#define def_mbuiltin(MASK, NAME, TYPE, CODE) \ ++ do \ ++ { \ ++ if ((MASK)) \ ++ add_builtin_function ((NAME), (TYPE), (CODE), \ ++ BUILT_IN_MD, NULL, NULL_TREE); \ ++ } \ ++ while (0) ++ ++struct builtin_description ++{ ++ const unsigned int mask; ++ const enum insn_code icode; ++ const char *const name; ++ const int code; ++ const enum rtx_code comparison; ++ const unsigned int flag; ++ const tree *ftype; ++}; ++ ++static const struct builtin_description bdesc_2arg[] = { ++ ++#define DSP_BUILTIN(code, builtin, ftype) \ ++ { 1, CODE_FOR_##code, "__builtin_" #code , \ ++ AVR32_BUILTIN_##builtin, 0, 0, ftype } ++ ++ DSP_BUILTIN (mulsathh_h, MULSATHH_H, &short_ftype_short_short), ++ DSP_BUILTIN (mulsathh_w, MULSATHH_W, &int_ftype_short_short), ++ DSP_BUILTIN (mulsatrndhh_h, MULSATRNDHH_H, &short_ftype_short_short), ++ DSP_BUILTIN (mulsatrndwh_w, MULSATRNDWH_W, &int_ftype_int_short), ++ DSP_BUILTIN (mulsatwh_w, MULSATWH_W, &int_ftype_int_short), ++ DSP_BUILTIN (satadd_h, SATADD_H, &short_ftype_short_short), ++ DSP_BUILTIN (satsub_h, SATSUB_H, &short_ftype_short_short), ++ DSP_BUILTIN (satadd_w, SATADD_W, &int_ftype_int_int), ++ DSP_BUILTIN (satsub_w, SATSUB_W, &int_ftype_int_int), ++ DSP_BUILTIN (mulwh_d, MULWH_D, &longlong_ftype_int_short), ++ DSP_BUILTIN (mulnwh_d, MULNWH_D, &longlong_ftype_int_short) ++}; ++ ++ ++void ++avr32_init_builtins (void) ++{ ++ unsigned int i; ++ const struct builtin_description *d; ++ tree endlink = void_list_node; ++ tree int_endlink = tree_cons (NULL_TREE, integer_type_node, endlink); ++ tree longlong_endlink = ++ tree_cons (NULL_TREE, long_long_integer_type_node, endlink); ++ tree short_endlink = ++ tree_cons (NULL_TREE, short_integer_type_node, endlink); ++ tree void_endlink = tree_cons (NULL_TREE, void_type_node, endlink); ++ ++ /* int func (int) */ ++ int_ftype_int = build_function_type (integer_type_node, int_endlink); ++ ++ /* short func (short) */ ++ short_ftype_short ++ = build_function_type (short_integer_type_node, short_endlink); ++ ++ /* short func (short, short) */ ++ short_ftype_short_short ++ = build_function_type (short_integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* long long func (long long, short, short) */ ++ longlong_ftype_longlong_short_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, long_long_integer_type_node, ++ tree_cons (NULL_TREE, ++ short_integer_type_node, ++ short_endlink))); ++ ++ /* long long func (short, short) */ ++ longlong_ftype_short_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, int) */ ++ int_ftype_int_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* long long func (int, int) */ ++ longlong_ftype_int_int ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* long long int func (long long, int, short) */ ++ longlong_ftype_longlong_int_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink))); ++ ++ /* long long int func (int, short) */ ++ longlong_ftype_int_short ++ = build_function_type (long_long_integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, short, short) */ ++ int_ftype_int_short_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, ++ short_integer_type_node, ++ short_endlink))); ++ ++ /* int func (short, short) */ ++ int_ftype_short_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, short_integer_type_node, ++ short_endlink)); ++ ++ /* int func (int, short) */ ++ int_ftype_int_short ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ short_endlink)); ++ ++ /* void func (int, int) */ ++ void_ftype_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink)); ++ ++ /* void func (int, int, int) */ ++ void_ftype_int_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink))); ++ ++ /* void func (int, int, long long) */ ++ void_ftype_int_int_longlong ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ longlong_endlink))); ++ ++ /* void func (int, int, int, int, int) */ ++ void_ftype_int_int_int_int_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, ++ integer_type_node, ++ tree_cons ++ (NULL_TREE, ++ integer_type_node, ++ int_endlink))))); ++ ++ /* void func (void *, int) */ ++ void_ftype_ptr_int ++ = build_function_type (void_type_node, ++ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); ++ ++ /* void func (int) */ ++ void_ftype_int = build_function_type (void_type_node, int_endlink); ++ ++ /* void func (ulong) */ ++ void_ftype_ulong = build_function_type_list (void_type_node, ++ long_unsigned_type_node, NULL_TREE); ++ ++ /* void func (void) */ ++ void_ftype_void = build_function_type (void_type_node, void_endlink); ++ ++ /* int func (void) */ ++ int_ftype_void = build_function_type (integer_type_node, void_endlink); ++ ++ /* int func (void *, int) */ ++ int_ftype_ptr_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, ptr_type_node, int_endlink)); ++ ++ /* int func (int, int, int) */ ++ int_ftype_int_int_int ++ = build_function_type (integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ tree_cons (NULL_TREE, integer_type_node, ++ int_endlink))); ++ ++ /* Initialize avr32 builtins. */ ++ def_builtin ("__builtin_mfsr", int_ftype_int, AVR32_BUILTIN_MFSR); ++ def_builtin ("__builtin_mtsr", void_ftype_int_int, AVR32_BUILTIN_MTSR); ++ def_builtin ("__builtin_mfdr", int_ftype_int, AVR32_BUILTIN_MFDR); ++ def_builtin ("__builtin_mtdr", void_ftype_int_int, AVR32_BUILTIN_MTDR); ++ def_builtin ("__builtin_cache", void_ftype_ptr_int, AVR32_BUILTIN_CACHE); ++ def_builtin ("__builtin_sync", void_ftype_int, AVR32_BUILTIN_SYNC); ++ def_builtin ("__builtin_ssrf", void_ftype_int, AVR32_BUILTIN_SSRF); ++ def_builtin ("__builtin_csrf", void_ftype_int, AVR32_BUILTIN_CSRF); ++ def_builtin ("__builtin_tlbr", void_ftype_void, AVR32_BUILTIN_TLBR); ++ def_builtin ("__builtin_tlbs", void_ftype_void, AVR32_BUILTIN_TLBS); ++ def_builtin ("__builtin_tlbw", void_ftype_void, AVR32_BUILTIN_TLBW); ++ def_builtin ("__builtin_breakpoint", void_ftype_void, ++ AVR32_BUILTIN_BREAKPOINT); ++ def_builtin ("__builtin_xchg", int_ftype_ptr_int, AVR32_BUILTIN_XCHG); ++ def_builtin ("__builtin_ldxi", int_ftype_ptr_int, AVR32_BUILTIN_LDXI); ++ def_builtin ("__builtin_bswap_16", short_ftype_short, ++ AVR32_BUILTIN_BSWAP16); ++ def_builtin ("__builtin_bswap_32", int_ftype_int, AVR32_BUILTIN_BSWAP32); ++ def_builtin ("__builtin_cop", void_ftype_int_int_int_int_int, ++ AVR32_BUILTIN_COP); ++ def_builtin ("__builtin_mvcr_w", int_ftype_int_int, AVR32_BUILTIN_MVCR_W); ++ def_builtin ("__builtin_mvrc_w", void_ftype_int_int_int, ++ AVR32_BUILTIN_MVRC_W); ++ def_builtin ("__builtin_mvcr_d", longlong_ftype_int_int, ++ AVR32_BUILTIN_MVCR_D); ++ def_builtin ("__builtin_mvrc_d", void_ftype_int_int_longlong, ++ AVR32_BUILTIN_MVRC_D); ++ def_builtin ("__builtin_sats", int_ftype_int_int_int, AVR32_BUILTIN_SATS); ++ def_builtin ("__builtin_satu", int_ftype_int_int_int, AVR32_BUILTIN_SATU); ++ def_builtin ("__builtin_satrnds", int_ftype_int_int_int, ++ AVR32_BUILTIN_SATRNDS); ++ def_builtin ("__builtin_satrndu", int_ftype_int_int_int, ++ AVR32_BUILTIN_SATRNDU); ++ def_builtin ("__builtin_musfr", void_ftype_int, AVR32_BUILTIN_MUSFR); ++ def_builtin ("__builtin_mustr", int_ftype_void, AVR32_BUILTIN_MUSTR); ++ def_builtin ("__builtin_macsathh_w", int_ftype_int_short_short, ++ AVR32_BUILTIN_MACSATHH_W); ++ def_builtin ("__builtin_macwh_d", longlong_ftype_longlong_int_short, ++ AVR32_BUILTIN_MACWH_D); ++ def_builtin ("__builtin_machh_d", longlong_ftype_longlong_short_short, ++ AVR32_BUILTIN_MACHH_D); ++ def_builtin ("__builtin_mems", void_ftype_ptr_int, AVR32_BUILTIN_MEMS); ++ def_builtin ("__builtin_memt", void_ftype_ptr_int, AVR32_BUILTIN_MEMT); ++ def_builtin ("__builtin_memc", void_ftype_ptr_int, AVR32_BUILTIN_MEMC); ++ def_builtin ("__builtin_sleep", void_ftype_int, AVR32_BUILTIN_SLEEP); ++ def_builtin ("__builtin_avr32_delay_cycles", void_ftype_int, AVR32_BUILTIN_DELAY_CYCLES); ++ ++ /* Add all builtins that are more or less simple operations on two ++ operands. */ ++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) ++ { ++ /* Use one of the operands; the target can have a different mode for ++ mask-generating compares. */ ++ ++ if (d->name == 0) ++ continue; ++ ++ def_mbuiltin (d->mask, d->name, *(d->ftype), d->code); ++ } ++} ++ ++ ++/* Subroutine of avr32_expand_builtin to take care of binop insns. */ ++static rtx ++avr32_expand_binop_builtin (enum insn_code icode, tree exp, rtx target) ++{ ++ rtx pat; ++ tree arg0 = CALL_EXPR_ARG (exp,0); ++ tree arg1 = CALL_EXPR_ARG (exp,1); ++ rtx op0 = expand_normal (arg0); ++ rtx op1 = expand_normal (arg1); ++ enum machine_mode tmode = insn_data[icode].operand[0].mode; ++ enum machine_mode mode0 = insn_data[icode].operand[1].mode; ++ enum machine_mode mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!target ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ /* In case the insn wants input operands in modes different from the ++ result, abort. */ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ /* If op0 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op0)) ++ op0 = convert_to_mode (mode0, op0, 1); ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op1)) ++ op1 = convert_to_mode (mode1, op1, 1); ++ else ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++} ++ ++ ++/* Expand an expression EXP that calls a built-in function, ++ with result going to TARGET if that's convenient ++ (and in mode MODE if that's convenient). ++ SUBTARGET may be used as the target for computing one of EXP's operands. ++ IGNORE is nonzero if the value is to be ignored. */ ++rtx ++avr32_expand_builtin (tree exp, ++ rtx target, ++ rtx subtarget ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ int ignore ATTRIBUTE_UNUSED) ++{ ++ const struct builtin_description *d; ++ unsigned int i; ++ enum insn_code icode = 0; ++ tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0); ++ tree arg0, arg1, arg2; ++ rtx op0, op1, op2, pat; ++ enum machine_mode tmode, mode0, mode1; ++ enum machine_mode arg0_mode; ++ int fcode = DECL_FUNCTION_CODE (fndecl); ++ ++ switch (fcode) ++ { ++ default: ++ break; ++ ++ case AVR32_BUILTIN_SATS: ++ case AVR32_BUILTIN_SATU: ++ case AVR32_BUILTIN_SATRNDS: ++ case AVR32_BUILTIN_SATRNDU: ++ { ++ const char *fname; ++ switch (fcode) ++ { ++ default: ++ case AVR32_BUILTIN_SATS: ++ icode = CODE_FOR_sats; ++ fname = "sats"; ++ break; ++ case AVR32_BUILTIN_SATU: ++ icode = CODE_FOR_satu; ++ fname = "satu"; ++ break; ++ case AVR32_BUILTIN_SATRNDS: ++ icode = CODE_FOR_satrnds; ++ fname = "satrnds"; ++ break; ++ case AVR32_BUILTIN_SATRNDU: ++ icode = CODE_FOR_satrndu; ++ fname = "satrndu"; ++ break; ++ } ++ ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ tmode = insn_data[icode].operand[0].mode; ++ ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, GET_MODE (op0))) ++ { ++ op0 = copy_to_mode_reg (insn_data[icode].operand[0].mode, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ("Parameter 2 to __builtin_%s should be a constant number.", ++ fname); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op2, SImode)) ++ { ++ error ("Parameter 3 to __builtin_%s should be a constant number.", ++ fname); ++ return NULL_RTX; ++ } ++ ++ emit_move_insn (target, op0); ++ pat = GEN_FCN (icode) (target, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MUSTR: ++ icode = CODE_FOR_mustr; ++ tmode = insn_data[icode].operand[0].mode; ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ ++ case AVR32_BUILTIN_MFSR: ++ icode = CODE_FOR_mfsr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mfsr must be a constant number"); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_MTSR: ++ icode = CODE_FOR_mtsr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mtsr must be a constant number"); ++ return gen_reg_rtx (mode0); ++ } ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ op1 = copy_to_mode_reg (mode1, op1); ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_MFDR: ++ icode = CODE_FOR_mfdr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mfdr must be a constant number"); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_MTDR: ++ icode = CODE_FOR_mtdr; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mtdr must be a constant number"); ++ return gen_reg_rtx (mode0); ++ } ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ op1 = copy_to_mode_reg (mode1, op1); ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_CACHE: ++ icode = CODE_FOR_cache; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ mode0 = insn_data[icode].operand[0].mode; ++ mode1 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode1)) ++ { ++ error ("Parameter 2 to __builtin_cache must be a constant number"); ++ return gen_reg_rtx (mode1); ++ } ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ op0 = copy_to_mode_reg (mode0, op0); ++ ++ pat = GEN_FCN (icode) (op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_SYNC: ++ case AVR32_BUILTIN_MUSFR: ++ case AVR32_BUILTIN_SSRF: ++ case AVR32_BUILTIN_CSRF: ++ { ++ const char *fname; ++ switch (fcode) ++ { ++ default: ++ case AVR32_BUILTIN_SYNC: ++ icode = CODE_FOR_sync; ++ fname = "sync"; ++ break; ++ case AVR32_BUILTIN_MUSFR: ++ icode = CODE_FOR_musfr; ++ fname = "musfr"; ++ break; ++ case AVR32_BUILTIN_SSRF: ++ icode = CODE_FOR_ssrf; ++ fname = "ssrf"; ++ break; ++ case AVR32_BUILTIN_CSRF: ++ icode = CODE_FOR_csrf; ++ fname = "csrf"; ++ break; ++ } ++ ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ mode0 = insn_data[icode].operand[0].mode; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, mode0)) ++ { ++ if (icode == CODE_FOR_musfr) ++ op0 = copy_to_mode_reg (mode0, op0); ++ else ++ { ++ error ("Parameter to __builtin_%s is illegal.", fname); ++ return gen_reg_rtx (mode0); ++ } ++ } ++ pat = GEN_FCN (icode) (op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ } ++ case AVR32_BUILTIN_TLBR: ++ icode = CODE_FOR_tlbr; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_TLBS: ++ icode = CODE_FOR_tlbs; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_TLBW: ++ icode = CODE_FOR_tlbw; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_BREAKPOINT: ++ icode = CODE_FOR_breakpoint; ++ pat = GEN_FCN (icode) (NULL_RTX); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return NULL_RTX; ++ case AVR32_BUILTIN_XCHG: ++ icode = CODE_FOR_sync_lock_test_and_setsi; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ ++ op0 = force_reg (GET_MODE (op0), op0); ++ op0 = gen_rtx_MEM (GET_MODE (op0), op0); ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ++ ("Parameter 1 to __builtin_xchg must be a pointer to an integer."); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_LDXI: ++ icode = CODE_FOR_ldxi; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, mode1)) ++ { ++ op1 = copy_to_mode_reg (mode1, op1); ++ } ++ ++ if (!(*insn_data[icode].operand[3].predicate) (op2, SImode)) ++ { ++ error ++ ("Parameter 3 to __builtin_ldxi must be a valid extract shift operand: (0|8|16|24)"); ++ return gen_reg_rtx (mode0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ pat = GEN_FCN (icode) (target, op0, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ case AVR32_BUILTIN_BSWAP16: ++ { ++ icode = CODE_FOR_bswap_16; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg0_mode = TYPE_MODE (TREE_TYPE (arg0)); ++ mode0 = insn_data[icode].operand[1].mode; ++ if (arg0_mode != mode0) ++ arg0 = build1 (NOP_EXPR, ++ (*lang_hooks.types.type_for_mode) (mode0, 0), arg0); ++ ++ op0 = expand_expr (arg0, NULL_RTX, HImode, 0); ++ tmode = insn_data[icode].operand[0].mode; ++ ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ if ( CONST_INT_P (op0) ) ++ { ++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x00ff) << 8) | ++ ((INTVAL (op0)&0xff00) >> 8) ); ++ /* Sign extend 16-bit value to host wide int */ ++ val <<= (HOST_BITS_PER_WIDE_INT - 16); ++ val >>= (HOST_BITS_PER_WIDE_INT - 16); ++ op0 = GEN_INT(val); ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ emit_move_insn(target, op0); ++ return target; ++ } ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ { ++ target = gen_reg_rtx (tmode); ++ } ++ ++ ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_BSWAP32: ++ { ++ icode = CODE_FOR_bswap_32; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ op0 = expand_normal (arg0); ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ if ( CONST_INT_P (op0) ) ++ { ++ HOST_WIDE_INT val = ( ((INTVAL (op0)&0x000000ff) << 24) | ++ ((INTVAL (op0)&0x0000ff00) << 8) | ++ ((INTVAL (op0)&0x00ff0000) >> 8) | ++ ((INTVAL (op0)&0xff000000) >> 24) ); ++ /* Sign extend 32-bit value to host wide int */ ++ val <<= (HOST_BITS_PER_WIDE_INT - 32); ++ val >>= (HOST_BITS_PER_WIDE_INT - 32); ++ op0 = GEN_INT(val); ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ emit_move_insn(target, op0); ++ return target; ++ } ++ else ++ op0 = copy_to_mode_reg (mode0, op0); ++ } ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ ++ pat = GEN_FCN (icode) (target, op0); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MVCR_W: ++ case AVR32_BUILTIN_MVCR_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ ++ if (fcode == AVR32_BUILTIN_MVCR_W) ++ icode = CODE_FOR_mvcrsi; ++ else ++ icode = CODE_FOR_mvcrdi; ++ ++ tmode = insn_data[icode].operand[0].mode; ++ ++ if (target == 0 ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, SImode)) ++ { ++ error ++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op1, SImode)) ++ { ++ error ++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ pat = GEN_FCN (icode) (target, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ case AVR32_BUILTIN_MACSATHH_W: ++ case AVR32_BUILTIN_MACWH_D: ++ case AVR32_BUILTIN_MACHH_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ icode = ((fcode == AVR32_BUILTIN_MACSATHH_W) ? CODE_FOR_macsathh_w : ++ (fcode == AVR32_BUILTIN_MACWH_D) ? CODE_FOR_macwh_d : ++ CODE_FOR_machh_d); ++ ++ tmode = insn_data[icode].operand[0].mode; ++ mode0 = insn_data[icode].operand[1].mode; ++ mode1 = insn_data[icode].operand[2].mode; ++ ++ ++ if (!target ++ || GET_MODE (target) != tmode ++ || !(*insn_data[icode].operand[0].predicate) (target, tmode)) ++ target = gen_reg_rtx (tmode); ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, tmode)) ++ { ++ /* If op0 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op0)) ++ op0 = convert_to_mode (tmode, op0, 1); ++ else ++ op0 = copy_to_mode_reg (tmode, op0); ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, mode0)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op1)) ++ op1 = convert_to_mode (mode0, op1, 1); ++ else ++ op1 = copy_to_mode_reg (mode0, op1); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, mode1)) ++ { ++ /* If op1 is already a reg we must cast it to the correct mode. */ ++ if (REG_P (op2)) ++ op2 = convert_to_mode (mode1, op2, 1); ++ else ++ op2 = copy_to_mode_reg (mode1, op2); ++ } ++ ++ emit_move_insn (target, op0); ++ ++ pat = GEN_FCN (icode) (target, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return target; ++ } ++ case AVR32_BUILTIN_MVRC_W: ++ case AVR32_BUILTIN_MVRC_D: ++ { ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ ++ if (fcode == AVR32_BUILTIN_MVRC_W) ++ icode = CODE_FOR_mvrcsi; ++ else ++ icode = CODE_FOR_mvrcdi; ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) ++ { ++ error ("Parameter 1 is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ("Parameter 2 is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (GET_CODE (op2) == CONST_INT ++ || GET_CODE (op2) == CONST ++ || GET_CODE (op2) == SYMBOL_REF || GET_CODE (op2) == LABEL_REF) ++ { ++ op2 = force_const_mem (insn_data[icode].operand[2].mode, op2); ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, GET_MODE (op2))) ++ op2 = copy_to_mode_reg (insn_data[icode].operand[2].mode, op2); ++ ++ ++ pat = GEN_FCN (icode) (op0, op1, op2); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return NULL_RTX; ++ } ++ case AVR32_BUILTIN_COP: ++ { ++ rtx op3, op4; ++ tree arg3, arg4; ++ icode = CODE_FOR_cop; ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ arg2 = CALL_EXPR_ARG (exp,2); ++ arg3 = CALL_EXPR_ARG (exp,3); ++ arg4 = CALL_EXPR_ARG (exp,4); ++ op0 = expand_normal (arg0); ++ op1 = expand_normal (arg1); ++ op2 = expand_normal (arg2); ++ op3 = expand_normal (arg3); ++ op4 = expand_normal (arg4); ++ ++ if (!(*insn_data[icode].operand[0].predicate) (op0, SImode)) ++ { ++ error ++ ("Parameter 1 to __builtin_cop is not a valid coprocessor number."); ++ error ("Number should be between 0 and 7."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op1, SImode)) ++ { ++ error ++ ("Parameter 2 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[2].predicate) (op2, SImode)) ++ { ++ error ++ ("Parameter 3 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[3].predicate) (op3, SImode)) ++ { ++ error ++ ("Parameter 4 to __builtin_cop is not a valid coprocessor register number."); ++ error ("Number should be between 0 and 15."); ++ return NULL_RTX; ++ } ++ ++ if (!(*insn_data[icode].operand[4].predicate) (op4, SImode)) ++ { ++ error ++ ("Parameter 5 to __builtin_cop is not a valid coprocessor operation."); ++ error ("Number should be between 0 and 127."); ++ return NULL_RTX; ++ } ++ ++ pat = GEN_FCN (icode) (op0, op1, op2, op3, op4); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ ++ return target; ++ } ++ ++ case AVR32_BUILTIN_MEMS: ++ case AVR32_BUILTIN_MEMC: ++ case AVR32_BUILTIN_MEMT: ++ { ++ if (!TARGET_RMW) ++ error ("Trying to use __builtin_mem(s/c/t) when target does not support RMW insns."); ++ ++ switch (fcode) { ++ case AVR32_BUILTIN_MEMS: ++ icode = CODE_FOR_iorsi3; ++ break; ++ case AVR32_BUILTIN_MEMC: ++ icode = CODE_FOR_andsi3; ++ break; ++ case AVR32_BUILTIN_MEMT: ++ icode = CODE_FOR_xorsi3; ++ break; ++ } ++ arg0 = CALL_EXPR_ARG (exp,0); ++ arg1 = CALL_EXPR_ARG (exp,1); ++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); ++ if ( GET_CODE (op0) == SYMBOL_REF ) ++ // This symbol must be RMW addressable ++ SYMBOL_REF_FLAGS (op0) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); ++ op0 = gen_rtx_MEM(SImode, op0); ++ op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0); ++ mode0 = insn_data[icode].operand[1].mode; ++ ++ ++ if (!(*insn_data[icode].operand[1].predicate) (op0, mode0)) ++ { ++ error ("Parameter 1 to __builtin_mem(s/c/t) must be a Ks15<<2 address or a rmw addressable symbol."); ++ } ++ ++ if ( !CONST_INT_P (op1) ++ || INTVAL (op1) > 31 ++ || INTVAL (op1) < 0 ) ++ error ("Parameter 2 to __builtin_mem(s/c/t) must be a constant between 0 and 31."); ++ ++ if ( fcode == AVR32_BUILTIN_MEMC ) ++ op1 = GEN_INT((~(1 << INTVAL(op1)))&0xffffffff); ++ else ++ op1 = GEN_INT((1 << INTVAL(op1))&0xffffffff); ++ pat = GEN_FCN (icode) (op0, op0, op1); ++ if (!pat) ++ return 0; ++ emit_insn (pat); ++ return op0; ++ } ++ ++ case AVR32_BUILTIN_SLEEP: ++ { ++ arg0 = CALL_EXPR_ARG (exp, 0); ++ op0 = expand_normal (arg0); ++ int intval = INTVAL(op0); ++ ++ /* Check if the argument if integer and if the value of integer ++ is greater than 0. */ ++ ++ if (!CONSTANT_P (op0)) ++ error ("Parameter 1 to __builtin_sleep() is not a valid integer."); ++ if (intval < 0 ) ++ error ("Parameter 1 to __builtin_sleep() should be an integer greater than 0."); ++ ++ int strncmpval = strncmp (avr32_part_name,"uc3l", 4); ++ ++ /* Check if op0 is less than 7 for uc3l* and less than 6 for other ++ devices. By this check we are avoiding if operand is less than ++ 256. For more devices, add more such checks. */ ++ ++ if ( strncmpval == 0 && intval >= 7) ++ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 7."); ++ else if ( strncmp != 0 && intval >= 6) ++ error ("Parameter 1 to __builtin_sleep() should be less than or equal to 6."); ++ ++ emit_insn (gen_sleep(op0)); ++ return target; ++ ++ } ++ case AVR32_BUILTIN_DELAY_CYCLES: ++ { ++ arg0 = CALL_EXPR_ARG (exp, 0); ++ op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0); ++ ++ if (TARGET_ARCH_AP) ++ error (" __builtin_avr32_delay_cycles() not supported for \'%s\' architecture.", avr32_arch_name); ++ if (!CONSTANT_P (op0)) ++ error ("Parameter 1 to __builtin_avr32_delay_cycles() should be an integer."); ++ emit_insn (gen_delay_cycles (op0)); ++ return 0; ++ ++ } ++ ++ } ++ ++ for (i = 0, d = bdesc_2arg; i < ARRAY_SIZE (bdesc_2arg); i++, d++) ++ if (d->code == fcode) ++ return avr32_expand_binop_builtin (d->icode, exp, target); ++ ++ ++ /* @@@ Should really do something sensible here. */ ++ return NULL_RTX; ++} ++ ++ ++/* Handle an "interrupt" or "isr" attribute; ++ arguments as in struct attribute_spec.handler. */ ++static tree ++avr32_handle_isr_attribute (tree * node, tree name, tree args, ++ int flags, bool * no_add_attrs) ++{ ++ if (DECL_P (*node)) ++ { ++ if (TREE_CODE (*node) != FUNCTION_DECL) ++ { ++ warning (OPT_Wattributes,"`%s' attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ /* FIXME: the argument if any is checked for type attributes; should it ++ be checked for decl ones? */ ++ } ++ else ++ { ++ if (TREE_CODE (*node) == FUNCTION_TYPE ++ || TREE_CODE (*node) == METHOD_TYPE) ++ { ++ if (avr32_isr_value (args) == AVR32_FT_UNKNOWN) ++ { ++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ } ++ else if (TREE_CODE (*node) == POINTER_TYPE ++ && (TREE_CODE (TREE_TYPE (*node)) == FUNCTION_TYPE ++ || TREE_CODE (TREE_TYPE (*node)) == METHOD_TYPE) ++ && avr32_isr_value (args) != AVR32_FT_UNKNOWN) ++ { ++ *node = build_variant_type_copy (*node); ++ TREE_TYPE (*node) = build_type_attribute_variant ++ (TREE_TYPE (*node), ++ tree_cons (name, args, TYPE_ATTRIBUTES (TREE_TYPE (*node)))); ++ *no_add_attrs = true; ++ } ++ else ++ { ++ /* Possibly pass this attribute on from the type to a decl. */ ++ if (flags & ((int) ATTR_FLAG_DECL_NEXT ++ | (int) ATTR_FLAG_FUNCTION_NEXT ++ | (int) ATTR_FLAG_ARRAY_NEXT)) ++ { ++ *no_add_attrs = true; ++ return tree_cons (name, args, NULL_TREE); ++ } ++ else ++ { ++ warning (OPT_Wattributes,"`%s' attribute ignored", IDENTIFIER_POINTER (name)); ++ } ++ } ++ } ++ ++ return NULL_TREE; ++} ++ ++ ++/* Handle an attribute requiring a FUNCTION_DECL; ++ arguments as in struct attribute_spec.handler. */ ++static tree ++avr32_handle_fndecl_attribute (tree * node, tree name, ++ tree args, ++ int flags ATTRIBUTE_UNUSED, ++ bool * no_add_attrs) ++{ ++ if (TREE_CODE (*node) != FUNCTION_DECL) ++ { ++ warning (OPT_Wattributes,"%qs attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++ } ++ ++ fndecl_attribute_args = args; ++ if (args == NULL_TREE) ++ return NULL_TREE; ++ ++ tree value = TREE_VALUE (args); ++ if (TREE_CODE (value) != INTEGER_CST) ++ { ++ warning (OPT_Wattributes, ++ "argument of %qs attribute is not an integer constant", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ } ++ ++ return NULL_TREE; ++} ++ ++ ++/* Handle an acall attribute; ++ arguments as in struct attribute_spec.handler. */ ++ ++static tree ++avr32_handle_acall_attribute (tree * node, tree name, ++ tree args ATTRIBUTE_UNUSED, ++ int flags ATTRIBUTE_UNUSED, bool * no_add_attrs) ++{ ++ if (TREE_CODE (*node) == FUNCTION_TYPE || TREE_CODE (*node) == METHOD_TYPE) ++ { ++ warning (OPT_Wattributes,"`%s' attribute not yet supported...", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++ } ++ ++ warning (OPT_Wattributes,"`%s' attribute only applies to functions", ++ IDENTIFIER_POINTER (name)); ++ *no_add_attrs = true; ++ return NULL_TREE; ++} ++ ++ ++bool ++avr32_flashvault_call(tree decl) ++{ ++ tree attributes; ++ tree fv_attribute; ++ tree vector_tree; ++ unsigned int vector; ++ ++ if (decl && TREE_CODE (decl) == FUNCTION_DECL) ++ { ++ attributes = DECL_ATTRIBUTES(decl); ++ fv_attribute = lookup_attribute ("flashvault", attributes); ++ if (fv_attribute != NULL_TREE) ++ { ++ /* Get attribute parameter, for the function vector number. */ ++ /* ++ There is probably an easier, standard way to retrieve the ++ attribute parameter which needs to be done here. ++ */ ++ vector_tree = TREE_VALUE(fv_attribute); ++ if (vector_tree != NULL_TREE) ++ { ++ vector = (unsigned int)TREE_INT_CST_LOW(TREE_VALUE(vector_tree)); ++ fprintf (asm_out_file, ++ "\tmov\tr8, lo(%i)\t# Load vector number for sscall.\n", ++ vector); ++ } ++ ++ fprintf (asm_out_file, ++ "\tsscall\t# Secure system call.\n"); ++ ++ return true; ++ } ++ } ++ ++ return false; ++} ++ ++ ++static bool has_attribute_p (tree decl, const char *name) ++{ ++ if (decl && TREE_CODE (decl) == FUNCTION_DECL) ++ { ++ return (lookup_attribute (name, DECL_ATTRIBUTES(decl)) != NULL_TREE); ++ } ++ return NULL_TREE; ++} ++ ++ ++/* Return 0 if the attributes for two types are incompatible, 1 if they ++ are compatible, and 2 if they are nearly compatible (which causes a ++ warning to be generated). */ ++static int ++avr32_comp_type_attributes (tree type1, tree type2) ++{ ++ bool acall1, acall2, isr1, isr2, naked1, naked2, fv1, fv2, fvimpl1, fvimpl2; ++ ++ /* Check for mismatch of non-default calling convention. */ ++ if (TREE_CODE (type1) != FUNCTION_TYPE) ++ return 1; ++ ++ /* Check for mismatched call attributes. */ ++ acall1 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type1)) != NULL; ++ acall2 = lookup_attribute ("acall", TYPE_ATTRIBUTES (type2)) != NULL; ++ naked1 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type1)) != NULL; ++ naked2 = lookup_attribute ("naked", TYPE_ATTRIBUTES (type2)) != NULL; ++ fv1 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type1)) != NULL; ++ fv2 = lookup_attribute ("flashvault", TYPE_ATTRIBUTES (type2)) != NULL; ++ fvimpl1 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type1)) != NULL; ++ fvimpl2 = lookup_attribute ("flashvault_impl", TYPE_ATTRIBUTES (type2)) != NULL; ++ isr1 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type1)) != NULL; ++ if (!isr1) ++ isr1 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type1)) != NULL; ++ ++ isr2 = lookup_attribute ("isr", TYPE_ATTRIBUTES (type2)) != NULL; ++ if (!isr2) ++ isr2 = lookup_attribute ("interrupt", TYPE_ATTRIBUTES (type2)) != NULL; ++ ++ if ((acall1 && isr2) ++ || (acall2 && isr1) ++ || (naked1 && isr2) ++ || (naked2 && isr1) ++ || (fv1 && isr2) ++ || (fv2 && isr1) ++ || (fvimpl1 && isr2) ++ || (fvimpl2 && isr1) ++ || (fv1 && fvimpl2) ++ || (fv2 && fvimpl1) ++ ) ++ return 0; ++ ++ return 1; ++} ++ ++ ++/* Computes the type of the current function. */ ++static unsigned long ++avr32_compute_func_type (void) ++{ ++ unsigned long type = AVR32_FT_UNKNOWN; ++ tree a; ++ tree attr; ++ ++ if (TREE_CODE (current_function_decl) != FUNCTION_DECL) ++ abort (); ++ ++ /* Decide if the current function is volatile. Such functions never ++ return, and many memory cycles can be saved by not storing register ++ values that will never be needed again. This optimization was added to ++ speed up context switching in a kernel application. */ ++ if (optimize > 0 ++ && TREE_NOTHROW (current_function_decl) ++ && TREE_THIS_VOLATILE (current_function_decl)) ++ type |= AVR32_FT_VOLATILE; ++ ++ if (cfun->static_chain_decl != NULL) ++ type |= AVR32_FT_NESTED; ++ ++ attr = DECL_ATTRIBUTES (current_function_decl); ++ ++ a = lookup_attribute ("isr", attr); ++ if (a == NULL_TREE) ++ a = lookup_attribute ("interrupt", attr); ++ ++ if (a == NULL_TREE) ++ type |= AVR32_FT_NORMAL; ++ else ++ type |= avr32_isr_value (TREE_VALUE (a)); ++ ++ ++ a = lookup_attribute ("acall", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_ACALL; ++ ++ a = lookup_attribute ("naked", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_NAKED; ++ ++ a = lookup_attribute ("flashvault", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_FLASHVAULT; ++ ++ a = lookup_attribute ("flashvault_impl", attr); ++ if (a != NULL_TREE) ++ type |= AVR32_FT_FLASHVAULT_IMPL; ++ ++ return type; ++} ++ ++ ++/* Returns the type of the current function. */ ++static unsigned long ++avr32_current_func_type (void) ++{ ++ if (AVR32_FUNC_TYPE (cfun->machine->func_type) == AVR32_FT_UNKNOWN) ++ cfun->machine->func_type = avr32_compute_func_type (); ++ ++ return cfun->machine->func_type; ++} ++ ++ ++/* ++This target hook should return true if we should not pass type solely ++in registers. The file expr.h defines a definition that is usually appropriate, ++refer to expr.h for additional documentation. ++*/ ++bool ++avr32_must_pass_in_stack (enum machine_mode mode ATTRIBUTE_UNUSED, tree type) ++{ ++ if (type && AGGREGATE_TYPE_P (type) ++ /* If the alignment is less than the size then pass in the struct on ++ the stack. */ ++ && ((unsigned int) TYPE_ALIGN_UNIT (type) < ++ (unsigned int) int_size_in_bytes (type)) ++ /* If we support unaligned word accesses then structs of size 4 and 8 ++ can have any alignment and still be passed in registers. */ ++ && !(TARGET_UNALIGNED_WORD ++ && (int_size_in_bytes (type) == 4 ++ || int_size_in_bytes (type) == 8)) ++ /* Double word structs need only a word alignment. */ ++ && !(int_size_in_bytes (type) == 8 && TYPE_ALIGN_UNIT (type) >= 4)) ++ return true; ++ ++ if (type && AGGREGATE_TYPE_P (type) ++ /* Structs of size 3,5,6,7 are always passed in registers. */ ++ && (int_size_in_bytes (type) == 3 ++ || int_size_in_bytes (type) == 5 ++ || int_size_in_bytes (type) == 6 || int_size_in_bytes (type) == 7)) ++ return true; ++ ++ ++ return (type && TREE_ADDRESSABLE (type)); ++} ++ ++ ++bool ++avr32_strict_argument_naming (CUMULATIVE_ARGS * ca ATTRIBUTE_UNUSED) ++{ ++ return true; ++} ++ ++ ++/* ++ This target hook should return true if an argument at the position indicated ++ by cum should be passed by reference. This predicate is queried after target ++ independent reasons for being passed by reference, such as TREE_ADDRESSABLE (type). ++ ++ If the hook returns true, a copy of that argument is made in memory and a ++ pointer to the argument is passed instead of the argument itself. The pointer ++ is passed in whatever way is appropriate for passing a pointer to that type. ++*/ ++bool ++avr32_pass_by_reference (CUMULATIVE_ARGS * cum ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type, bool named ATTRIBUTE_UNUSED) ++{ ++ return (type && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)); ++} ++ ++ ++static int ++avr32_arg_partial_bytes (CUMULATIVE_ARGS * pcum ATTRIBUTE_UNUSED, ++ enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type ATTRIBUTE_UNUSED, ++ bool named ATTRIBUTE_UNUSED) ++{ ++ return 0; ++} ++ ++ ++struct gcc_target targetm = TARGET_INITIALIZER; ++ ++/* ++ Table used to convert from register number in the assembler instructions and ++ the register numbers used in gcc. ++*/ ++const int avr32_function_arg_reglist[] = { ++ INTERNAL_REGNUM (12), ++ INTERNAL_REGNUM (11), ++ INTERNAL_REGNUM (10), ++ INTERNAL_REGNUM (9), ++ INTERNAL_REGNUM (8) ++}; ++ ++ ++rtx avr32_compare_op0 = NULL_RTX; ++rtx avr32_compare_op1 = NULL_RTX; ++rtx avr32_compare_operator = NULL_RTX; ++rtx avr32_acc_cache = NULL_RTX; ++/* type of branch to use */ ++enum avr32_cmp_type avr32_branch_type; ++ ++ ++/* ++ Returns nonzero if it is allowed to store a value of mode mode in hard ++ register number regno. ++*/ ++int ++avr32_hard_regno_mode_ok (int regnr, enum machine_mode mode) ++{ ++ switch (mode) ++ { ++ case DImode: /* long long */ ++ case DFmode: /* double */ ++ case SCmode: /* __complex__ float */ ++ case CSImode: /* __complex__ int */ ++ if (regnr < 4) ++ { /* long long int not supported in r12, sp, lr or pc. */ ++ return 0; ++ } ++ else ++ { ++ /* long long int has to be referred in even registers. */ ++ if (regnr % 2) ++ return 0; ++ else ++ return 1; ++ } ++ case CDImode: /* __complex__ long long */ ++ case DCmode: /* __complex__ double */ ++ case TImode: /* 16 bytes */ ++ if (regnr < 7) ++ return 0; ++ else if (regnr % 2) ++ return 0; ++ else ++ return 1; ++ default: ++ return 1; ++ } ++} ++ ++ ++int ++avr32_rnd_operands (rtx add, rtx shift) ++{ ++ if (GET_CODE (shift) == CONST_INT && ++ GET_CODE (add) == CONST_INT && INTVAL (shift) > 0) ++ { ++ if ((1 << (INTVAL (shift) - 1)) == INTVAL (add)) ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, const char *str) ++{ ++ switch (c) ++ { ++ case 'K': ++ case 'I': ++ { ++ HOST_WIDE_INT min_value = 0, max_value = 0; ++ char size_str[3]; ++ int const_size; ++ ++ size_str[0] = str[2]; ++ size_str[1] = str[3]; ++ size_str[2] = '\0'; ++ const_size = atoi (size_str); ++ ++ if (TOUPPER (str[1]) == 'U') ++ { ++ min_value = 0; ++ max_value = (1 << const_size) - 1; ++ } ++ else if (TOUPPER (str[1]) == 'S') ++ { ++ min_value = -(1 << (const_size - 1)); ++ max_value = (1 << (const_size - 1)) - 1; ++ } ++ ++ if (c == 'I') ++ { ++ value = -value; ++ } ++ ++ if (value >= min_value && value <= max_value) ++ { ++ return 1; ++ } ++ break; ++ } ++ case 'M': ++ return avr32_mask_upper_bits_operand (GEN_INT (value), VOIDmode); ++ case 'J': ++ return avr32_hi16_immediate_operand (GEN_INT (value), VOIDmode); ++ case 'O': ++ return one_bit_set_operand (GEN_INT (value), VOIDmode); ++ case 'N': ++ return one_bit_cleared_operand (GEN_INT (value), VOIDmode); ++ case 'L': ++ /* The lower 16-bits are set. */ ++ return ((value & 0xffff) == 0xffff) ; ++ } ++ ++ return 0; ++} ++ ++ ++/* Compute mask of registers which needs saving upon function entry. */ ++static unsigned long ++avr32_compute_save_reg_mask (int push) ++{ ++ unsigned long func_type; ++ unsigned int save_reg_mask = 0; ++ unsigned int reg; ++ ++ func_type = avr32_current_func_type (); ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ unsigned int max_reg = 12; ++ ++ /* Get the banking scheme for the interrupt */ ++ switch (func_type) ++ { ++ case AVR32_FT_ISR_FULL: ++ max_reg = 0; ++ break; ++ case AVR32_FT_ISR_HALF: ++ max_reg = 7; ++ break; ++ case AVR32_FT_ISR_NONE: ++ max_reg = 12; ++ break; ++ } ++ ++ /* Interrupt functions must not corrupt any registers, even call ++ clobbered ones. If this is a leaf function we can just examine the ++ registers used by the RTL, but otherwise we have to assume that ++ whatever function is called might clobber anything, and so we have ++ to save all the call-clobbered registers as well. */ ++ ++ /* Need not push the registers r8-r12 for AVR32A architectures, as this ++ is automatially done in hardware. We also do not have any shadow ++ registers. */ ++ if (TARGET_UARCH_AVR32A) ++ { ++ max_reg = 7; ++ func_type = AVR32_FT_ISR_NONE; ++ } ++ ++ /* All registers which are used and are not shadowed must be saved. */ ++ for (reg = 0; reg <= max_reg; reg++) ++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) ++ || (!current_function_is_leaf ++ && call_used_regs[INTERNAL_REGNUM (reg)])) ++ save_reg_mask |= (1 << reg); ++ ++ /* Check LR */ ++ if ((df_regs_ever_live_p (LR_REGNUM) ++ || !current_function_is_leaf || frame_pointer_needed) ++ /* Only non-shadowed register models */ ++ && (func_type == AVR32_FT_ISR_NONE)) ++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); ++ ++ /* Make sure that the GOT register is pushed. */ ++ if (max_reg >= ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM) ++ && crtl->uses_pic_offset_table) ++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); ++ ++ } ++ else ++ { ++ int use_pushm = optimize_size; ++ ++ /* In the normal case we only need to save those registers which are ++ call saved and which are used by this function. */ ++ for (reg = 0; reg <= 7; reg++) ++ if (df_regs_ever_live_p (INTERNAL_REGNUM (reg)) ++ && !call_used_regs[INTERNAL_REGNUM (reg)]) ++ save_reg_mask |= (1 << reg); ++ ++ /* Make sure that the GOT register is pushed. */ ++ if (crtl->uses_pic_offset_table) ++ save_reg_mask |= (1 << ASM_REGNUM (PIC_OFFSET_TABLE_REGNUM)); ++ ++ ++ /* If we optimize for size and do not have anonymous arguments: use ++ pushm/popm always. */ ++ if (use_pushm) ++ { ++ if ((save_reg_mask & (1 << 0)) ++ || (save_reg_mask & (1 << 1)) ++ || (save_reg_mask & (1 << 2)) || (save_reg_mask & (1 << 3))) ++ save_reg_mask |= 0xf; ++ ++ if ((save_reg_mask & (1 << 4)) ++ || (save_reg_mask & (1 << 5)) ++ || (save_reg_mask & (1 << 6)) || (save_reg_mask & (1 << 7))) ++ save_reg_mask |= 0xf0; ++ ++ if ((save_reg_mask & (1 << 8)) || (save_reg_mask & (1 << 9))) ++ save_reg_mask |= 0x300; ++ } ++ ++ ++ /* Check LR */ ++ if ((df_regs_ever_live_p (LR_REGNUM) ++ || !current_function_is_leaf ++ || (optimize_size ++ && save_reg_mask ++ && !crtl->calls_eh_return) ++ || frame_pointer_needed) ++ && !IS_FLASHVAULT (func_type)) ++ { ++ if (push ++ /* Never pop LR into PC for functions which ++ calls __builtin_eh_return, since we need to ++ fix the SP after the restoring of the registers ++ and before returning. */ ++ || crtl->calls_eh_return) ++ { ++ /* Push/Pop LR */ ++ save_reg_mask |= (1 << ASM_REGNUM (LR_REGNUM)); ++ } ++ else ++ { ++ /* Pop PC */ ++ save_reg_mask |= (1 << ASM_REGNUM (PC_REGNUM)); ++ } ++ } ++ } ++ ++ ++ /* Save registers so the exception handler can modify them. */ ++ if (crtl->calls_eh_return) ++ { ++ unsigned int i; ++ ++ for (i = 0;; i++) ++ { ++ reg = EH_RETURN_DATA_REGNO (i); ++ if (reg == INVALID_REGNUM) ++ break; ++ save_reg_mask |= 1 << ASM_REGNUM (reg); ++ } ++ } ++ ++ return save_reg_mask; ++} ++ ++ ++/* Compute total size in bytes of all saved registers. */ ++static int ++avr32_get_reg_mask_size (int reg_mask) ++{ ++ int reg, size; ++ size = 0; ++ ++ for (reg = 0; reg <= 15; reg++) ++ if (reg_mask & (1 << reg)) ++ size += 4; ++ ++ return size; ++} ++ ++ ++/* Get a register from one of the registers which are saved onto the stack ++ upon function entry. */ ++static int ++avr32_get_saved_reg (int save_reg_mask) ++{ ++ unsigned int reg; ++ ++ /* Find the first register which is saved in the saved_reg_mask */ ++ for (reg = 0; reg <= 15; reg++) ++ if (save_reg_mask & (1 << reg)) ++ return reg; ++ ++ return -1; ++} ++ ++ ++/* Return 1 if it is possible to return using a single instruction. */ ++int ++avr32_use_return_insn (int iscond) ++{ ++ unsigned int func_type = avr32_current_func_type (); ++ unsigned long saved_int_regs; ++ ++ /* Never use a return instruction before reload has run. */ ++ if (!reload_completed) ++ return 0; ++ ++ /* Must adjust the stack for vararg functions. */ ++ if (crtl->args.info.uses_anonymous_args) ++ return 0; ++ ++ /* If there a stack adjstment. */ ++ if (get_frame_size ()) ++ return 0; ++ ++ saved_int_regs = avr32_compute_save_reg_mask (TRUE); ++ ++ /* Conditional returns can not be performed in one instruction if we need ++ to restore registers from the stack */ ++ if (iscond && saved_int_regs) ++ return 0; ++ ++ /* Conditional return can not be used for interrupt handlers. */ ++ if (iscond && IS_INTERRUPT (func_type)) ++ return 0; ++ ++ /* For interrupt handlers which needs to pop registers */ ++ if (saved_int_regs && IS_INTERRUPT (func_type)) ++ return 0; ++ ++ ++ /* If there are saved registers but the LR isn't saved, then we need two ++ instructions for the return. */ ++ if (saved_int_regs && !(saved_int_regs & (1 << ASM_REGNUM (LR_REGNUM)))) ++ return 0; ++ ++ ++ return 1; ++} ++ ++ ++/* Generate some function prologue info in the assembly file. */ ++void ++avr32_target_asm_function_prologue (FILE * f, HOST_WIDE_INT frame_size) ++{ ++ unsigned long func_type = avr32_current_func_type (); ++ ++ if (IS_NAKED (func_type)) ++ fprintf (f, ++ "\t# Function is naked: Prologue and epilogue provided by programmer\n"); ++ ++ if (IS_FLASHVAULT (func_type)) ++ { ++ fprintf(f, ++ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault attribute.\n"); ++ } ++ ++ if (IS_FLASHVAULT_IMPL (func_type)) ++ { ++ fprintf(f, ++ "\t.ident \"flashvault\"\n\t# Function is defined with flashvault_impl attribute.\n"); ++ ++ /* Save information on flashvault function declaration. */ ++ tree fv_attribute = lookup_attribute ("flashvault_impl", DECL_ATTRIBUTES(current_function_decl)); ++ if (fv_attribute != NULL_TREE) ++ { ++ tree vector_tree = TREE_VALUE(fv_attribute); ++ if (vector_tree != NULL_TREE) ++ { ++ unsigned int vector_num; ++ const char * name; ++ ++ vector_num = (unsigned int) TREE_INT_CST_LOW (TREE_VALUE (vector_tree)); ++ ++ name = XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0); ++ ++ flashvault_decl_list_add (vector_num, name); ++ } ++ } ++ } ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ switch (func_type) ++ { ++ case AVR32_FT_ISR_FULL: ++ fprintf (f, ++ "\t# Interrupt Function: Fully shadowed register file\n"); ++ break; ++ case AVR32_FT_ISR_HALF: ++ fprintf (f, ++ "\t# Interrupt Function: Half shadowed register file\n"); ++ break; ++ default: ++ case AVR32_FT_ISR_NONE: ++ fprintf (f, "\t# Interrupt Function: No shadowed register file\n"); ++ break; ++ } ++ } ++ ++ ++ fprintf (f, "\t# args = %i, frame = %li, pretend = %i\n", ++ crtl->args.size, frame_size, ++ crtl->args.pretend_args_size); ++ ++ fprintf (f, "\t# frame_needed = %i, leaf_function = %i\n", ++ frame_pointer_needed, current_function_is_leaf); ++ ++ fprintf (f, "\t# uses_anonymous_args = %i\n", ++ crtl->args.info.uses_anonymous_args); ++ ++ if (crtl->calls_eh_return) ++ fprintf (f, "\t# Calls __builtin_eh_return.\n"); ++ ++} ++ ++ ++/* Generate and emit an insn that we will recognize as a pushm or stm. ++ Unfortunately, since this insn does not reflect very well the actual ++ semantics of the operation, we need to annotate the insn for the benefit ++ of DWARF2 frame unwind information. */ ++ ++int avr32_convert_to_reglist16 (int reglist8_vect); ++ ++static rtx ++emit_multi_reg_push (int reglist, int usePUSHM) ++{ ++ rtx insn; ++ rtx dwarf; ++ rtx tmp; ++ rtx reg; ++ int i; ++ int nr_regs; ++ int index = 0; ++ ++ if (usePUSHM) ++ { ++ insn = emit_insn (gen_pushm (gen_rtx_CONST_INT (SImode, reglist))); ++ reglist = avr32_convert_to_reglist16 (reglist); ++ } ++ else ++ { ++ insn = emit_insn (gen_stm (stack_pointer_rtx, ++ gen_rtx_CONST_INT (SImode, reglist), ++ gen_rtx_CONST_INT (SImode, 1))); ++ } ++ ++ nr_regs = avr32_get_reg_mask_size (reglist) / 4; ++ dwarf = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (nr_regs + 1)); ++ ++ for (i = 15; i >= 0; i--) ++ { ++ if (reglist & (1 << i)) ++ { ++ reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (i)); ++ tmp = gen_rtx_SET (VOIDmode, ++ gen_rtx_MEM (SImode, ++ plus_constant (stack_pointer_rtx, ++ 4 * index)), reg); ++ RTX_FRAME_RELATED_P (tmp) = 1; ++ XVECEXP (dwarf, 0, 1 + index++) = tmp; ++ } ++ } ++ ++ tmp = gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, ++ stack_pointer_rtx, ++ GEN_INT (-4 * nr_regs))); ++ RTX_FRAME_RELATED_P (tmp) = 1; ++ XVECEXP (dwarf, 0, 0) = tmp; ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, dwarf, ++ REG_NOTES (insn)); ++ return insn; ++} ++ ++rtx ++avr32_gen_load_multiple (rtx * regs, int count, rtx from, ++ int write_back, int in_struct_p, int scalar_p) ++{ ++ ++ rtx result; ++ int i = 0, j; ++ ++ result = ++ gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count + (write_back ? 1 : 0))); ++ ++ if (write_back) ++ { ++ XVECEXP (result, 0, 0) ++ = gen_rtx_SET (GET_MODE (from), from, ++ plus_constant (from, count * 4)); ++ i = 1; ++ count++; ++ } ++ ++ ++ for (j = 0; i < count; i++, j++) ++ { ++ rtx unspec; ++ rtx mem = gen_rtx_MEM (SImode, plus_constant (from, j * 4)); ++ MEM_IN_STRUCT_P (mem) = in_struct_p; ++ MEM_SCALAR_P (mem) = scalar_p; ++ unspec = gen_rtx_UNSPEC (VOIDmode, gen_rtvec (1, mem), UNSPEC_LDM); ++ XVECEXP (result, 0, i) = gen_rtx_SET (VOIDmode, regs[j], unspec); ++ } ++ ++ return result; ++} ++ ++ ++rtx ++avr32_gen_store_multiple (rtx * regs, int count, rtx to, ++ int in_struct_p, int scalar_p) ++{ ++ rtx result; ++ int i = 0, j; ++ ++ result = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (count)); ++ ++ for (j = 0; i < count; i++, j++) ++ { ++ rtx mem = gen_rtx_MEM (SImode, plus_constant (to, j * 4)); ++ MEM_IN_STRUCT_P (mem) = in_struct_p; ++ MEM_SCALAR_P (mem) = scalar_p; ++ XVECEXP (result, 0, i) ++ = gen_rtx_SET (VOIDmode, mem, ++ gen_rtx_UNSPEC (VOIDmode, ++ gen_rtvec (1, regs[j]), ++ UNSPEC_STORE_MULTIPLE)); ++ } ++ ++ return result; ++} ++ ++ ++/* Move a block of memory if it is word aligned or we support unaligned ++ word memory accesses. The size must be maximum 64 bytes. */ ++int ++avr32_gen_movmemsi (rtx * operands) ++{ ++ HOST_WIDE_INT bytes_to_go; ++ rtx src, dst; ++ rtx st_src, st_dst; ++ int src_offset = 0, dst_offset = 0; ++ int block_size; ++ int dst_in_struct_p, src_in_struct_p; ++ int dst_scalar_p, src_scalar_p; ++ int unaligned; ++ ++ if (GET_CODE (operands[2]) != CONST_INT ++ || GET_CODE (operands[3]) != CONST_INT ++ || INTVAL (operands[2]) > 64 ++ || ((INTVAL (operands[3]) & 3) && !TARGET_UNALIGNED_WORD)) ++ return 0; ++ ++ unaligned = (INTVAL (operands[3]) & 3) != 0; ++ ++ block_size = 4; ++ ++ st_dst = XEXP (operands[0], 0); ++ st_src = XEXP (operands[1], 0); ++ ++ dst_in_struct_p = MEM_IN_STRUCT_P (operands[0]); ++ dst_scalar_p = MEM_SCALAR_P (operands[0]); ++ src_in_struct_p = MEM_IN_STRUCT_P (operands[1]); ++ src_scalar_p = MEM_SCALAR_P (operands[1]); ++ ++ dst = copy_to_mode_reg (SImode, st_dst); ++ src = copy_to_mode_reg (SImode, st_src); ++ ++ bytes_to_go = INTVAL (operands[2]); ++ ++ while (bytes_to_go) ++ { ++ enum machine_mode move_mode; ++ /* (Seems to be a problem with reloads for the movti pattern so this is ++ disabled until that problem is resolved) ++ UPDATE: Problem seems to be solved now.... */ ++ if (bytes_to_go >= GET_MODE_SIZE (TImode) && !unaligned ++ /* Do not emit ldm/stm for UC3 as ld.d/st.d is more optimal. */ ++ && !TARGET_ARCH_UC) ++ move_mode = TImode; ++ else if ((bytes_to_go >= GET_MODE_SIZE (DImode)) && !unaligned) ++ move_mode = DImode; ++ else if (bytes_to_go >= GET_MODE_SIZE (SImode)) ++ move_mode = SImode; ++ else ++ move_mode = QImode; ++ ++ { ++ rtx src_mem; ++ rtx dst_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_PLUS (SImode, dst, ++ GEN_INT (dst_offset))); ++ dst_offset += GET_MODE_SIZE (move_mode); ++ if ( 0 /* This causes an error in GCC. Think there is ++ something wrong in the gcse pass which causes REQ_EQUIV notes ++ to be wrong so disabling it for now. */ ++ && move_mode == TImode ++ && INTVAL (operands[2]) > GET_MODE_SIZE (TImode) ) ++ { ++ src_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_POST_INC (SImode, src)); ++ } ++ else ++ { ++ src_mem = gen_rtx_MEM (move_mode, ++ gen_rtx_PLUS (SImode, src, ++ GEN_INT (src_offset))); ++ src_offset += GET_MODE_SIZE (move_mode); ++ } ++ ++ bytes_to_go -= GET_MODE_SIZE (move_mode); ++ ++ MEM_IN_STRUCT_P (dst_mem) = dst_in_struct_p; ++ MEM_SCALAR_P (dst_mem) = dst_scalar_p; ++ ++ MEM_IN_STRUCT_P (src_mem) = src_in_struct_p; ++ MEM_SCALAR_P (src_mem) = src_scalar_p; ++ emit_move_insn (dst_mem, src_mem); ++ ++ } ++ } ++ ++ return 1; ++} ++ ++ ++/* Expand the prologue instruction. */ ++void ++avr32_expand_prologue (void) ++{ ++ rtx insn, dwarf; ++ unsigned long saved_reg_mask; ++ int reglist8 = 0; ++ ++ /* Naked functions do not have a prologue. */ ++ if (IS_NAKED (avr32_current_func_type ())) ++ return; ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); ++ ++ if (saved_reg_mask) ++ { ++ /* Must push used registers. */ ++ ++ /* Should we use POPM or LDM? */ ++ int usePUSHM = TRUE; ++ reglist8 = 0; ++ if (((saved_reg_mask & (1 << 0)) || ++ (saved_reg_mask & (1 << 1)) || ++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) ++ { ++ /* One of R0-R3 should at least be pushed. */ ++ if (((saved_reg_mask & (1 << 0)) && ++ (saved_reg_mask & (1 << 1)) && ++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) ++ { ++ /* All should be pushed. */ ++ reglist8 |= 0x01; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 4)) || ++ (saved_reg_mask & (1 << 5)) || ++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) ++ { ++ /* One of R4-R7 should at least be pushed */ ++ if (((saved_reg_mask & (1 << 4)) && ++ (saved_reg_mask & (1 << 5)) && ++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) ++ { ++ if (usePUSHM) ++ /* All should be pushed */ ++ reglist8 |= 0x02; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) ++ { ++ /* One of R8-R9 should at least be pushed. */ ++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) ++ { ++ if (usePUSHM) ++ /* All should be pushed. */ ++ reglist8 |= 0x04; ++ } ++ else ++ { ++ usePUSHM = FALSE; ++ } ++ } ++ ++ if (saved_reg_mask & (1 << 10)) ++ reglist8 |= 0x08; ++ ++ if (saved_reg_mask & (1 << 11)) ++ reglist8 |= 0x10; ++ ++ if (saved_reg_mask & (1 << 12)) ++ reglist8 |= 0x20; ++ ++ if ((saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) ++ && !IS_FLASHVAULT (avr32_current_func_type ())) ++ { ++ /* Push LR */ ++ reglist8 |= 0x40; ++ } ++ ++ if (usePUSHM) ++ { ++ insn = emit_multi_reg_push (reglist8, TRUE); ++ } ++ else ++ { ++ insn = emit_multi_reg_push (saved_reg_mask, FALSE); ++ } ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ /* Prevent this instruction from being scheduled after any other ++ instructions. */ ++ emit_insn (gen_blockage ()); ++ } ++ ++ /* Set frame pointer */ ++ if (frame_pointer_needed) ++ { ++ insn = emit_move_insn (frame_pointer_rtx, stack_pointer_rtx); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ ++ if (get_frame_size () > 0) ++ { ++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks21")) ++ { ++ insn = emit_insn (gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, ++ stack_pointer_rtx, ++ gen_rtx_CONST_INT ++ (SImode, ++ -get_frame_size ++ ())))); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ } ++ else ++ { ++ /* Immediate is larger than k21 We must either check if we can use ++ one of the pushed reegisters as temporary storage or we must ++ make us a temp register by pushing a register to the stack. */ ++ rtx temp_reg, const_pool_entry, insn; ++ if (saved_reg_mask) ++ { ++ temp_reg = ++ gen_rtx_REG (SImode, ++ INTERNAL_REGNUM (avr32_get_saved_reg ++ (saved_reg_mask))); ++ } ++ else ++ { ++ temp_reg = gen_rtx_REG (SImode, INTERNAL_REGNUM (7)); ++ emit_move_insn (gen_rtx_MEM ++ (SImode, ++ gen_rtx_PRE_DEC (SImode, stack_pointer_rtx)), ++ temp_reg); ++ } ++ ++ const_pool_entry = ++ force_const_mem (SImode, ++ gen_rtx_CONST_INT (SImode, get_frame_size ())); ++ emit_move_insn (temp_reg, const_pool_entry); ++ ++ insn = emit_insn (gen_rtx_SET (SImode, ++ stack_pointer_rtx, ++ gen_rtx_MINUS (SImode, ++ stack_pointer_rtx, ++ temp_reg))); ++ ++ dwarf = gen_rtx_SET (VOIDmode, stack_pointer_rtx, ++ gen_rtx_PLUS (SImode, stack_pointer_rtx, ++ GEN_INT (-get_frame_size ()))); ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_FRAME_RELATED_EXPR, ++ dwarf, REG_NOTES (insn)); ++ RTX_FRAME_RELATED_P (insn) = 1; ++ ++ if (!saved_reg_mask) ++ { ++ insn = ++ emit_move_insn (temp_reg, ++ gen_rtx_MEM (SImode, ++ gen_rtx_POST_INC (SImode, ++ gen_rtx_REG ++ (SImode, ++ 13)))); ++ } ++ ++ /* Mark the temp register as dead */ ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, temp_reg, ++ REG_NOTES (insn)); ++ ++ ++ } ++ ++ /* Prevent the the stack adjustment to be scheduled after any ++ instructions using the frame pointer. */ ++ emit_insn (gen_blockage ()); ++ } ++ ++ /* Load GOT */ ++ if (flag_pic) ++ { ++ avr32_load_pic_register (); ++ ++ /* gcc does not know that load or call instructions might use the pic ++ register so it might schedule these instructions before the loading ++ of the pic register. To avoid this emit a barrier for now. TODO! ++ Find out a better way to let gcc know which instructions might use ++ the pic register. */ ++ emit_insn (gen_blockage ()); ++ } ++ return; ++} ++ ++ ++void ++avr32_set_return_address (rtx source, rtx scratch) ++{ ++ rtx addr; ++ unsigned long saved_regs; ++ ++ saved_regs = avr32_compute_save_reg_mask (TRUE); ++ ++ if (!(saved_regs & (1 << ASM_REGNUM (LR_REGNUM)))) ++ emit_move_insn (gen_rtx_REG (Pmode, LR_REGNUM), source); ++ else ++ { ++ if (frame_pointer_needed) ++ addr = gen_rtx_REG (Pmode, FRAME_POINTER_REGNUM); ++ else ++ if (avr32_const_ok_for_constraint_p (get_frame_size (), 'K', "Ks16")) ++ { ++ addr = plus_constant (stack_pointer_rtx, get_frame_size ()); ++ } ++ else ++ { ++ emit_insn (gen_movsi (scratch, GEN_INT (get_frame_size ()))); ++ addr = scratch; ++ } ++ emit_move_insn (gen_rtx_MEM (Pmode, addr), source); ++ } ++} ++ ++ ++/* Return the length of INSN. LENGTH is the initial length computed by ++ attributes in the machine-description file. */ ++int ++avr32_adjust_insn_length (rtx insn ATTRIBUTE_UNUSED, ++ int length ATTRIBUTE_UNUSED) ++{ ++ return length; ++} ++ ++ ++void ++avr32_output_return_instruction (int single_ret_inst ATTRIBUTE_UNUSED, ++ int iscond ATTRIBUTE_UNUSED, ++ rtx cond ATTRIBUTE_UNUSED, rtx r12_imm) ++{ ++ ++ unsigned long saved_reg_mask; ++ int insert_ret = TRUE; ++ int reglist8 = 0; ++ int stack_adjustment = get_frame_size (); ++ unsigned int func_type = avr32_current_func_type (); ++ FILE *f = asm_out_file; ++ ++ /* Naked functions does not have an epilogue */ ++ if (IS_NAKED (func_type)) ++ return; ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (FALSE); ++ ++ /* Reset frame pointer */ ++ if (stack_adjustment > 0) ++ { ++ if (avr32_const_ok_for_constraint_p (stack_adjustment, 'I', "Is21")) ++ { ++ fprintf (f, "\tsub\tsp, %i # Reset Frame Pointer\n", ++ -stack_adjustment); ++ } ++ else ++ { ++ /* TODO! Is it safe to use r8 as scratch?? */ ++ fprintf (f, "\tmov\tr8, lo(%i) # Reset Frame Pointer\n", ++ -stack_adjustment); ++ fprintf (f, "\torh\tr8, hi(%i) # Reset Frame Pointer\n", ++ -stack_adjustment); ++ fprintf (f, "\tadd\tsp, r8 # Reset Frame Pointer\n"); ++ } ++ } ++ ++ if (saved_reg_mask) ++ { ++ /* Must pop used registers */ ++ ++ /* Should we use POPM or LDM? */ ++ int usePOPM = TRUE; ++ if (((saved_reg_mask & (1 << 0)) || ++ (saved_reg_mask & (1 << 1)) || ++ (saved_reg_mask & (1 << 2)) || (saved_reg_mask & (1 << 3)))) ++ { ++ /* One of R0-R3 should at least be popped */ ++ if (((saved_reg_mask & (1 << 0)) && ++ (saved_reg_mask & (1 << 1)) && ++ (saved_reg_mask & (1 << 2)) && (saved_reg_mask & (1 << 3)))) ++ { ++ /* All should be popped */ ++ reglist8 |= 0x01; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 4)) || ++ (saved_reg_mask & (1 << 5)) || ++ (saved_reg_mask & (1 << 6)) || (saved_reg_mask & (1 << 7)))) ++ { ++ /* One of R0-R3 should at least be popped */ ++ if (((saved_reg_mask & (1 << 4)) && ++ (saved_reg_mask & (1 << 5)) && ++ (saved_reg_mask & (1 << 6)) && (saved_reg_mask & (1 << 7)))) ++ { ++ if (usePOPM) ++ /* All should be popped */ ++ reglist8 |= 0x02; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (((saved_reg_mask & (1 << 8)) || (saved_reg_mask & (1 << 9)))) ++ { ++ /* One of R8-R9 should at least be pushed */ ++ if (((saved_reg_mask & (1 << 8)) && (saved_reg_mask & (1 << 9)))) ++ { ++ if (usePOPM) ++ /* All should be pushed */ ++ reglist8 |= 0x04; ++ } ++ else ++ { ++ usePOPM = FALSE; ++ } ++ } ++ ++ if (saved_reg_mask & (1 << 10)) ++ reglist8 |= 0x08; ++ ++ if (saved_reg_mask & (1 << 11)) ++ reglist8 |= 0x10; ++ ++ if (saved_reg_mask & (1 << 12)) ++ reglist8 |= 0x20; ++ ++ if (saved_reg_mask & (1 << ASM_REGNUM (LR_REGNUM))) ++ /* Pop LR */ ++ reglist8 |= 0x40; ++ ++ if ((saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) ++ && !IS_FLASHVAULT_IMPL (func_type)) ++ /* Pop LR into PC. */ ++ reglist8 |= 0x80; ++ ++ if (usePOPM) ++ { ++ char reglist[64]; /* 64 bytes should be enough... */ ++ avr32_make_reglist8 (reglist8, (char *) reglist); ++ ++ if (reglist8 & 0x80) ++ /* This instruction is also a return */ ++ insert_ret = FALSE; ++ ++ if (r12_imm && !insert_ret) ++ fprintf (f, "\tpopm\t%s, r12=%li\n", reglist, INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tpopm\t%s\n", reglist); ++ ++ } ++ else ++ { ++ char reglist[64]; /* 64 bytes should be enough... */ ++ avr32_make_reglist16 (saved_reg_mask, (char *) reglist); ++ if (saved_reg_mask & (1 << ASM_REGNUM (PC_REGNUM))) ++ /* This instruction is also a return */ ++ insert_ret = FALSE; ++ ++ if (r12_imm && !insert_ret) ++ fprintf (f, "\tldm\tsp++, %s, r12=%li\n", reglist, ++ INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tldm\tsp++, %s\n", reglist); ++ ++ } ++ ++ } ++ ++ /* Stack adjustment for exception handler. */ ++ if (crtl->calls_eh_return) ++ fprintf (f, "\tadd\tsp, r%d\n", ASM_REGNUM (EH_RETURN_STACKADJ_REGNO)); ++ ++ ++ if (IS_INTERRUPT (func_type)) ++ { ++ fprintf (f, "\trete\n"); ++ } ++ else if (IS_FLASHVAULT (func_type)) ++ { ++ /* Normal return from Secure System call, increment SS_RAR before ++ returning. Use R8 as scratch. */ ++ fprintf (f, ++ "\t# Normal return from sscall.\n" ++ "\t# Increment SS_RAR before returning.\n" ++ "\t# Use R8 as scratch.\n" ++ "\tmfsr\tr8, 440\n" ++ "\tsub\tr8, -2\n" ++ "\tmtsr\t440, r8\n" ++ "\tretss\n"); ++ } ++ else if (insert_ret) ++ { ++ if (r12_imm) ++ fprintf (f, "\tretal\t%li\n", INTVAL (r12_imm)); ++ else ++ fprintf (f, "\tretal\tr12\n"); ++ } ++} ++ ++void ++avr32_make_reglist16 (int reglist16_vect, char *reglist16_string) ++{ ++ int i; ++ bool first_reg = true; ++ /* Make sure reglist16_string is empty. */ ++ reglist16_string[0] = '\0'; ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (reglist16_vect & (1 << i)) ++ { ++ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); ++ strcat (reglist16_string, reg_names[INTERNAL_REGNUM (i)]); ++ } ++ } ++} ++ ++int ++avr32_convert_to_reglist16 (int reglist8_vect) ++{ ++ int reglist16_vect = 0; ++ if (reglist8_vect & 0x1) ++ reglist16_vect |= 0xF; ++ if (reglist8_vect & 0x2) ++ reglist16_vect |= 0xF0; ++ if (reglist8_vect & 0x4) ++ reglist16_vect |= 0x300; ++ if (reglist8_vect & 0x8) ++ reglist16_vect |= 0x400; ++ if (reglist8_vect & 0x10) ++ reglist16_vect |= 0x800; ++ if (reglist8_vect & 0x20) ++ reglist16_vect |= 0x1000; ++ if (reglist8_vect & 0x40) ++ reglist16_vect |= 0x4000; ++ if (reglist8_vect & 0x80) ++ reglist16_vect |= 0x8000; ++ ++ return reglist16_vect; ++} ++ ++void ++avr32_make_reglist8 (int reglist8_vect, char *reglist8_string) ++{ ++ /* Make sure reglist8_string is empty. */ ++ reglist8_string[0] = '\0'; ++ ++ if (reglist8_vect & 0x1) ++ strcpy (reglist8_string, "r0-r3"); ++ if (reglist8_vect & 0x2) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r4-r7") : ++ strcpy (reglist8_string, "r4-r7"); ++ if (reglist8_vect & 0x4) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r8-r9") : ++ strcpy (reglist8_string, "r8-r9"); ++ if (reglist8_vect & 0x8) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r10") : ++ strcpy (reglist8_string, "r10"); ++ if (reglist8_vect & 0x10) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r11") : ++ strcpy (reglist8_string, "r11"); ++ if (reglist8_vect & 0x20) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", r12") : ++ strcpy (reglist8_string, "r12"); ++ if (reglist8_vect & 0x40) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", lr") : ++ strcpy (reglist8_string, "lr"); ++ if (reglist8_vect & 0x80) ++ strlen (reglist8_string) ? strcat (reglist8_string, ", pc") : ++ strcpy (reglist8_string, "pc"); ++} ++ ++ ++int ++avr32_eh_return_data_regno (int n) ++{ ++ if (n >= 0 && n <= 3) ++ return 8 + n; ++ else ++ return INVALID_REGNUM; ++} ++ ++ ++/* Compute the distance from register FROM to register TO. ++ These can be the arg pointer, the frame pointer or ++ the stack pointer. ++ Typical stack layout looks like this: ++ ++ old stack pointer -> | | ++ ---- ++ | | \ ++ | | saved arguments for ++ | | vararg functions ++ arg_pointer -> | | / ++ -- ++ | | \ ++ | | call saved ++ | | registers ++ | | / ++ frame ptr -> -- ++ | | \ ++ | | local ++ | | variables ++ stack ptr --> | | / ++ -- ++ | | \ ++ | | outgoing ++ | | arguments ++ | | / ++ -- ++ ++ For a given funciton some or all of these stack compomnents ++ may not be needed, giving rise to the possibility of ++ eliminating some of the registers. ++ ++ The values returned by this function must reflect the behaviour ++ of avr32_expand_prologue() and avr32_compute_save_reg_mask(). ++ ++ The sign of the number returned reflects the direction of stack ++ growth, so the values are positive for all eliminations except ++ from the soft frame pointer to the hard frame pointer. */ ++int ++avr32_initial_elimination_offset (int from, int to) ++{ ++ int i; ++ int call_saved_regs = 0; ++ unsigned long saved_reg_mask; ++ unsigned int local_vars = get_frame_size (); ++ ++ saved_reg_mask = avr32_compute_save_reg_mask (TRUE); ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (saved_reg_mask & (1 << i)) ++ call_saved_regs += 4; ++ } ++ ++ switch (from) ++ { ++ case ARG_POINTER_REGNUM: ++ switch (to) ++ { ++ case STACK_POINTER_REGNUM: ++ return call_saved_regs + local_vars; ++ case FRAME_POINTER_REGNUM: ++ return call_saved_regs; ++ default: ++ abort (); ++ } ++ case FRAME_POINTER_REGNUM: ++ switch (to) ++ { ++ case STACK_POINTER_REGNUM: ++ return local_vars; ++ default: ++ abort (); ++ } ++ default: ++ abort (); ++ } ++} ++ ++ ++/* ++ Returns a rtx used when passing the next argument to a function. ++ avr32_init_cumulative_args() and avr32_function_arg_advance() sets which ++ register to use. ++*/ ++rtx ++avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named) ++{ ++ int index = -1; ++ //unsigned long func_type = avr32_current_func_type (); ++ //int last_reg_index = (IS_FLASHVAULT(func_type) || IS_FLASHVAULT_IMPL(func_type) || cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); ++ int last_reg_index = (cum->flashvault_func ? LAST_CUM_REG_INDEX - 1 : LAST_CUM_REG_INDEX); ++ ++ HOST_WIDE_INT arg_size, arg_rsize; ++ if (type) ++ { ++ arg_size = int_size_in_bytes (type); ++ } ++ else ++ { ++ arg_size = GET_MODE_SIZE (mode); ++ } ++ arg_rsize = PUSH_ROUNDING (arg_size); ++ ++ /* ++ The last time this macro is called, it is called with mode == VOIDmode, ++ and its result is passed to the call or call_value pattern as operands 2 ++ and 3 respectively. */ ++ if (mode == VOIDmode) ++ { ++ return gen_rtx_CONST_INT (SImode, 22); /* ToDo: fixme. */ ++ } ++ ++ if ((*targetm.calls.must_pass_in_stack) (mode, type) || !named) ++ { ++ return NULL_RTX; ++ } ++ ++ if (arg_rsize == 8) ++ { ++ /* use r11:r10 or r9:r8. */ ++ if (!(GET_USED_INDEX (cum, 1) || GET_USED_INDEX (cum, 2))) ++ index = 1; ++ else if ((last_reg_index == 4) && ++ !(GET_USED_INDEX (cum, 3) || GET_USED_INDEX (cum, 4))) ++ index = 3; ++ else ++ index = -1; ++ } ++ else if (arg_rsize == 4) ++ { /* Use first available register */ ++ index = 0; ++ while (index <= last_reg_index && GET_USED_INDEX (cum, index)) ++ index++; ++ if (index > last_reg_index) ++ index = -1; ++ } ++ ++ SET_REG_INDEX (cum, index); ++ ++ if (GET_REG_INDEX (cum) >= 0) ++ return gen_rtx_REG (mode, avr32_function_arg_reglist[GET_REG_INDEX (cum)]); ++ ++ return NULL_RTX; ++} ++ ++ ++/* Set the register used for passing the first argument to a function. */ ++void ++avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, ++ tree fntype ATTRIBUTE_UNUSED, ++ rtx libname ATTRIBUTE_UNUSED, ++ tree fndecl) ++{ ++ /* Set all registers as unused. */ ++ SET_INDEXES_UNUSED (cum); ++ ++ /* Reset uses_anonymous_args */ ++ cum->uses_anonymous_args = 0; ++ ++ /* Reset size of stack pushed arguments */ ++ cum->stack_pushed_args_size = 0; ++ ++ cum->flashvault_func = (fndecl && (has_attribute_p (fndecl,"flashvault") || has_attribute_p (fndecl,"flashvault_impl"))); ++} ++ ++ ++/* ++ Set register used for passing the next argument to a function. Only the ++ Scratch Registers are used. ++ ++ number name ++ 15 r15 PC ++ 14 r14 LR ++ 13 r13 _SP_________ ++ FIRST_CUM_REG 12 r12 _||_ ++ 10 r11 || ++ 11 r10 _||_ Scratch Registers ++ 8 r9 || ++ LAST_SCRATCH_REG 9 r8 _\/_________ ++ 6 r7 /\ ++ 7 r6 || ++ 4 r5 || ++ 5 r4 || ++ 2 r3 || ++ 3 r2 || ++ 0 r1 || ++ 1 r0 _||_________ ++ ++*/ ++void ++avr32_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named ATTRIBUTE_UNUSED) ++{ ++ HOST_WIDE_INT arg_size, arg_rsize; ++ ++ if (type) ++ { ++ arg_size = int_size_in_bytes (type); ++ } ++ else ++ { ++ arg_size = GET_MODE_SIZE (mode); ++ } ++ arg_rsize = PUSH_ROUNDING (arg_size); ++ ++ /* If the argument had to be passed in stack, no register is used. */ ++ if ((*targetm.calls.must_pass_in_stack) (mode, type)) ++ { ++ cum->stack_pushed_args_size += PUSH_ROUNDING (int_size_in_bytes (type)); ++ return; ++ } ++ ++ /* Mark the used registers as "used". */ ++ if (GET_REG_INDEX (cum) >= 0) ++ { ++ SET_USED_INDEX (cum, GET_REG_INDEX (cum)); ++ if (arg_rsize == 8) ++ { ++ SET_USED_INDEX (cum, (GET_REG_INDEX (cum) + 1)); ++ } ++ } ++ else ++ { ++ /* Had to use stack */ ++ cum->stack_pushed_args_size += arg_rsize; ++ } ++} ++ ++ ++/* ++ Defines witch direction to go to find the next register to use if the ++ argument is larger then one register or for arguments shorter than an ++ int which is not promoted, such as the last part of structures with ++ size not a multiple of 4. */ ++enum direction ++avr32_function_arg_padding (enum machine_mode mode ATTRIBUTE_UNUSED, ++ tree type) ++{ ++ /* Pad upward for all aggregates except byte and halfword sized aggregates ++ which can be passed in registers. */ ++ if (type ++ && AGGREGATE_TYPE_P (type) ++ && (int_size_in_bytes (type) != 1) ++ && !((int_size_in_bytes (type) == 2) ++ && TYPE_ALIGN_UNIT (type) >= 2) ++ && (int_size_in_bytes (type) & 0x3)) ++ { ++ return upward; ++ } ++ ++ return downward; ++} ++ ++ ++/* Return a rtx used for the return value from a function call. */ ++rtx ++avr32_function_value (tree type, tree func, bool outgoing ATTRIBUTE_UNUSED) ++{ ++ if (avr32_return_in_memory (type, func)) ++ return NULL_RTX; ++ ++ if (int_size_in_bytes (type) <= 4) ++ { ++ enum machine_mode mode = TYPE_MODE (type); ++ int unsignedp = 0; ++ PROMOTE_FUNCTION_MODE (mode, unsignedp, type); ++ return gen_rtx_REG (mode, RET_REGISTER); ++ } ++ else if (int_size_in_bytes (type) <= 8) ++ return gen_rtx_REG (TYPE_MODE (type), INTERNAL_REGNUM (11)); ++ ++ return NULL_RTX; ++} ++ ++ ++/* Return a rtx used for the return value from a library function call. */ ++rtx ++avr32_libcall_value (enum machine_mode mode) ++{ ++ ++ if (GET_MODE_SIZE (mode) <= 4) ++ return gen_rtx_REG (mode, RET_REGISTER); ++ else if (GET_MODE_SIZE (mode) <= 8) ++ return gen_rtx_REG (mode, INTERNAL_REGNUM (11)); ++ else ++ return NULL_RTX; ++} ++ ++ ++/* Return TRUE if X references a SYMBOL_REF. */ ++int ++symbol_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (GET_CODE (x) == SYMBOL_REF) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (symbol_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && symbol_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++/* Return TRUE if X references a LABEL_REF. */ ++int ++label_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (GET_CODE (x) == LABEL_REF) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (label_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && label_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++/* Return TRUE if X contains a MEM expression. */ ++int ++mem_mentioned_p (rtx x) ++{ ++ const char *fmt; ++ int i; ++ ++ if (MEM_P (x)) ++ return 1; ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'E') ++ { ++ int j; ++ ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ if (mem_mentioned_p (XVECEXP (x, i, j))) ++ return 1; ++ } ++ else if (fmt[i] == 'e' && mem_mentioned_p (XEXP (x, i))) ++ return 1; ++ } ++ ++ return 0; ++} ++ ++ ++int ++avr32_legitimate_pic_operand_p (rtx x) ++{ ++ ++ /* We can't have const, this must be broken down to a symbol. */ ++ if (GET_CODE (x) == CONST) ++ return FALSE; ++ ++ /* Can't access symbols or labels via the constant pool either */ ++ if ((GET_CODE (x) == SYMBOL_REF ++ && CONSTANT_POOL_ADDRESS_P (x) ++ && (symbol_mentioned_p (get_pool_constant (x)) ++ || label_mentioned_p (get_pool_constant (x))))) ++ return FALSE; ++ ++ return TRUE; ++} ++ ++ ++rtx ++legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED, ++ rtx reg) ++{ ++ ++ if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF) ++ { ++ int subregs = 0; ++ ++ if (reg == 0) ++ { ++ if (!can_create_pseudo_p ()) ++ abort (); ++ else ++ reg = gen_reg_rtx (Pmode); ++ ++ subregs = 1; ++ } ++ ++ emit_move_insn (reg, orig); ++ ++ /* Only set current function as using pic offset table if flag_pic is ++ set. This is because this function is also used if ++ TARGET_HAS_ASM_ADDR_PSEUDOS is set. */ ++ if (flag_pic) ++ crtl->uses_pic_offset_table = 1; ++ ++ /* Put a REG_EQUAL note on this insn, so that it can be optimized by ++ loop. */ ++ return reg; ++ } ++ else if (GET_CODE (orig) == CONST) ++ { ++ rtx base, offset; ++ ++ if (flag_pic ++ && GET_CODE (XEXP (orig, 0)) == PLUS ++ && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx) ++ return orig; ++ ++ if (reg == 0) ++ { ++ if (!can_create_pseudo_p ()) ++ abort (); ++ else ++ reg = gen_reg_rtx (Pmode); ++ } ++ ++ if (GET_CODE (XEXP (orig, 0)) == PLUS) ++ { ++ base = ++ legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg); ++ offset = ++ legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode, ++ base == reg ? 0 : reg); ++ } ++ else ++ abort (); ++ ++ if (GET_CODE (offset) == CONST_INT) ++ { ++ /* The base register doesn't really matter, we only want to test ++ the index for the appropriate mode. */ ++ if (!avr32_const_ok_for_constraint_p (INTVAL (offset), 'I', "Is21")) ++ { ++ if (can_create_pseudo_p ()) ++ offset = force_reg (Pmode, offset); ++ else ++ abort (); ++ } ++ ++ if (GET_CODE (offset) == CONST_INT) ++ return plus_constant (base, INTVAL (offset)); ++ } ++ ++ return gen_rtx_PLUS (Pmode, base, offset); ++ } ++ ++ return orig; ++} ++ ++ ++/* Generate code to load the PIC register. */ ++void ++avr32_load_pic_register (void) ++{ ++ rtx l1, pic_tmp; ++ rtx global_offset_table; ++ ++ if ((crtl->uses_pic_offset_table == 0) || TARGET_NO_INIT_GOT) ++ return; ++ ++ if (!flag_pic) ++ abort (); ++ ++ l1 = gen_label_rtx (); ++ ++ global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_"); ++ pic_tmp = ++ gen_rtx_CONST (Pmode, ++ gen_rtx_MINUS (SImode, gen_rtx_LABEL_REF (Pmode, l1), ++ global_offset_table)); ++ emit_insn (gen_pic_load_addr ++ (pic_offset_table_rtx, force_const_mem (SImode, pic_tmp))); ++ emit_insn (gen_pic_compute_got_from_pc (pic_offset_table_rtx, l1)); ++ ++ /* Need to emit this whether or not we obey regdecls, since setjmp/longjmp ++ can cause life info to screw up. */ ++ emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx)); ++} ++ ++ ++/* This hook should return true if values of type type are returned at the most ++ significant end of a register (in other words, if they are padded at the ++ least significant end). You can assume that type is returned in a register; ++ the caller is required to check this. Note that the register provided by ++ FUNCTION_VALUE must be able to hold the complete return value. For example, ++ if a 1-, 2- or 3-byte structure is returned at the most significant end of a ++ 4-byte register, FUNCTION_VALUE should provide an SImode rtx. */ ++bool ++avr32_return_in_msb (tree type ATTRIBUTE_UNUSED) ++{ ++ /* if ( AGGREGATE_TYPE_P (type) ) if ((int_size_in_bytes(type) == 1) || ++ ((int_size_in_bytes(type) == 2) && TYPE_ALIGN_UNIT(type) >= 2)) return ++ false; else return true; */ ++ ++ return false; ++} ++ ++ ++/* ++ Returns one if a certain function value is going to be returned in memory ++ and zero if it is going to be returned in a register. ++ ++ BLKmode and all other modes that is larger than 64 bits are returned in ++ memory. ++*/ ++bool ++avr32_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED) ++{ ++ if (TYPE_MODE (type) == VOIDmode) ++ return false; ++ ++ if (int_size_in_bytes (type) > (2 * UNITS_PER_WORD) ++ || int_size_in_bytes (type) == -1) ++ { ++ return true; ++ } ++ ++ /* If we have an aggregate then use the same mechanism as when checking if ++ it should be passed on the stack. */ ++ if (type ++ && AGGREGATE_TYPE_P (type) ++ && (*targetm.calls.must_pass_in_stack) (TYPE_MODE (type), type)) ++ return true; ++ ++ return false; ++} ++ ++ ++/* Output the constant part of the trampoline. ++ lddpc r0, pc[0x8:e] ; load static chain register ++ lddpc pc, pc[0x8:e] ; jump to subrutine ++ .long 0 ; Address to static chain, ++ ; filled in by avr32_initialize_trampoline() ++ .long 0 ; Address to subrutine, ++ ; filled in by avr32_initialize_trampoline() ++*/ ++void ++avr32_trampoline_template (FILE * file) ++{ ++ fprintf (file, "\tlddpc r0, pc[8]\n"); ++ fprintf (file, "\tlddpc pc, pc[8]\n"); ++ /* make room for the address of the static chain. */ ++ fprintf (file, "\t.long\t0\n"); ++ /* make room for the address to the subrutine. */ ++ fprintf (file, "\t.long\t0\n"); ++} ++ ++ ++/* Initialize the variable parts of a trampoline. */ ++void ++avr32_initialize_trampoline (rtx addr, rtx fnaddr, rtx static_chain) ++{ ++ /* Store the address to the static chain. */ ++ emit_move_insn (gen_rtx_MEM ++ (SImode, plus_constant (addr, TRAMPOLINE_SIZE - 4)), ++ static_chain); ++ ++ /* Store the address to the function. */ ++ emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, TRAMPOLINE_SIZE)), ++ fnaddr); ++ ++ emit_insn (gen_cache (gen_rtx_REG (SImode, 13), ++ gen_rtx_CONST_INT (SImode, ++ AVR32_CACHE_INVALIDATE_ICACHE))); ++} ++ ++ ++/* Return nonzero if X is valid as an addressing register. */ ++int ++avr32_address_register_rtx_p (rtx x, int strict_p) ++{ ++ int regno; ++ ++ if (!register_operand(x, GET_MODE(x))) ++ return 0; ++ ++ /* If strict we require the register to be a hard register. */ ++ if (strict_p ++ && !REG_P(x)) ++ return 0; ++ ++ regno = REGNO (x); ++ ++ if (strict_p) ++ return REGNO_OK_FOR_BASE_P (regno); ++ ++ return (regno <= LAST_REGNUM || regno >= FIRST_PSEUDO_REGISTER); ++} ++ ++ ++/* Return nonzero if INDEX is valid for an address index operand. */ ++int ++avr32_legitimate_index_p (enum machine_mode mode, rtx index, int strict_p) ++{ ++ enum rtx_code code = GET_CODE (index); ++ ++ if (GET_MODE_SIZE (mode) > 8) ++ return 0; ++ ++ /* Standard coprocessor addressing modes. */ ++ if (code == CONST_INT) ++ { ++ return CONST_OK_FOR_CONSTRAINT_P (INTVAL (index), 'K', "Ks16"); ++ } ++ ++ if (avr32_address_register_rtx_p (index, strict_p)) ++ return 1; ++ ++ if (code == MULT) ++ { ++ rtx xiop0 = XEXP (index, 0); ++ rtx xiop1 = XEXP (index, 1); ++ return ((avr32_address_register_rtx_p (xiop0, strict_p) ++ && power_of_two_operand (xiop1, SImode) ++ && (INTVAL (xiop1) <= 8)) ++ || (avr32_address_register_rtx_p (xiop1, strict_p) ++ && power_of_two_operand (xiop0, SImode) ++ && (INTVAL (xiop0) <= 8))); ++ } ++ else if (code == ASHIFT) ++ { ++ rtx op = XEXP (index, 1); ++ ++ return (avr32_address_register_rtx_p (XEXP (index, 0), strict_p) ++ && GET_CODE (op) == CONST_INT ++ && INTVAL (op) > 0 && INTVAL (op) <= 3); ++ } ++ ++ return 0; ++} ++ ++ ++/* ++ Used in the GO_IF_LEGITIMATE_ADDRESS macro. Returns a nonzero value if ++ the RTX x is a legitimate memory address. ++ ++ Returns NO_REGS if the address is not legatime, GENERAL_REGS or ALL_REGS ++ if it is. ++*/ ++ ++ ++/* Forward declaration */ ++int is_minipool_label (rtx label); ++ ++int ++avr32_legitimate_address (enum machine_mode mode, rtx x, int strict) ++{ ++ ++ switch (GET_CODE (x)) ++ { ++ case REG: ++ return avr32_address_register_rtx_p (x, strict); ++ case CONST_INT: ++ return ((mode==SImode) && TARGET_RMW_ADDRESSABLE_DATA ++ && CONST_OK_FOR_CONSTRAINT_P(INTVAL(x), 'K', "Ks17")); ++ case CONST: ++ { ++ rtx label = avr32_find_symbol (x); ++ if (label ++ && ++ (/* ++ If we enable (const (plus (symbol_ref ...))) type constant ++ pool entries we must add support for it in the predicates and ++ in the minipool generation in avr32_reorg(). ++ (CONSTANT_POOL_ADDRESS_P (label) ++ && !(flag_pic ++ && (symbol_mentioned_p (get_pool_constant (label)) ++ || label_mentioned_p (get_pool_constant (label))))) ++ ||*/ ++ ((GET_CODE (label) == LABEL_REF) ++ && GET_CODE (XEXP (label, 0)) == CODE_LABEL ++ && is_minipool_label (XEXP (label, 0))) ++ /*|| ((GET_CODE (label) == SYMBOL_REF) ++ && mode == SImode ++ && SYMBOL_REF_RMW_ADDR(label))*/)) ++ { ++ return TRUE; ++ } ++ } ++ break; ++ case LABEL_REF: ++ if (GET_CODE (XEXP (x, 0)) == CODE_LABEL ++ && is_minipool_label (XEXP (x, 0))) ++ { ++ return TRUE; ++ } ++ break; ++ case SYMBOL_REF: ++ { ++ if (CONSTANT_POOL_ADDRESS_P (x) ++ && !(flag_pic ++ && (symbol_mentioned_p (get_pool_constant (x)) ++ || label_mentioned_p (get_pool_constant (x))))) ++ return TRUE; ++ else if (SYMBOL_REF_RCALL_FUNCTION_P (x) ++ || (mode == SImode ++ && SYMBOL_REF_RMW_ADDR (x))) ++ return TRUE; ++ break; ++ } ++ case PRE_DEC: /* (pre_dec (...)) */ ++ case POST_INC: /* (post_inc (...)) */ ++ return avr32_address_register_rtx_p (XEXP (x, 0), strict); ++ case PLUS: /* (plus (...) (...)) */ ++ { ++ rtx xop0 = XEXP (x, 0); ++ rtx xop1 = XEXP (x, 1); ++ ++ return ((avr32_address_register_rtx_p (xop0, strict) ++ && avr32_legitimate_index_p (mode, xop1, strict)) ++ || (avr32_address_register_rtx_p (xop1, strict) ++ && avr32_legitimate_index_p (mode, xop0, strict))); ++ } ++ default: ++ break; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_const_ok_for_move (HOST_WIDE_INT c) ++{ ++ if ( TARGET_V2_INSNS ) ++ return ( avr32_const_ok_for_constraint_p (c, 'K', "Ks21") ++ /* movh instruction */ ++ || avr32_hi16_immediate_operand (GEN_INT(c), VOIDmode) ); ++ else ++ return avr32_const_ok_for_constraint_p (c, 'K', "Ks21"); ++} ++ ++ ++int ++avr32_const_double_immediate (rtx value) ++{ ++ HOST_WIDE_INT hi, lo; ++ ++ if (GET_CODE (value) != CONST_DOUBLE) ++ return FALSE; ++ ++ if (SCALAR_FLOAT_MODE_P (GET_MODE (value))) ++ { ++ HOST_WIDE_INT target_float[2]; ++ hi = lo = 0; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (value), ++ GET_MODE (value)); ++ lo = target_float[0]; ++ hi = target_float[1]; ++ } ++ else ++ { ++ hi = CONST_DOUBLE_HIGH (value); ++ lo = CONST_DOUBLE_LOW (value); ++ } ++ ++ if (avr32_const_ok_for_constraint_p (lo, 'K', "Ks21") ++ && (GET_MODE (value) == SFmode ++ || avr32_const_ok_for_constraint_p (hi, 'K', "Ks21"))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_legitimate_constant_p (rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST_INT: ++ /* Check if we should put large immediate into constant pool ++ or load them directly with mov/orh.*/ ++ if (!avr32_imm_in_const_pool) ++ return 1; ++ ++ return avr32_const_ok_for_move (INTVAL (x)); ++ case CONST_DOUBLE: ++ /* Check if we should put large immediate into constant pool ++ or load them directly with mov/orh.*/ ++ if (!avr32_imm_in_const_pool) ++ return 1; ++ ++ if (GET_MODE (x) == SFmode ++ || GET_MODE (x) == DFmode || GET_MODE (x) == DImode) ++ return avr32_const_double_immediate (x); ++ else ++ return 0; ++ case LABEL_REF: ++ case SYMBOL_REF: ++ return avr32_find_symbol (x) && (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS); ++ case CONST: ++ case HIGH: ++ case CONST_VECTOR: ++ return 0; ++ default: ++ printf ("%s():\n", __FUNCTION__); ++ debug_rtx (x); ++ return 1; ++ } ++} ++ ++ ++/* Strip any special encoding from labels */ ++const char * ++avr32_strip_name_encoding (const char *name) ++{ ++ const char *stripped = name; ++ ++ while (1) ++ { ++ switch (stripped[0]) ++ { ++ case '#': ++ stripped = strchr (name + 1, '#') + 1; ++ break; ++ case '*': ++ stripped = &stripped[1]; ++ break; ++ default: ++ return stripped; ++ } ++ } ++} ++ ++ ++ ++/* Do anything needed before RTL is emitted for each function. */ ++static struct machine_function * ++avr32_init_machine_status (void) ++{ ++ struct machine_function *machine; ++ machine = ++ (machine_function *) ggc_alloc_cleared (sizeof (machine_function)); ++ ++#if AVR32_FT_UNKNOWN != 0 ++ machine->func_type = AVR32_FT_UNKNOWN; ++#endif ++ ++ machine->minipool_label_head = 0; ++ machine->minipool_label_tail = 0; ++ machine->ifcvt_after_reload = 0; ++ return machine; ++} ++ ++ ++void ++avr32_init_expanders (void) ++{ ++ /* Arrange to initialize and mark the machine per-function status. */ ++ init_machine_status = avr32_init_machine_status; ++} ++ ++ ++/* Return an RTX indicating where the return address to the ++ calling function can be found. */ ++rtx ++avr32_return_addr (int count, rtx frame ATTRIBUTE_UNUSED) ++{ ++ if (count != 0) ++ return NULL_RTX; ++ ++ return get_hard_reg_initial_val (Pmode, LR_REGNUM); ++} ++ ++ ++void ++avr32_encode_section_info (tree decl, rtx rtl, int first) ++{ ++ default_encode_section_info(decl, rtl, first); ++ ++ if ( TREE_CODE (decl) == VAR_DECL ++ && (GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF) ++ && (lookup_attribute ("rmw_addressable", DECL_ATTRIBUTES (decl)) ++ || TARGET_RMW_ADDRESSABLE_DATA) ){ ++ if ( !TARGET_RMW || flag_pic ) ++ return; ++ // { ++ // warning ("Using RMW addressable data with an arch that does not support RMW instructions."); ++ // return; ++ // } ++ // ++ //if ( flag_pic ) ++ // { ++ // warning ("Using RMW addressable data with together with -fpic switch. Can not use RMW instruction when compiling with -fpic."); ++ // return; ++ // } ++ SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT); ++ } ++} ++ ++ ++void ++avr32_asm_output_label (FILE * stream, const char *name) ++{ ++ name = avr32_strip_name_encoding (name); ++ ++ /* Print the label. */ ++ assemble_name (stream, name); ++ fprintf (stream, ":\n"); ++} ++ ++ ++void ++avr32_asm_weaken_label (FILE * stream, const char *name) ++{ ++ fprintf (stream, "\t.weak "); ++ assemble_name (stream, name); ++ fprintf (stream, "\n"); ++} ++ ++ ++/* ++ Checks if a labelref is equal to a reserved word in the assembler. If it is, ++ insert a '_' before the label name. ++*/ ++void ++avr32_asm_output_labelref (FILE * stream, const char *name) ++{ ++ int verbatim = FALSE; ++ const char *stripped = name; ++ int strip_finished = FALSE; ++ ++ while (!strip_finished) ++ { ++ switch (stripped[0]) ++ { ++ case '#': ++ stripped = strchr (name + 1, '#') + 1; ++ break; ++ case '*': ++ stripped = &stripped[1]; ++ verbatim = TRUE; ++ break; ++ default: ++ strip_finished = TRUE; ++ break; ++ } ++ } ++ ++ if (verbatim) ++ fputs (stripped, stream); ++ else ++ asm_fprintf (stream, "%U%s", stripped); ++} ++ ++ ++/* ++ Check if the comparison in compare_exp is redundant ++ for the condition given in next_cond given that the ++ needed flags are already set by an earlier instruction. ++ Uses cc_prev_status to check this. ++ ++ Returns NULL_RTX if the compare is not redundant ++ or the new condition to use in the conditional ++ instruction if the compare is redundant. ++*/ ++static rtx ++is_compare_redundant (rtx compare_exp, rtx next_cond) ++{ ++ int z_flag_valid = FALSE; ++ int n_flag_valid = FALSE; ++ rtx new_cond; ++ ++ if (GET_CODE (compare_exp) != COMPARE ++ && GET_CODE (compare_exp) != AND) ++ return NULL_RTX; ++ ++ ++ if (rtx_equal_p (cc_prev_status.mdep.value, compare_exp)) ++ { ++ /* cc0 already contains the correct comparison -> delete cmp insn */ ++ return next_cond; ++ } ++ ++ if (GET_MODE (compare_exp) != SImode) ++ return NULL_RTX; ++ ++ switch (cc_prev_status.mdep.flags) ++ { ++ case CC_SET_VNCZ: ++ case CC_SET_NCZ: ++ n_flag_valid = TRUE; ++ case CC_SET_CZ: ++ case CC_SET_Z: ++ z_flag_valid = TRUE; ++ } ++ ++ if (cc_prev_status.mdep.value ++ && GET_CODE (compare_exp) == COMPARE ++ && REG_P (XEXP (compare_exp, 0)) ++ && REGNO (XEXP (compare_exp, 0)) == REGNO (cc_prev_status.mdep.value) ++ && GET_CODE (XEXP (compare_exp, 1)) == CONST_INT ++ && next_cond != NULL_RTX) ++ { ++ if (INTVAL (XEXP (compare_exp, 1)) == 0 ++ && z_flag_valid ++ && (GET_CODE (next_cond) == EQ || GET_CODE (next_cond) == NE)) ++ /* We can skip comparison Z flag is already reflecting ops[0] */ ++ return next_cond; ++ else if (n_flag_valid ++ && ((INTVAL (XEXP (compare_exp, 1)) == 0 ++ && (GET_CODE (next_cond) == GE ++ || GET_CODE (next_cond) == LT)) ++ || (INTVAL (XEXP (compare_exp, 1)) == -1 ++ && (GET_CODE (next_cond) == GT ++ || GET_CODE (next_cond) == LE)))) ++ { ++ /* We can skip comparison N flag is already reflecting ops[0], ++ which means that we can use the mi/pl conditions to check if ++ ops[0] is GE or LT 0. */ ++ if ((GET_CODE (next_cond) == GE) || (GET_CODE (next_cond) == GT)) ++ new_cond = ++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), ++ UNSPEC_COND_PL); ++ else ++ new_cond = ++ gen_rtx_UNSPEC (GET_MODE (next_cond), gen_rtvec (2, cc0_rtx, const0_rtx), ++ UNSPEC_COND_MI); ++ return new_cond; ++ } ++ } ++ return NULL_RTX; ++} ++ ++ ++/* Updates cc_status. */ ++void ++avr32_notice_update_cc (rtx exp, rtx insn) ++{ ++ enum attr_cc attr_cc = get_attr_cc (insn); ++ ++ if ( attr_cc == CC_SET_Z_IF_NOT_V2 ) ++ { ++ if (TARGET_V2_INSNS) ++ attr_cc = CC_NONE; ++ else ++ attr_cc = CC_SET_Z; ++ } ++ ++ switch (attr_cc) ++ { ++ case CC_CALL_SET: ++ CC_STATUS_INIT; ++ /* Check if the function call returns a value in r12 */ ++ if (REG_P (recog_data.operand[0]) ++ && REGNO (recog_data.operand[0]) == RETVAL_REGNUM) ++ { ++ cc_status.flags = 0; ++ cc_status.mdep.value = ++ gen_rtx_COMPARE (SImode, recog_data.operand[0], const0_rtx); ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ ++ } ++ break; ++ case CC_COMPARE: ++ { ++ /* Check that compare will not be optimized away if so nothing should ++ be done */ ++ rtx compare_exp = SET_SRC (exp); ++ /* Check if we have a tst expression. If so convert it to a ++ compare with 0. */ ++ if ( REG_P (SET_SRC (exp)) ) ++ compare_exp = gen_rtx_COMPARE (GET_MODE (SET_SRC (exp)), ++ SET_SRC (exp), ++ const0_rtx); ++ ++ if (!next_insn_emits_cmp (insn) ++ && (is_compare_redundant (compare_exp, get_next_insn_cond (insn)) == NULL_RTX)) ++ { ++ ++ /* Reset the nonstandard flag */ ++ CC_STATUS_INIT; ++ cc_status.flags = 0; ++ cc_status.mdep.value = compare_exp; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ } ++ } ++ break; ++ case CC_CMP_COND_INSN: ++ { ++ /* Conditional insn that emit the compare itself. */ ++ rtx cmp; ++ rtx cmp_op0, cmp_op1; ++ rtx cond; ++ rtx dest; ++ rtx next_insn = next_nonnote_insn (insn); ++ ++ if ( GET_CODE (exp) == COND_EXEC ) ++ { ++ cmp_op0 = XEXP (COND_EXEC_TEST (exp), 0); ++ cmp_op1 = XEXP (COND_EXEC_TEST (exp), 1); ++ cond = COND_EXEC_TEST (exp); ++ dest = SET_DEST (COND_EXEC_CODE (exp)); ++ } ++ else ++ { ++ /* If then else conditional. compare operands are in operands ++ 4 and 5. */ ++ cmp_op0 = recog_data.operand[4]; ++ cmp_op1 = recog_data.operand[5]; ++ cond = recog_data.operand[1]; ++ dest = SET_DEST (exp); ++ } ++ ++ if ( GET_CODE (cmp_op0) == AND ) ++ cmp = cmp_op0; ++ else ++ cmp = gen_rtx_COMPARE (GET_MODE (cmp_op0), ++ cmp_op0, ++ cmp_op1); ++ ++ /* Check if the conditional insns updates a register present ++ in the comparison, if so then we must reset the cc_status. */ ++ if (REG_P (dest) ++ && (reg_mentioned_p (dest, cmp_op0) ++ || reg_mentioned_p (dest, cmp_op1)) ++ && GET_CODE (exp) != COND_EXEC ) ++ { ++ CC_STATUS_INIT; ++ } ++ else if (is_compare_redundant (cmp, cond) == NULL_RTX) ++ { ++ /* Reset the nonstandard flag */ ++ CC_STATUS_INIT; ++ if ( GET_CODE (cmp_op0) == AND ) ++ { ++ cc_status.flags = CC_INVERTED; ++ cc_status.mdep.flags = CC_SET_Z; ++ } ++ else ++ { ++ cc_status.flags = 0; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ } ++ cc_status.mdep.value = cmp; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ } ++ ++ ++ /* Check if we have a COND_EXEC insn which updates one ++ of the registers in the compare status. */ ++ if (REG_P (dest) ++ && (reg_mentioned_p (dest, cmp_op0) ++ || reg_mentioned_p (dest, cmp_op1)) ++ && GET_CODE (exp) == COND_EXEC ) ++ cc_status.mdep.cond_exec_cmp_clobbered = 1; ++ ++ if ( cc_status.mdep.cond_exec_cmp_clobbered ++ && GET_CODE (exp) == COND_EXEC ++ && next_insn != NULL ++ && INSN_P (next_insn) ++ && !(GET_CODE (PATTERN (next_insn)) == COND_EXEC ++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), cmp_op0) ++ && rtx_equal_p (XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1), cmp_op1) ++ && (GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == GET_CODE (cond) ++ || GET_CODE (COND_EXEC_TEST (PATTERN (next_insn))) == reverse_condition (GET_CODE (cond)))) ) ++ { ++ /* We have a sequence of conditional insns where the compare status has been clobbered ++ since the compare no longer reflects the content of the values to compare. */ ++ CC_STATUS_INIT; ++ cc_status.mdep.cond_exec_cmp_clobbered = 1; ++ } ++ ++ } ++ break; ++ case CC_BLD: ++ /* Bit load is kind of like an inverted testsi, because the Z flag is ++ inverted */ ++ CC_STATUS_INIT; ++ cc_status.flags = CC_INVERTED; ++ cc_status.mdep.value = SET_SRC (exp); ++ cc_status.mdep.flags = CC_SET_Z; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ case CC_NONE: ++ /* Insn does not affect CC at all. Check if the instruction updates ++ some of the register currently reflected in cc0 */ ++ ++ if ((GET_CODE (exp) == SET) ++ && (cc_status.value1 || cc_status.value2 || cc_status.mdep.value) ++ && (reg_mentioned_p (SET_DEST (exp), cc_status.value1) ++ || reg_mentioned_p (SET_DEST (exp), cc_status.value2) ++ || reg_mentioned_p (SET_DEST (exp), cc_status.mdep.value))) ++ { ++ CC_STATUS_INIT; ++ } ++ ++ /* If this is a parallel we must step through each of the parallel ++ expressions */ ++ if (GET_CODE (exp) == PARALLEL) ++ { ++ int i; ++ for (i = 0; i < XVECLEN (exp, 0); ++i) ++ { ++ rtx vec_exp = XVECEXP (exp, 0, i); ++ if ((GET_CODE (vec_exp) == SET) ++ && (cc_status.value1 || cc_status.value2 ++ || cc_status.mdep.value) ++ && (reg_mentioned_p (SET_DEST (vec_exp), cc_status.value1) ++ || reg_mentioned_p (SET_DEST (vec_exp), ++ cc_status.value2) ++ || reg_mentioned_p (SET_DEST (vec_exp), ++ cc_status.mdep.value))) ++ { ++ CC_STATUS_INIT; ++ } ++ } ++ } ++ ++ /* Check if we have memory opartions with post_inc or pre_dec on the ++ register currently reflected in cc0 */ ++ if (GET_CODE (exp) == SET ++ && GET_CODE (SET_SRC (exp)) == MEM ++ && (GET_CODE (XEXP (SET_SRC (exp), 0)) == POST_INC ++ || GET_CODE (XEXP (SET_SRC (exp), 0)) == PRE_DEC) ++ && ++ (reg_mentioned_p ++ (XEXP (XEXP (SET_SRC (exp), 0), 0), cc_status.value1) ++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), ++ cc_status.value2) ++ || reg_mentioned_p (XEXP (XEXP (SET_SRC (exp), 0), 0), ++ cc_status.mdep.value))) ++ CC_STATUS_INIT; ++ ++ if (GET_CODE (exp) == SET ++ && GET_CODE (SET_DEST (exp)) == MEM ++ && (GET_CODE (XEXP (SET_DEST (exp), 0)) == POST_INC ++ || GET_CODE (XEXP (SET_DEST (exp), 0)) == PRE_DEC) ++ && ++ (reg_mentioned_p ++ (XEXP (XEXP (SET_DEST (exp), 0), 0), cc_status.value1) ++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), ++ cc_status.value2) ++ || reg_mentioned_p (XEXP (XEXP (SET_DEST (exp), 0), 0), ++ cc_status.mdep.value))) ++ CC_STATUS_INIT; ++ break; ++ ++ case CC_SET_VNCZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_VNCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_NCZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_NCZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_CZ: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_CZ; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_SET_Z: ++ CC_STATUS_INIT; ++ cc_status.mdep.value = recog_data.operand[0]; ++ cc_status.mdep.flags = CC_SET_Z; ++ cc_status.mdep.cond_exec_cmp_clobbered = 0; ++ break; ++ ++ case CC_CLOBBER: ++ CC_STATUS_INIT; ++ break; ++ ++ default: ++ CC_STATUS_INIT; ++ } ++} ++ ++ ++/* ++ Outputs to stdio stream stream the assembler syntax for an instruction ++ operand x. x is an RTL expression. ++*/ ++void ++avr32_print_operand (FILE * stream, rtx x, int code) ++{ ++ int error = 0; ++ ++ if ( code == '?' ) ++ { ++ /* Predicable instruction, print condition code */ ++ ++ /* If the insn should not be conditional then do nothing. */ ++ if ( current_insn_predicate == NULL_RTX ) ++ return; ++ ++ /* Set x to the predicate to force printing ++ the condition later on. */ ++ x = current_insn_predicate; ++ ++ /* Reverse condition if useing bld insn. */ ++ if ( GET_CODE (XEXP(current_insn_predicate,0)) == AND ) ++ x = reversed_condition (current_insn_predicate); ++ } ++ else if ( code == '!' ) ++ { ++ /* Output compare for conditional insn if needed. */ ++ rtx new_cond; ++ gcc_assert ( current_insn_predicate != NULL_RTX ); ++ new_cond = avr32_output_cmp(current_insn_predicate, ++ GET_MODE(XEXP(current_insn_predicate,0)), ++ XEXP(current_insn_predicate,0), ++ XEXP(current_insn_predicate,1)); ++ ++ /* Check if the new condition is a special avr32 condition ++ specified using UNSPECs. If so we must handle it differently. */ ++ if ( GET_CODE (new_cond) == UNSPEC ) ++ { ++ current_insn_predicate = ++ gen_rtx_UNSPEC (CCmode, ++ gen_rtvec (2, ++ XEXP(current_insn_predicate,0), ++ XEXP(current_insn_predicate,1)), ++ XINT (new_cond, 1)); ++ } ++ else ++ { ++ PUT_CODE(current_insn_predicate, GET_CODE(new_cond)); ++ } ++ return; ++ } ++ ++ switch (GET_CODE (x)) ++ { ++ case UNSPEC: ++ switch (XINT (x, 1)) ++ { ++ case UNSPEC_COND_PL: ++ if (code == 'i') ++ fputs ("mi", stream); ++ else ++ fputs ("pl", stream); ++ break; ++ case UNSPEC_COND_MI: ++ if (code == 'i') ++ fputs ("pl", stream); ++ else ++ fputs ("mi", stream); ++ break; ++ default: ++ error = 1; ++ } ++ break; ++ case EQ: ++ if (code == 'i') ++ fputs ("ne", stream); ++ else ++ fputs ("eq", stream); ++ break; ++ case NE: ++ if (code == 'i') ++ fputs ("eq", stream); ++ else ++ fputs ("ne", stream); ++ break; ++ case GT: ++ if (code == 'i') ++ fputs ("le", stream); ++ else ++ fputs ("gt", stream); ++ break; ++ case GTU: ++ if (code == 'i') ++ fputs ("ls", stream); ++ else ++ fputs ("hi", stream); ++ break; ++ case LT: ++ if (code == 'i') ++ fputs ("ge", stream); ++ else ++ fputs ("lt", stream); ++ break; ++ case LTU: ++ if (code == 'i') ++ fputs ("hs", stream); ++ else ++ fputs ("lo", stream); ++ break; ++ case GE: ++ if (code == 'i') ++ fputs ("lt", stream); ++ else ++ fputs ("ge", stream); ++ break; ++ case GEU: ++ if (code == 'i') ++ fputs ("lo", stream); ++ else ++ fputs ("hs", stream); ++ break; ++ case LE: ++ if (code == 'i') ++ fputs ("gt", stream); ++ else ++ fputs ("le", stream); ++ break; ++ case LEU: ++ if (code == 'i') ++ fputs ("hi", stream); ++ else ++ fputs ("ls", stream); ++ break; ++ case CONST_INT: ++ { ++ HOST_WIDE_INT value = INTVAL (x); ++ ++ switch (code) ++ { ++ case 'm': ++ if ( HOST_BITS_PER_WIDE_INT > BITS_PER_WORD ) ++ { ++ /* A const_int can be used to represent DImode constants. */ ++ value >>= BITS_PER_WORD; ++ } ++ /* We might get a const_int immediate for setting a DI register, ++ we then must then return the correct sign extended DI. The most ++ significant word is just a sign extension. */ ++ else if (value < 0) ++ value = -1; ++ else ++ value = 0; ++ break; ++ case 'i': ++ value++; ++ break; ++ case 'p': ++ { ++ /* Set to bit position of first bit set in immediate */ ++ int i, bitpos = 32; ++ for (i = 0; i < 32; i++) ++ if (value & (1 << i)) ++ { ++ bitpos = i; ++ break; ++ } ++ value = bitpos; ++ } ++ break; ++ case 'z': ++ { ++ /* Set to bit position of first bit cleared in immediate */ ++ int i, bitpos = 32; ++ for (i = 0; i < 32; i++) ++ if (!(value & (1 << i))) ++ { ++ bitpos = i; ++ break; ++ } ++ value = bitpos; ++ } ++ break; ++ case 'r': ++ { ++ /* Reglist 8 */ ++ char op[50]; ++ op[0] = '\0'; ++ ++ if (value & 0x01) ++ strcpy (op, "r0-r3"); ++ if (value & 0x02) ++ strlen (op) ? strcat (op, ", r4-r7") : strcpy (op,"r4-r7"); ++ if (value & 0x04) ++ strlen (op) ? strcat (op, ", r8-r9") : strcpy (op,"r8-r9"); ++ if (value & 0x08) ++ strlen (op) ? strcat (op, ", r10") : strcpy (op,"r10"); ++ if (value & 0x10) ++ strlen (op) ? strcat (op, ", r11") : strcpy (op,"r11"); ++ if (value & 0x20) ++ strlen (op) ? strcat (op, ", r12") : strcpy (op,"r12"); ++ if (value & 0x40) ++ strlen (op) ? strcat (op, ", lr") : strcpy (op, "lr"); ++ if (value & 0x80) ++ strlen (op) ? strcat (op, ", pc") : strcpy (op, "pc"); ++ ++ fputs (op, stream); ++ return; ++ } ++ case 's': ++ { ++ /* Reglist 16 */ ++ char reglist16_string[100]; ++ int i; ++ bool first_reg = true; ++ reglist16_string[0] = '\0'; ++ ++ for (i = 0; i < 16; ++i) ++ { ++ if (value & (1 << i)) ++ { ++ first_reg == true ? first_reg = false : strcat(reglist16_string,", "); ++ strcat(reglist16_string,reg_names[INTERNAL_REGNUM(i)]); ++ } ++ } ++ fputs (reglist16_string, stream); ++ return; ++ } ++ case 'h': ++ /* Print halfword part of word */ ++ fputs (value ? "b" : "t", stream); ++ return; ++ } ++ ++ /* Print Value */ ++ fprintf (stream, "%d", value); ++ break; ++ } ++ case CONST_DOUBLE: ++ { ++ HOST_WIDE_INT hi, lo; ++ if (SCALAR_FLOAT_MODE_P (GET_MODE (x))) ++ { ++ HOST_WIDE_INT target_float[2]; ++ hi = lo = 0; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (x), ++ GET_MODE (x)); ++ /* For doubles the most significant part starts at index 0. */ ++ if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ++ { ++ hi = target_float[0]; ++ lo = target_float[1]; ++ } ++ else ++ { ++ lo = target_float[0]; ++ } ++ } ++ else ++ { ++ hi = CONST_DOUBLE_HIGH (x); ++ lo = CONST_DOUBLE_LOW (x); ++ } ++ ++ if (code == 'm') ++ fprintf (stream, "%ld", hi); ++ else ++ fprintf (stream, "%ld", lo); ++ ++ break; ++ } ++ case CONST: ++ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); ++ fprintf (stream, "+%ld", INTVAL (XEXP (XEXP (x, 0), 1))); ++ break; ++ case REG: ++ /* Swap register name if the register is DImode or DFmode. */ ++ if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode) ++ { ++ /* Double register must have an even numbered address */ ++ gcc_assert (!(REGNO (x) % 2)); ++ if (code == 'm') ++ fputs (reg_names[true_regnum (x)], stream); ++ else ++ fputs (reg_names[true_regnum (x) + 1], stream); ++ } ++ else if (GET_MODE (x) == TImode) ++ { ++ switch (code) ++ { ++ case 'T': ++ fputs (reg_names[true_regnum (x)], stream); ++ break; ++ case 'U': ++ fputs (reg_names[true_regnum (x) + 1], stream); ++ break; ++ case 'L': ++ fputs (reg_names[true_regnum (x) + 2], stream); ++ break; ++ case 'B': ++ fputs (reg_names[true_regnum (x) + 3], stream); ++ break; ++ default: ++ fprintf (stream, "%s, %s, %s, %s", ++ reg_names[true_regnum (x) + 3], ++ reg_names[true_regnum (x) + 2], ++ reg_names[true_regnum (x) + 1], ++ reg_names[true_regnum (x)]); ++ break; ++ } ++ } ++ else ++ { ++ fputs (reg_names[true_regnum (x)], stream); ++ } ++ break; ++ case CODE_LABEL: ++ case LABEL_REF: ++ case SYMBOL_REF: ++ output_addr_const (stream, x); ++ break; ++ case MEM: ++ switch (GET_CODE (XEXP (x, 0))) ++ { ++ case LABEL_REF: ++ case SYMBOL_REF: ++ output_addr_const (stream, XEXP (x, 0)); ++ break; ++ case MEM: ++ switch (GET_CODE (XEXP (XEXP (x, 0), 0))) ++ { ++ case SYMBOL_REF: ++ output_addr_const (stream, XEXP (XEXP (x, 0), 0)); ++ break; ++ default: ++ error = 1; ++ break; ++ } ++ break; ++ case REG: ++ avr32_print_operand (stream, XEXP (x, 0), 0); ++ if (code != 'p') ++ fputs ("[0]", stream); ++ break; ++ case PRE_DEC: ++ fputs ("--", stream); ++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); ++ break; ++ case POST_INC: ++ avr32_print_operand (stream, XEXP (XEXP (x, 0), 0), 0); ++ fputs ("++", stream); ++ break; ++ case PLUS: ++ { ++ rtx op0 = XEXP (XEXP (x, 0), 0); ++ rtx op1 = XEXP (XEXP (x, 0), 1); ++ rtx base = NULL_RTX, offset = NULL_RTX; ++ ++ if (avr32_address_register_rtx_p (op0, 1)) ++ { ++ base = op0; ++ offset = op1; ++ } ++ else if (avr32_address_register_rtx_p (op1, 1)) ++ { ++ /* Operands are switched. */ ++ base = op1; ++ offset = op0; ++ } ++ ++ gcc_assert (base && offset ++ && avr32_address_register_rtx_p (base, 1) ++ && avr32_legitimate_index_p (GET_MODE (x), offset, ++ 1)); ++ ++ avr32_print_operand (stream, base, 0); ++ fputs ("[", stream); ++ avr32_print_operand (stream, offset, 0); ++ fputs ("]", stream); ++ break; ++ } ++ case CONST: ++ output_addr_const (stream, XEXP (XEXP (XEXP (x, 0), 0), 0)); ++ fprintf (stream, " + %ld", ++ INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))); ++ break; ++ case CONST_INT: ++ avr32_print_operand (stream, XEXP (x, 0), 0); ++ break; ++ default: ++ error = 1; ++ } ++ break; ++ case MULT: ++ { ++ int value = INTVAL (XEXP (x, 1)); ++ ++ /* Convert immediate in multiplication into a shift immediate */ ++ switch (value) ++ { ++ case 2: ++ value = 1; ++ break; ++ case 4: ++ value = 2; ++ break; ++ case 8: ++ value = 3; ++ break; ++ default: ++ value = 0; ++ } ++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], ++ value); ++ break; ++ } ++ case ASHIFT: ++ if (GET_CODE (XEXP (x, 1)) == CONST_INT) ++ fprintf (stream, "%s << %i", reg_names[true_regnum (XEXP (x, 0))], ++ (int) INTVAL (XEXP (x, 1))); ++ else if (REG_P (XEXP (x, 1))) ++ fprintf (stream, "%s << %s", reg_names[true_regnum (XEXP (x, 0))], ++ reg_names[true_regnum (XEXP (x, 1))]); ++ else ++ { ++ error = 1; ++ } ++ break; ++ case LSHIFTRT: ++ if (GET_CODE (XEXP (x, 1)) == CONST_INT) ++ fprintf (stream, "%s >> %i", reg_names[true_regnum (XEXP (x, 0))], ++ (int) INTVAL (XEXP (x, 1))); ++ else if (REG_P (XEXP (x, 1))) ++ fprintf (stream, "%s >> %s", reg_names[true_regnum (XEXP (x, 0))], ++ reg_names[true_regnum (XEXP (x, 1))]); ++ else ++ { ++ error = 1; ++ } ++ fprintf (stream, ">>"); ++ break; ++ case PARALLEL: ++ { ++ /* Load store multiple */ ++ int i; ++ int count = XVECLEN (x, 0); ++ int reglist16 = 0; ++ char reglist16_string[100]; ++ ++ for (i = 0; i < count; ++i) ++ { ++ rtx vec_elm = XVECEXP (x, 0, i); ++ if (GET_MODE (vec_elm) != SET) ++ { ++ debug_rtx (vec_elm); ++ internal_error ("Unknown element in parallel expression!"); ++ } ++ if (GET_MODE (XEXP (vec_elm, 0)) == REG) ++ { ++ /* Load multiple */ ++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 0))); ++ } ++ else ++ { ++ /* Store multiple */ ++ reglist16 |= 1 << ASM_REGNUM (REGNO (XEXP (vec_elm, 1))); ++ } ++ } ++ ++ avr32_make_reglist16 (reglist16, reglist16_string); ++ fputs (reglist16_string, stream); ++ ++ break; ++ } ++ ++ case PLUS: ++ { ++ rtx op0 = XEXP (x, 0); ++ rtx op1 = XEXP (x, 1); ++ rtx base = NULL_RTX, offset = NULL_RTX; ++ ++ if (avr32_address_register_rtx_p (op0, 1)) ++ { ++ base = op0; ++ offset = op1; ++ } ++ else if (avr32_address_register_rtx_p (op1, 1)) ++ { ++ /* Operands are switched. */ ++ base = op1; ++ offset = op0; ++ } ++ ++ gcc_assert (base && offset ++ && avr32_address_register_rtx_p (base, 1) ++ && avr32_legitimate_index_p (GET_MODE (x), offset, 1)); ++ ++ avr32_print_operand (stream, base, 0); ++ fputs ("[", stream); ++ avr32_print_operand (stream, offset, 0); ++ fputs ("]", stream); ++ break; ++ } ++ ++ default: ++ error = 1; ++ } ++ ++ if (error) ++ { ++ debug_rtx (x); ++ internal_error ("Illegal expression for avr32_print_operand"); ++ } ++} ++ ++rtx ++avr32_get_note_reg_equiv (rtx insn) ++{ ++ rtx note; ++ ++ note = find_reg_note (insn, REG_EQUIV, NULL_RTX); ++ ++ if (note != NULL_RTX) ++ return XEXP (note, 0); ++ else ++ return NULL_RTX; ++} ++ ++ ++/* ++ Outputs to stdio stream stream the assembler syntax for an instruction ++ operand that is a memory reference whose address is x. x is an RTL ++ expression. ++ ++ ToDo: fixme. ++*/ ++void ++avr32_print_operand_address (FILE * stream, rtx x) ++{ ++ fprintf (stream, "(%d) /* address */", REGNO (x)); ++} ++ ++ ++/* Return true if _GLOBAL_OFFSET_TABLE_ symbol is mentioned. */ ++bool ++avr32_got_mentioned_p (rtx addr) ++{ ++ if (GET_CODE (addr) == MEM) ++ addr = XEXP (addr, 0); ++ while (GET_CODE (addr) == CONST) ++ addr = XEXP (addr, 0); ++ if (GET_CODE (addr) == SYMBOL_REF) ++ { ++ return streq (XSTR (addr, 0), "_GLOBAL_OFFSET_TABLE_"); ++ } ++ if (GET_CODE (addr) == PLUS || GET_CODE (addr) == MINUS) ++ { ++ bool l1, l2; ++ ++ l1 = avr32_got_mentioned_p (XEXP (addr, 0)); ++ l2 = avr32_got_mentioned_p (XEXP (addr, 1)); ++ return l1 || l2; ++ } ++ return false; ++} ++ ++ ++/* Find the symbol in an address expression. */ ++rtx ++avr32_find_symbol (rtx addr) ++{ ++ if (GET_CODE (addr) == MEM) ++ addr = XEXP (addr, 0); ++ ++ while (GET_CODE (addr) == CONST) ++ addr = XEXP (addr, 0); ++ ++ if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF) ++ return addr; ++ if (GET_CODE (addr) == PLUS) ++ { ++ rtx l1, l2; ++ ++ l1 = avr32_find_symbol (XEXP (addr, 0)); ++ l2 = avr32_find_symbol (XEXP (addr, 1)); ++ if (l1 != NULL_RTX && l2 == NULL_RTX) ++ return l1; ++ else if (l1 == NULL_RTX && l2 != NULL_RTX) ++ return l2; ++ } ++ ++ return NULL_RTX; ++} ++ ++ ++/* Routines for manipulation of the constant pool. */ ++ ++/* AVR32 instructions cannot load a large constant directly into a ++ register; they have to come from a pc relative load. The constant ++ must therefore be placed in the addressable range of the pc ++ relative load. Depending on the precise pc relative load ++ instruction the range is somewhere between 256 bytes and 4k. This ++ means that we often have to dump a constant inside a function, and ++ generate code to branch around it. ++ ++ It is important to minimize this, since the branches will slow ++ things down and make the code larger. ++ ++ Normally we can hide the table after an existing unconditional ++ branch so that there is no interruption of the flow, but in the ++ worst case the code looks like this: ++ ++ lddpc rn, L1 ++ ... ++ rjmp L2 ++ align ++ L1: .long value ++ L2: ++ ... ++ ++ lddpc rn, L3 ++ ... ++ rjmp L4 ++ align ++ L3: .long value ++ L4: ++ ... ++ ++ We fix this by performing a scan after scheduling, which notices ++ which instructions need to have their operands fetched from the ++ constant table and builds the table. ++ ++ The algorithm starts by building a table of all the constants that ++ need fixing up and all the natural barriers in the function (places ++ where a constant table can be dropped without breaking the flow). ++ For each fixup we note how far the pc-relative replacement will be ++ able to reach and the offset of the instruction into the function. ++ ++ Having built the table we then group the fixes together to form ++ tables that are as large as possible (subject to addressing ++ constraints) and emit each table of constants after the last ++ barrier that is within range of all the instructions in the group. ++ If a group does not contain a barrier, then we forcibly create one ++ by inserting a jump instruction into the flow. Once the table has ++ been inserted, the insns are then modified to reference the ++ relevant entry in the pool. ++ ++ Possible enhancements to the algorithm (not implemented) are: ++ ++ 1) For some processors and object formats, there may be benefit in ++ aligning the pools to the start of cache lines; this alignment ++ would need to be taken into account when calculating addressability ++ of a pool. */ ++ ++/* These typedefs are located at the start of this file, so that ++ they can be used in the prototypes there. This comment is to ++ remind readers of that fact so that the following structures ++ can be understood more easily. ++ ++ typedef struct minipool_node Mnode; ++ typedef struct minipool_fixup Mfix; */ ++ ++struct minipool_node ++{ ++ /* Doubly linked chain of entries. */ ++ Mnode *next; ++ Mnode *prev; ++ /* The maximum offset into the code that this entry can be placed. While ++ pushing fixes for forward references, all entries are sorted in order of ++ increasing max_address. */ ++ HOST_WIDE_INT max_address; ++ /* Similarly for an entry inserted for a backwards ref. */ ++ HOST_WIDE_INT min_address; ++ /* The number of fixes referencing this entry. This can become zero if we ++ "unpush" an entry. In this case we ignore the entry when we come to ++ emit the code. */ ++ int refcount; ++ /* The offset from the start of the minipool. */ ++ HOST_WIDE_INT offset; ++ /* The value in table. */ ++ rtx value; ++ /* The mode of value. */ ++ enum machine_mode mode; ++ /* The size of the value. */ ++ int fix_size; ++}; ++ ++ ++struct minipool_fixup ++{ ++ Mfix *next; ++ rtx insn; ++ HOST_WIDE_INT address; ++ rtx *loc; ++ enum machine_mode mode; ++ int fix_size; ++ rtx value; ++ Mnode *minipool; ++ HOST_WIDE_INT forwards; ++ HOST_WIDE_INT backwards; ++}; ++ ++ ++/* Fixes less than a word need padding out to a word boundary. */ ++#define MINIPOOL_FIX_SIZE(mode, value) \ ++ (IS_FORCE_MINIPOOL(value) ? 0 : \ ++ (GET_MODE_SIZE ((mode)) >= 4 ? GET_MODE_SIZE ((mode)) : 4)) ++ ++#define IS_FORCE_MINIPOOL(x) \ ++ (GET_CODE(x) == UNSPEC && \ ++ XINT(x, 1) == UNSPEC_FORCE_MINIPOOL) ++ ++static Mnode *minipool_vector_head; ++static Mnode *minipool_vector_tail; ++ ++/* The linked list of all minipool fixes required for this function. */ ++Mfix *minipool_fix_head; ++Mfix *minipool_fix_tail; ++/* The fix entry for the current minipool, once it has been placed. */ ++Mfix *minipool_barrier; ++ ++ ++/* Determines if INSN is the start of a jump table. Returns the end ++ of the TABLE or NULL_RTX. */ ++static rtx ++is_jump_table (rtx insn) ++{ ++ rtx table; ++ ++ if (GET_CODE (insn) == JUMP_INSN ++ && JUMP_LABEL (insn) != NULL ++ && ((table = next_real_insn (JUMP_LABEL (insn))) ++ == next_real_insn (insn)) ++ && table != NULL ++ && GET_CODE (table) == JUMP_INSN ++ && (GET_CODE (PATTERN (table)) == ADDR_VEC ++ || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC)) ++ return table; ++ ++ return NULL_RTX; ++} ++ ++ ++static HOST_WIDE_INT ++get_jump_table_size (rtx insn) ++{ ++ /* ADDR_VECs only take room if read-only data does into the text section. */ ++ if (JUMP_TABLES_IN_TEXT_SECTION ++#if !defined(READONLY_DATA_SECTION_ASM_OP) ++ || 1 ++#endif ++ ) ++ { ++ rtx body = PATTERN (insn); ++ int elt = GET_CODE (body) == ADDR_DIFF_VEC ? 1 : 0; ++ ++ return GET_MODE_SIZE (GET_MODE (body)) * XVECLEN (body, elt); ++ } ++ ++ return 0; ++} ++ ++ ++/* Move a minipool fix MP from its current location to before MAX_MP. ++ If MAX_MP is NULL, then MP doesn't need moving, but the addressing ++ constraints may need updating. */ ++static Mnode * ++move_minipool_fix_forward_ref (Mnode * mp, Mnode * max_mp, ++ HOST_WIDE_INT max_address) ++{ ++ /* This should never be true and the code below assumes these are ++ different. */ ++ if (mp == max_mp) ++ abort (); ++ ++ if (max_mp == NULL) ++ { ++ if (max_address < mp->max_address) ++ mp->max_address = max_address; ++ } ++ else ++ { ++ if (max_address > max_mp->max_address - mp->fix_size) ++ mp->max_address = max_mp->max_address - mp->fix_size; ++ else ++ mp->max_address = max_address; ++ ++ /* Unlink MP from its current position. Since max_mp is non-null, ++ mp->prev must be non-null. */ ++ mp->prev->next = mp->next; ++ if (mp->next != NULL) ++ mp->next->prev = mp->prev; ++ else ++ minipool_vector_tail = mp->prev; ++ ++ /* Re-insert it before MAX_MP. */ ++ mp->next = max_mp; ++ mp->prev = max_mp->prev; ++ max_mp->prev = mp; ++ ++ if (mp->prev != NULL) ++ mp->prev->next = mp; ++ else ++ minipool_vector_head = mp; ++ } ++ ++ /* Save the new entry. */ ++ max_mp = mp; ++ ++ /* Scan over the preceding entries and adjust their addresses as required. ++ */ ++ while (mp->prev != NULL ++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) ++ { ++ mp->prev->max_address = mp->max_address - mp->prev->fix_size; ++ mp = mp->prev; ++ } ++ ++ return max_mp; ++} ++ ++ ++/* Add a constant to the minipool for a forward reference. Returns the ++ node added or NULL if the constant will not fit in this pool. */ ++static Mnode * ++add_minipool_forward_ref (Mfix * fix) ++{ ++ /* If set, max_mp is the first pool_entry that has a lower constraint than ++ the one we are trying to add. */ ++ Mnode *max_mp = NULL; ++ HOST_WIDE_INT max_address = fix->address + fix->forwards; ++ Mnode *mp; ++ ++ /* If this fix's address is greater than the address of the first entry, ++ then we can't put the fix in this pool. We subtract the size of the ++ current fix to ensure that if the table is fully packed we still have ++ enough room to insert this value by suffling the other fixes forwards. */ ++ if (minipool_vector_head && ++ fix->address >= minipool_vector_head->max_address - fix->fix_size) ++ return NULL; ++ ++ /* Scan the pool to see if a constant with the same value has already been ++ added. While we are doing this, also note the location where we must ++ insert the constant if it doesn't already exist. */ ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ if (GET_CODE (fix->value) == GET_CODE (mp->value) ++ && fix->mode == mp->mode ++ && (GET_CODE (fix->value) != CODE_LABEL ++ || (CODE_LABEL_NUMBER (fix->value) ++ == CODE_LABEL_NUMBER (mp->value))) ++ && rtx_equal_p (fix->value, mp->value)) ++ { ++ /* More than one fix references this entry. */ ++ mp->refcount++; ++ return move_minipool_fix_forward_ref (mp, max_mp, max_address); ++ } ++ ++ /* Note the insertion point if necessary. */ ++ if (max_mp == NULL && mp->max_address > max_address) ++ max_mp = mp; ++ ++ } ++ ++ /* The value is not currently in the minipool, so we need to create a new ++ entry for it. If MAX_MP is NULL, the entry will be put on the end of ++ the list since the placement is less constrained than any existing ++ entry. Otherwise, we insert the new fix before MAX_MP and, if ++ necessary, adjust the constraints on the other entries. */ ++ mp = xmalloc (sizeof (*mp)); ++ mp->fix_size = fix->fix_size; ++ mp->mode = fix->mode; ++ mp->value = fix->value; ++ mp->refcount = 1; ++ /* Not yet required for a backwards ref. */ ++ mp->min_address = -65536; ++ ++ if (max_mp == NULL) ++ { ++ mp->max_address = max_address; ++ mp->next = NULL; ++ mp->prev = minipool_vector_tail; ++ ++ if (mp->prev == NULL) ++ { ++ minipool_vector_head = mp; ++ minipool_vector_label = gen_label_rtx (); ++ } ++ else ++ mp->prev->next = mp; ++ ++ minipool_vector_tail = mp; ++ } ++ else ++ { ++ if (max_address > max_mp->max_address - mp->fix_size) ++ mp->max_address = max_mp->max_address - mp->fix_size; ++ else ++ mp->max_address = max_address; ++ ++ mp->next = max_mp; ++ mp->prev = max_mp->prev; ++ max_mp->prev = mp; ++ if (mp->prev != NULL) ++ mp->prev->next = mp; ++ else ++ minipool_vector_head = mp; ++ } ++ ++ /* Save the new entry. */ ++ max_mp = mp; ++ ++ /* Scan over the preceding entries and adjust their addresses as required. ++ */ ++ while (mp->prev != NULL ++ && mp->prev->max_address > mp->max_address - mp->prev->fix_size) ++ { ++ mp->prev->max_address = mp->max_address - mp->prev->fix_size; ++ mp = mp->prev; ++ } ++ ++ return max_mp; ++} ++ ++ ++static Mnode * ++move_minipool_fix_backward_ref (Mnode * mp, Mnode * min_mp, ++ HOST_WIDE_INT min_address) ++{ ++ HOST_WIDE_INT offset; ++ ++ /* This should never be true, and the code below assumes these are ++ different. */ ++ if (mp == min_mp) ++ abort (); ++ ++ if (min_mp == NULL) ++ { ++ if (min_address > mp->min_address) ++ mp->min_address = min_address; ++ } ++ else ++ { ++ /* We will adjust this below if it is too loose. */ ++ mp->min_address = min_address; ++ ++ /* Unlink MP from its current position. Since min_mp is non-null, ++ mp->next must be non-null. */ ++ mp->next->prev = mp->prev; ++ if (mp->prev != NULL) ++ mp->prev->next = mp->next; ++ else ++ minipool_vector_head = mp->next; ++ ++ /* Reinsert it after MIN_MP. */ ++ mp->prev = min_mp; ++ mp->next = min_mp->next; ++ min_mp->next = mp; ++ if (mp->next != NULL) ++ mp->next->prev = mp; ++ else ++ minipool_vector_tail = mp; ++ } ++ ++ min_mp = mp; ++ ++ offset = 0; ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ mp->offset = offset; ++ if (mp->refcount > 0) ++ offset += mp->fix_size; ++ ++ if (mp->next && mp->next->min_address < mp->min_address + mp->fix_size) ++ mp->next->min_address = mp->min_address + mp->fix_size; ++ } ++ ++ return min_mp; ++} ++ ++ ++/* Add a constant to the minipool for a backward reference. Returns the ++ node added or NULL if the constant will not fit in this pool. ++ ++ Note that the code for insertion for a backwards reference can be ++ somewhat confusing because the calculated offsets for each fix do ++ not take into account the size of the pool (which is still under ++ construction. */ ++static Mnode * ++add_minipool_backward_ref (Mfix * fix) ++{ ++ /* If set, min_mp is the last pool_entry that has a lower constraint than ++ the one we are trying to add. */ ++ Mnode *min_mp = NULL; ++ /* This can be negative, since it is only a constraint. */ ++ HOST_WIDE_INT min_address = fix->address - fix->backwards; ++ Mnode *mp; ++ ++ /* If we can't reach the current pool from this insn, or if we can't insert ++ this entry at the end of the pool without pushing other fixes out of ++ range, then we don't try. This ensures that we can't fail later on. */ ++ if (min_address >= minipool_barrier->address ++ || (minipool_vector_tail->min_address + fix->fix_size ++ >= minipool_barrier->address)) ++ return NULL; ++ ++ /* Scan the pool to see if a constant with the same value has already been ++ added. While we are doing this, also note the location where we must ++ insert the constant if it doesn't already exist. */ ++ for (mp = minipool_vector_tail; mp != NULL; mp = mp->prev) ++ { ++ if (GET_CODE (fix->value) == GET_CODE (mp->value) ++ && fix->mode == mp->mode ++ && (GET_CODE (fix->value) != CODE_LABEL ++ || (CODE_LABEL_NUMBER (fix->value) ++ == CODE_LABEL_NUMBER (mp->value))) ++ && rtx_equal_p (fix->value, mp->value) ++ /* Check that there is enough slack to move this entry to the end ++ of the table (this is conservative). */ ++ && (mp->max_address ++ > (minipool_barrier->address ++ + minipool_vector_tail->offset ++ + minipool_vector_tail->fix_size))) ++ { ++ mp->refcount++; ++ return move_minipool_fix_backward_ref (mp, min_mp, min_address); ++ } ++ ++ if (min_mp != NULL) ++ mp->min_address += fix->fix_size; ++ else ++ { ++ /* Note the insertion point if necessary. */ ++ if (mp->min_address < min_address) ++ { ++ min_mp = mp; ++ } ++ else if (mp->max_address ++ < minipool_barrier->address + mp->offset + fix->fix_size) ++ { ++ /* Inserting before this entry would push the fix beyond its ++ maximum address (which can happen if we have re-located a ++ forwards fix); force the new fix to come after it. */ ++ min_mp = mp; ++ min_address = mp->min_address + fix->fix_size; ++ } ++ } ++ } ++ ++ /* We need to create a new entry. */ ++ mp = xmalloc (sizeof (*mp)); ++ mp->fix_size = fix->fix_size; ++ mp->mode = fix->mode; ++ mp->value = fix->value; ++ mp->refcount = 1; ++ mp->max_address = minipool_barrier->address + 65536; ++ ++ mp->min_address = min_address; ++ ++ if (min_mp == NULL) ++ { ++ mp->prev = NULL; ++ mp->next = minipool_vector_head; ++ ++ if (mp->next == NULL) ++ { ++ minipool_vector_tail = mp; ++ minipool_vector_label = gen_label_rtx (); ++ } ++ else ++ mp->next->prev = mp; ++ ++ minipool_vector_head = mp; ++ } ++ else ++ { ++ mp->next = min_mp->next; ++ mp->prev = min_mp; ++ min_mp->next = mp; ++ ++ if (mp->next != NULL) ++ mp->next->prev = mp; ++ else ++ minipool_vector_tail = mp; ++ } ++ ++ /* Save the new entry. */ ++ min_mp = mp; ++ ++ if (mp->prev) ++ mp = mp->prev; ++ else ++ mp->offset = 0; ++ ++ /* Scan over the following entries and adjust their offsets. */ ++ while (mp->next != NULL) ++ { ++ if (mp->next->min_address < mp->min_address + mp->fix_size) ++ mp->next->min_address = mp->min_address + mp->fix_size; ++ ++ if (mp->refcount) ++ mp->next->offset = mp->offset + mp->fix_size; ++ else ++ mp->next->offset = mp->offset; ++ ++ mp = mp->next; ++ } ++ ++ return min_mp; ++} ++ ++ ++static void ++assign_minipool_offsets (Mfix * barrier) ++{ ++ HOST_WIDE_INT offset = 0; ++ Mnode *mp; ++ ++ minipool_barrier = barrier; ++ ++ for (mp = minipool_vector_head; mp != NULL; mp = mp->next) ++ { ++ mp->offset = offset; ++ ++ if (mp->refcount > 0) ++ offset += mp->fix_size; ++ } ++} ++ ++ ++/* Print a symbolic form of X to the debug file, F. */ ++static void ++avr32_print_value (FILE * f, rtx x) ++{ ++ switch (GET_CODE (x)) ++ { ++ case CONST_INT: ++ fprintf (f, "0x%x", (int) INTVAL (x)); ++ return; ++ ++ case CONST_DOUBLE: ++ fprintf (f, "<0x%lx,0x%lx>", (long) XWINT (x, 2), (long) XWINT (x, 3)); ++ return; ++ ++ case CONST_VECTOR: ++ { ++ int i; ++ ++ fprintf (f, "<"); ++ for (i = 0; i < CONST_VECTOR_NUNITS (x); i++) ++ { ++ fprintf (f, "0x%x", (int) INTVAL (CONST_VECTOR_ELT (x, i))); ++ if (i < (CONST_VECTOR_NUNITS (x) - 1)) ++ fputc (',', f); ++ } ++ fprintf (f, ">"); ++ } ++ return; ++ ++ case CONST_STRING: ++ fprintf (f, "\"%s\"", XSTR (x, 0)); ++ return; ++ ++ case SYMBOL_REF: ++ fprintf (f, "`%s'", XSTR (x, 0)); ++ return; ++ ++ case LABEL_REF: ++ fprintf (f, "L%d", INSN_UID (XEXP (x, 0))); ++ return; ++ ++ case CONST: ++ avr32_print_value (f, XEXP (x, 0)); ++ return; ++ ++ case PLUS: ++ avr32_print_value (f, XEXP (x, 0)); ++ fprintf (f, "+"); ++ avr32_print_value (f, XEXP (x, 1)); ++ return; ++ ++ case PC: ++ fprintf (f, "pc"); ++ return; ++ ++ default: ++ fprintf (f, "????"); ++ return; ++ } ++} ++ ++ ++int ++is_minipool_label (rtx label) ++{ ++ minipool_labels *cur_mp_label = cfun->machine->minipool_label_head; ++ ++ if (GET_CODE (label) != CODE_LABEL) ++ return FALSE; ++ ++ while (cur_mp_label) ++ { ++ if (CODE_LABEL_NUMBER (label) ++ == CODE_LABEL_NUMBER (cur_mp_label->label)) ++ return TRUE; ++ cur_mp_label = cur_mp_label->next; ++ } ++ return FALSE; ++} ++ ++ ++static void ++new_minipool_label (rtx label) ++{ ++ if (!cfun->machine->minipool_label_head) ++ { ++ cfun->machine->minipool_label_head = ++ ggc_alloc (sizeof (minipool_labels)); ++ cfun->machine->minipool_label_tail = cfun->machine->minipool_label_head; ++ cfun->machine->minipool_label_head->label = label; ++ cfun->machine->minipool_label_head->next = 0; ++ cfun->machine->minipool_label_head->prev = 0; ++ } ++ else ++ { ++ cfun->machine->minipool_label_tail->next = ++ ggc_alloc (sizeof (minipool_labels)); ++ cfun->machine->minipool_label_tail->next->label = label; ++ cfun->machine->minipool_label_tail->next->next = 0; ++ cfun->machine->minipool_label_tail->next->prev = ++ cfun->machine->minipool_label_tail; ++ cfun->machine->minipool_label_tail = ++ cfun->machine->minipool_label_tail->next; ++ } ++} ++ ++ ++/* Output the literal table */ ++static void ++dump_minipool (rtx scan) ++{ ++ Mnode *mp; ++ Mnode *nmp; ++ ++ if (dump_file) ++ fprintf (dump_file, ++ ";; Emitting minipool after insn %u; address %ld; align %d (bytes)\n", ++ INSN_UID (scan), (unsigned long) minipool_barrier->address, 4); ++ ++ scan = emit_insn_after (gen_consttable_start (), scan); ++ scan = emit_insn_after (gen_align_4 (), scan); ++ scan = emit_label_after (minipool_vector_label, scan); ++ new_minipool_label (minipool_vector_label); ++ ++ for (mp = minipool_vector_head; mp != NULL; mp = nmp) ++ { ++ if (mp->refcount > 0) ++ { ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Offset %u, min %ld, max %ld ", ++ (unsigned) mp->offset, (unsigned long) mp->min_address, ++ (unsigned long) mp->max_address); ++ avr32_print_value (dump_file, mp->value); ++ fputc ('\n', dump_file); ++ } ++ ++ switch (mp->fix_size) ++ { ++#ifdef HAVE_consttable_4 ++ case 4: ++ scan = emit_insn_after (gen_consttable_4 (mp->value), scan); ++ break; ++ ++#endif ++#ifdef HAVE_consttable_8 ++ case 8: ++ scan = emit_insn_after (gen_consttable_8 (mp->value), scan); ++ break; ++ ++#endif ++#ifdef HAVE_consttable_16 ++ case 16: ++ scan = emit_insn_after (gen_consttable_16 (mp->value), scan); ++ break; ++ ++#endif ++ case 0: ++ /* This can happen for force-minipool entries which just are ++ there to force the minipool to be generate. */ ++ break; ++ default: ++ abort (); ++ break; ++ } ++ } ++ ++ nmp = mp->next; ++ free (mp); ++ } ++ ++ minipool_vector_head = minipool_vector_tail = NULL; ++ scan = emit_insn_after (gen_consttable_end (), scan); ++ scan = emit_barrier_after (scan); ++} ++ ++ ++/* Return the cost of forcibly inserting a barrier after INSN. */ ++static int ++avr32_barrier_cost (rtx insn) ++{ ++ /* Basing the location of the pool on the loop depth is preferable, but at ++ the moment, the basic block information seems to be corrupt by this ++ stage of the compilation. */ ++ int base_cost = 50; ++ rtx next = next_nonnote_insn (insn); ++ ++ if (next != NULL && GET_CODE (next) == CODE_LABEL) ++ base_cost -= 20; ++ ++ switch (GET_CODE (insn)) ++ { ++ case CODE_LABEL: ++ /* It will always be better to place the table before the label, rather ++ than after it. */ ++ return 50; ++ ++ case INSN: ++ case CALL_INSN: ++ return base_cost; ++ ++ case JUMP_INSN: ++ return base_cost - 10; ++ ++ default: ++ return base_cost + 10; ++ } ++} ++ ++ ++/* Find the best place in the insn stream in the range ++ (FIX->address,MAX_ADDRESS) to forcibly insert a minipool barrier. ++ Create the barrier by inserting a jump and add a new fix entry for ++ it. */ ++static Mfix * ++create_fix_barrier (Mfix * fix, HOST_WIDE_INT max_address) ++{ ++ HOST_WIDE_INT count = 0; ++ rtx barrier; ++ rtx from = fix->insn; ++ rtx selected = from; ++ int selected_cost; ++ HOST_WIDE_INT selected_address; ++ Mfix *new_fix; ++ HOST_WIDE_INT max_count = max_address - fix->address; ++ rtx label = gen_label_rtx (); ++ ++ selected_cost = avr32_barrier_cost (from); ++ selected_address = fix->address; ++ ++ while (from && count < max_count) ++ { ++ rtx tmp; ++ int new_cost; ++ ++ /* This code shouldn't have been called if there was a natural barrier ++ within range. */ ++ if (GET_CODE (from) == BARRIER) ++ abort (); ++ ++ /* Count the length of this insn. */ ++ count += get_attr_length (from); ++ ++ /* If there is a jump table, add its length. */ ++ tmp = is_jump_table (from); ++ if (tmp != NULL) ++ { ++ count += get_jump_table_size (tmp); ++ ++ /* Jump tables aren't in a basic block, so base the cost on the ++ dispatch insn. If we select this location, we will still put ++ the pool after the table. */ ++ new_cost = avr32_barrier_cost (from); ++ ++ if (count < max_count && new_cost <= selected_cost) ++ { ++ selected = tmp; ++ selected_cost = new_cost; ++ selected_address = fix->address + count; ++ } ++ ++ /* Continue after the dispatch table. */ ++ from = NEXT_INSN (tmp); ++ continue; ++ } ++ ++ new_cost = avr32_barrier_cost (from); ++ ++ if (count < max_count && new_cost <= selected_cost) ++ { ++ selected = from; ++ selected_cost = new_cost; ++ selected_address = fix->address + count; ++ } ++ ++ from = NEXT_INSN (from); ++ } ++ ++ /* Create a new JUMP_INSN that branches around a barrier. */ ++ from = emit_jump_insn_after (gen_jump (label), selected); ++ JUMP_LABEL (from) = label; ++ barrier = emit_barrier_after (from); ++ emit_label_after (label, barrier); ++ ++ /* Create a minipool barrier entry for the new barrier. */ ++ new_fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*new_fix)); ++ new_fix->insn = barrier; ++ new_fix->address = selected_address; ++ new_fix->next = fix->next; ++ fix->next = new_fix; ++ ++ return new_fix; ++} ++ ++ ++/* Record that there is a natural barrier in the insn stream at ++ ADDRESS. */ ++static void ++push_minipool_barrier (rtx insn, HOST_WIDE_INT address) ++{ ++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); ++ ++ fix->insn = insn; ++ fix->address = address; ++ ++ fix->next = NULL; ++ if (minipool_fix_head != NULL) ++ minipool_fix_tail->next = fix; ++ else ++ minipool_fix_head = fix; ++ ++ minipool_fix_tail = fix; ++} ++ ++ ++/* Record INSN, which will need fixing up to load a value from the ++ minipool. ADDRESS is the offset of the insn since the start of the ++ function; LOC is a pointer to the part of the insn which requires ++ fixing; VALUE is the constant that must be loaded, which is of type ++ MODE. */ ++static void ++push_minipool_fix (rtx insn, HOST_WIDE_INT address, rtx * loc, ++ enum machine_mode mode, rtx value) ++{ ++ Mfix *fix = (Mfix *) obstack_alloc (&minipool_obstack, sizeof (*fix)); ++ rtx body = PATTERN (insn); ++ ++ fix->insn = insn; ++ fix->address = address; ++ fix->loc = loc; ++ fix->mode = mode; ++ fix->fix_size = MINIPOOL_FIX_SIZE (mode, value); ++ fix->value = value; ++ ++ if (GET_CODE (body) == PARALLEL) ++ { ++ /* Mcall : Ks16 << 2 */ ++ fix->forwards = ((1 << 15) - 1) << 2; ++ fix->backwards = (1 << 15) << 2; ++ } ++ else if (GET_CODE (body) == SET ++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 4) ++ { ++ if (optimize_size) ++ { ++ /* Lddpc : Ku7 << 2 */ ++ fix->forwards = ((1 << 7) - 1) << 2; ++ fix->backwards = 0; ++ } ++ else ++ { ++ /* Ld.w : Ks16 */ ++ fix->forwards = ((1 << 15) - 4); ++ fix->backwards = (1 << 15); ++ } ++ } ++ else if (GET_CODE (body) == SET ++ && GET_MODE_SIZE (GET_MODE (SET_DEST (body))) == 8) ++ { ++ /* Ld.d : Ks16 */ ++ fix->forwards = ((1 << 15) - 4); ++ fix->backwards = (1 << 15); ++ } ++ else if (GET_CODE (body) == UNSPEC_VOLATILE ++ && XINT (body, 1) == VUNSPEC_MVRC) ++ { ++ /* Coprocessor load */ ++ /* Ldc : Ku8 << 2 */ ++ fix->forwards = ((1 << 8) - 1) << 2; ++ fix->backwards = 0; ++ } ++ else ++ { ++ /* Assume worst case which is lddpc insn. */ ++ fix->forwards = ((1 << 7) - 1) << 2; ++ fix->backwards = 0; ++ } ++ ++ fix->minipool = NULL; ++ ++ /* If an insn doesn't have a range defined for it, then it isn't expecting ++ to be reworked by this code. Better to abort now than to generate duff ++ assembly code. */ ++ if (fix->forwards == 0 && fix->backwards == 0) ++ abort (); ++ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; %smode fixup for i%d; addr %lu, range (%ld,%ld): ", ++ GET_MODE_NAME (mode), ++ INSN_UID (insn), (unsigned long) address, ++ -1 * (long) fix->backwards, (long) fix->forwards); ++ avr32_print_value (dump_file, fix->value); ++ fprintf (dump_file, "\n"); ++ } ++ ++ /* Add it to the chain of fixes. */ ++ fix->next = NULL; ++ ++ if (minipool_fix_head != NULL) ++ minipool_fix_tail->next = fix; ++ else ++ minipool_fix_head = fix; ++ ++ minipool_fix_tail = fix; ++} ++ ++ ++/* Scan INSN and note any of its operands that need fixing. ++ If DO_PUSHES is false we do not actually push any of the fixups ++ needed. The function returns TRUE is any fixups were needed/pushed. ++ This is used by avr32_memory_load_p() which needs to know about loads ++ of constants that will be converted into minipool loads. */ ++static bool ++note_invalid_constants (rtx insn, HOST_WIDE_INT address, int do_pushes) ++{ ++ bool result = false; ++ int opno; ++ ++ extract_insn (insn); ++ ++ if (!constrain_operands (1)) ++ fatal_insn_not_found (insn); ++ ++ if (recog_data.n_alternatives == 0) ++ return false; ++ ++ /* Fill in recog_op_alt with information about the constraints of this ++ insn. */ ++ preprocess_constraints (); ++ ++ for (opno = 0; opno < recog_data.n_operands; opno++) ++ { ++ rtx op; ++ ++ /* Things we need to fix can only occur in inputs. */ ++ if (recog_data.operand_type[opno] != OP_IN) ++ continue; ++ ++ op = recog_data.operand[opno]; ++ ++ if (avr32_const_pool_ref_operand (op, GET_MODE (op))) ++ { ++ if (do_pushes) ++ { ++ rtx cop = avoid_constant_pool_reference (op); ++ ++ /* Casting the address of something to a mode narrower than a ++ word can cause avoid_constant_pool_reference() to return the ++ pool reference itself. That's no good to us here. Lets ++ just hope that we can use the constant pool value directly. ++ */ ++ if (op == cop) ++ cop = get_pool_constant (XEXP (op, 0)); ++ ++ push_minipool_fix (insn, address, ++ recog_data.operand_loc[opno], ++ recog_data.operand_mode[opno], cop); ++ } ++ ++ result = true; ++ } ++ else if (TARGET_HAS_ASM_ADDR_PSEUDOS ++ && avr32_address_operand (op, GET_MODE (op))) ++ { ++ /* Handle pseudo instructions using a direct address. These pseudo ++ instructions might need entries in the constant pool and we must ++ therefor create a constant pool for them, in case the ++ assembler/linker needs to insert entries. */ ++ if (do_pushes) ++ { ++ /* Push a dummy constant pool entry so that the .cpool ++ directive should be inserted on the appropriate place in the ++ code even if there are no real constant pool entries. This ++ is used by the assembler and linker to know where to put ++ generated constant pool entries. */ ++ push_minipool_fix (insn, address, ++ recog_data.operand_loc[opno], ++ recog_data.operand_mode[opno], ++ gen_rtx_UNSPEC (VOIDmode, ++ gen_rtvec (1, const0_rtx), ++ UNSPEC_FORCE_MINIPOOL)); ++ result = true; ++ } ++ } ++ } ++ return result; ++} ++ ++ ++static int ++avr32_insn_is_cast (rtx insn) ++{ ++ ++ if (NONJUMP_INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == SET ++ && (GET_CODE (SET_SRC (PATTERN (insn))) == ZERO_EXTEND ++ || GET_CODE (SET_SRC (PATTERN (insn))) == SIGN_EXTEND) ++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 0)) ++ && REG_P (SET_DEST (PATTERN (insn)))) ++ return true; ++ return false; ++} ++ ++ ++/* Replace all occurances of reg FROM with reg TO in X. */ ++rtx ++avr32_replace_reg (rtx x, rtx from, rtx to) ++{ ++ int i, j; ++ const char *fmt; ++ ++ gcc_assert ( REG_P (from) && REG_P (to) ); ++ ++ /* Allow this function to make replacements in EXPR_LISTs. */ ++ if (x == 0) ++ return 0; ++ ++ if (rtx_equal_p (x, from)) ++ return to; ++ ++ if (GET_CODE (x) == SUBREG) ++ { ++ rtx new = avr32_replace_reg (SUBREG_REG (x), from, to); ++ ++ if (GET_CODE (new) == CONST_INT) ++ { ++ x = simplify_subreg (GET_MODE (x), new, ++ GET_MODE (SUBREG_REG (x)), ++ SUBREG_BYTE (x)); ++ gcc_assert (x); ++ } ++ else ++ SUBREG_REG (x) = new; ++ ++ return x; ++ } ++ else if (GET_CODE (x) == ZERO_EXTEND) ++ { ++ rtx new = avr32_replace_reg (XEXP (x, 0), from, to); ++ ++ if (GET_CODE (new) == CONST_INT) ++ { ++ x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x), ++ new, GET_MODE (XEXP (x, 0))); ++ gcc_assert (x); ++ } ++ else ++ XEXP (x, 0) = new; ++ ++ return x; ++ } ++ ++ fmt = GET_RTX_FORMAT (GET_CODE (x)); ++ for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--) ++ { ++ if (fmt[i] == 'e') ++ XEXP (x, i) = avr32_replace_reg (XEXP (x, i), from, to); ++ else if (fmt[i] == 'E') ++ for (j = XVECLEN (x, i) - 1; j >= 0; j--) ++ XVECEXP (x, i, j) = avr32_replace_reg (XVECEXP (x, i, j), from, to); ++ } ++ ++ return x; ++} ++ ++ ++/* FIXME: The level of nesting in this function is way too deep. It needs to be ++ torn apart. */ ++static void ++avr32_reorg_optimization (void) ++{ ++ rtx first = get_first_nonnote_insn (); ++ rtx insn; ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for cast operations. */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ";; Deleting redundant cast operations:\n"); ++ } ++ for (insn = first; insn; insn = NEXT_INSN (insn)) ++ { ++ rtx reg, src_reg, scan; ++ enum machine_mode mode; ++ int unused_cast; ++ rtx label_ref; ++ ++ if (avr32_insn_is_cast (insn) ++ && (GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == QImode ++ || GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == HImode)) ++ { ++ mode = GET_MODE (XEXP (SET_SRC (PATTERN (insn)), 0)); ++ reg = SET_DEST (PATTERN (insn)); ++ src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); ++ } ++ else ++ { ++ continue; ++ } ++ ++ unused_cast = false; ++ label_ref = NULL_RTX; ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ /* Check if we have reached the destination of a simple ++ conditional jump which we have already scanned past. If so, ++ we can safely continue scanning. */ ++ if (LABEL_P (scan) && label_ref != NULL_RTX) ++ { ++ if (CODE_LABEL_NUMBER (scan) == ++ CODE_LABEL_NUMBER (XEXP (label_ref, 0))) ++ label_ref = NULL_RTX; ++ else ++ break; ++ } ++ ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* For conditional jumps we can manage to keep on scanning if ++ we meet the destination label later on before any new jump ++ insns occure. */ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ if (any_condjump_p (scan) && label_ref == NULL_RTX) ++ label_ref = condjump_label (scan); ++ else ++ break; ++ } ++ ++ /* Check if we have a call and the register is used as an argument. */ ++ if (CALL_P (scan) ++ && find_reg_fusage (scan, USE, reg) ) ++ break; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* Check if casted register is used in this insn */ ++ if ((regno_use_in (REGNO (reg), PATTERN (scan)) != NULL_RTX) ++ && (GET_MODE (regno_use_in (REGNO (reg), PATTERN (scan))) == ++ GET_MODE (reg))) ++ { ++ /* If not used in the source to the set or in a memory ++ expression in the destiantion then the register is used ++ as a destination and is really dead. */ ++ if (single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && REG_P (SET_DEST (PATTERN (scan))) ++ && !regno_use_in (REGNO (reg), SET_SRC (PATTERN (scan))) ++ && label_ref == NULL_RTX) ++ { ++ unused_cast = true; ++ } ++ break; ++ } ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ unused_cast = true; ++ break; ++ } ++ } ++ ++ /* Check if we have unresolved conditional jumps */ ++ if (label_ref != NULL_RTX) ++ continue; ++ ++ if (unused_cast) ++ { ++ if (REGNO (reg) == REGNO (XEXP (SET_SRC (PATTERN (insn)), 0))) ++ { ++ /* One operand cast, safe to delete */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; INSN %i removed, casted register %i value not used.\n", ++ INSN_UID (insn), REGNO (reg)); ++ } ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ } ++ else ++ { ++ /* Two operand cast, which really could be substituted with ++ a move, if the source register is dead after the cast ++ insn and then the insn which sets the source register ++ could instead directly set the destination register for ++ the cast. As long as there are no insns in between which ++ uses the register. */ ++ rtx link = NULL_RTX; ++ rtx set; ++ rtx src_reg = XEXP (SET_SRC (PATTERN (insn)), 0); ++ unused_cast = false; ++ ++ if (!find_reg_note (insn, REG_DEAD, src_reg)) ++ continue; ++ ++ /* Search for the insn which sets the source register */ ++ for (scan = PREV_INSN (insn); ++ scan && GET_CODE (scan) != CODE_LABEL; ++ scan = PREV_INSN (scan)) ++ { ++ if (! INSN_P (scan)) ++ continue; ++ ++ set = single_set (scan); ++ // Fix for bug #11763 : the following if condition ++ // has been modified and else part is included to ++ // set the link to NULL_RTX. ++ // if (set && rtx_equal_p (src_reg, SET_DEST (set))) ++ if (set && (REGNO(src_reg) == REGNO(SET_DEST(set)))) ++ { ++ if (rtx_equal_p (src_reg, SET_DEST (set))) ++ { ++ link = scan; ++ break; ++ } ++ else ++ { ++ link = NULL_RTX; ++ break; ++ } ++ } ++ } ++ ++ ++ /* Found no link or link is a call insn where we can not ++ change the destination register */ ++ if (link == NULL_RTX || CALL_P (link)) ++ continue; ++ ++ /* Scan through all insn between link and insn */ ++ for (scan = NEXT_INSN (link); scan; scan = NEXT_INSN (scan)) ++ { ++ /* Don't try to trace forward past a CODE_LABEL if we ++ haven't seen INSN yet. Ordinarily, we will only ++ find the setting insn in LOG_LINKS if it is in the ++ same basic block. However, cross-jumping can insert ++ code labels in between the load and the call, and ++ can result in situations where a single call insn ++ may have two targets depending on where we came ++ from. */ ++ ++ if (GET_CODE (scan) == CODE_LABEL) ++ break; ++ ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* Don't try to trace forward past a JUMP. To optimize ++ safely, we would have to check that all the ++ instructions at the jump destination did not use REG. ++ */ ++ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ break; ++ } ++ ++ if (!reg_mentioned_p (src_reg, PATTERN (scan))) ++ continue; ++ ++ /* We have reached the cast insn */ ++ if (scan == insn) ++ { ++ /* We can remove cast and replace the destination ++ register of the link insn with the destination ++ of the cast */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; INSN %i removed, casted value unused. " ++ "Destination of removed cast operation: register %i, folded into INSN %i.\n", ++ INSN_UID (insn), REGNO (reg), ++ INSN_UID (link)); ++ } ++ /* Update link insn */ ++ SET_DEST (PATTERN (link)) = ++ gen_rtx_REG (mode, REGNO (reg)); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (link) = -1; ++ ++ /* Delete insn */ ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ break; ++ } ++ } ++ } ++ } ++ } ++ } ++ ++ /* Disabled this optimization since it has a bug */ ++ /* In the case where the data instruction the shifted insn gets folded ++ * into is a branch destination, this breaks, i.e. ++ * ++ * add r8, r10, r8 << 2 ++ * 1: ++ * ld.w r11, r8[0] ++ * ... ++ * mov r8, sp ++ * rjmp 1b ++ * ++ * gets folded to: ++ * ++ * 1: ++ * ld.w r11, r10[r8 << 2] ++ * ... ++ * mov r8, sp ++ * rjmp 1b ++ * ++ * which is clearly wrong.. ++ */ ++ if (0 && TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for shifted add operations */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting redundant shifted add operations:\n"); ++ } ++ for (insn = first; insn; insn = NEXT_INSN (insn)) ++ { ++ rtx reg, mem_expr, scan, op0, op1; ++ int add_only_used_as_pointer; ++ ++ if (INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == SET ++ && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS ++ && (GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == MULT ++ || GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0)) == ASHIFT) ++ && GET_CODE (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1)) == ++ CONST_INT && REG_P (SET_DEST (PATTERN (insn))) ++ && REG_P (XEXP (SET_SRC (PATTERN (insn)), 1)) ++ && REG_P (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0))) ++ { ++ reg = SET_DEST (PATTERN (insn)); ++ mem_expr = SET_SRC (PATTERN (insn)); ++ op0 = XEXP (XEXP (mem_expr, 0), 0); ++ op1 = XEXP (mem_expr, 1); ++ } ++ else ++ { ++ continue; ++ } ++ ++ /* Scan forward the check if the result of the shifted add ++ operation is only used as an address in memory operations and ++ that the operands to the shifted add are not clobbered. */ ++ add_only_used_as_pointer = false; ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ if (!INSN_P (scan)) ++ continue; ++ ++ /* Don't try to trace forward past a JUMP or CALL. To optimize ++ safely, we would have to check that all the instructions at ++ the jump destination did not use REG. */ ++ ++ if (GET_CODE (scan) == JUMP_INSN) ++ { ++ break; ++ } ++ ++ /* If used in a call insn then we cannot optimize it away */ ++ if (CALL_P (scan) && find_regno_fusage (scan, USE, REGNO (reg))) ++ break; ++ ++ /* If any of the operands of the shifted add are clobbered we ++ cannot optimize the shifted adda away */ ++ if ((reg_set_p (op0, scan) && (REGNO (op0) != REGNO (reg))) ++ || (reg_set_p (op1, scan) && (REGNO (op1) != REGNO (reg)))) ++ break; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* If used any other place than as a pointer or as the ++ destination register we failed */ ++ if (!(single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && ((MEM_P (SET_DEST (PATTERN (scan))) ++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) ++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == REGNO (reg)) ++ || (MEM_P (SET_SRC (PATTERN (scan))) ++ && REG_P (XEXP (SET_SRC (PATTERN (scan)), 0)) ++ && REGNO (XEXP ++ (SET_SRC (PATTERN (scan)), 0)) == REGNO (reg)))) ++ && !(GET_CODE (PATTERN (scan)) == SET ++ && REG_P (SET_DEST (PATTERN (scan))) ++ && !regno_use_in (REGNO (reg), ++ SET_SRC (PATTERN (scan))))) ++ break; ++ ++ /* We cannot replace the pointer in TImode insns ++ as these has a differene addressing mode than the other ++ memory insns. */ ++ if ( GET_MODE (SET_DEST (PATTERN (scan))) == TImode ) ++ break; ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ add_only_used_as_pointer = true; ++ break; ++ } ++ } ++ ++ if (add_only_used_as_pointer) ++ { ++ /* Lets delete the add insn and replace all memory references ++ which uses the pointer with the full expression. */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting INSN %i since address expression can be folded into all " ++ "memory references using this expression\n", ++ INSN_UID (insn)); ++ } ++ SET_INSN_DELETED (insn); ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ ++ for (scan = NEXT_INSN (insn); scan; scan = NEXT_INSN (scan)) ++ { ++ if (!INSN_P (scan)) ++ continue; ++ ++ if (!reg_mentioned_p (reg, PATTERN (scan))) ++ continue; ++ ++ /* If used any other place than as a pointer or as the ++ destination register we failed */ ++ if ((single_set (scan) ++ && GET_CODE (PATTERN (scan)) == SET ++ && ((MEM_P (SET_DEST (PATTERN (scan))) ++ && REG_P (XEXP (SET_DEST (PATTERN (scan)), 0)) ++ && REGNO (XEXP (SET_DEST (PATTERN (scan)), 0)) == ++ REGNO (reg)) || (MEM_P (SET_SRC (PATTERN (scan))) ++ && ++ REG_P (XEXP ++ (SET_SRC (PATTERN (scan)), ++ 0)) ++ && ++ REGNO (XEXP ++ (SET_SRC (PATTERN (scan)), ++ 0)) == REGNO (reg))))) ++ { ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Register %i replaced by indexed address in INSN %i\n", ++ REGNO (reg), INSN_UID (scan)); ++ } ++ if (MEM_P (SET_DEST (PATTERN (scan)))) ++ XEXP (SET_DEST (PATTERN (scan)), 0) = mem_expr; ++ else ++ XEXP (SET_SRC (PATTERN (scan)), 0) = mem_expr; ++ } ++ ++ /* Check if register is dead or set in this insn */ ++ if (dead_or_set_p (scan, reg)) ++ { ++ break; ++ } ++ ++ } ++ } ++ } ++ } ++ ++ ++ if (TARGET_MD_REORG_OPTIMIZATION && (optimize_size || (optimize > 0))) ++ { ++ ++ /* Scan through all insns looking for conditional register to ++ register move operations */ ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Folding redundant conditional move operations:\n"); ++ } ++ for (insn = first; insn; insn = next_nonnote_insn (insn)) ++ { ++ rtx src_reg, dst_reg, scan, test; ++ ++ if (INSN_P (insn) ++ && GET_CODE (PATTERN (insn)) == COND_EXEC ++ && GET_CODE (COND_EXEC_CODE (PATTERN (insn))) == SET ++ && REG_P (SET_SRC (COND_EXEC_CODE (PATTERN (insn)))) ++ && REG_P (SET_DEST (COND_EXEC_CODE (PATTERN (insn)))) ++ && find_reg_note (insn, REG_DEAD, SET_SRC (COND_EXEC_CODE (PATTERN (insn))))) ++ { ++ src_reg = SET_SRC (COND_EXEC_CODE (PATTERN (insn))); ++ dst_reg = SET_DEST (COND_EXEC_CODE (PATTERN (insn))); ++ test = COND_EXEC_TEST (PATTERN (insn)); ++ } ++ else ++ { ++ continue; ++ } ++ ++ /* Scan backward through the rest of insns in this if-then or if-else ++ block and check if we can fold the move into another of the conditional ++ insns in the same block. */ ++ scan = prev_nonnote_insn (insn); ++ while (INSN_P (scan) ++ && GET_CODE (PATTERN (scan)) == COND_EXEC ++ && rtx_equal_p (COND_EXEC_TEST (PATTERN (scan)), test)) ++ { ++ rtx pattern = COND_EXEC_CODE (PATTERN (scan)); ++ if ( GET_CODE (pattern) == PARALLEL ) ++ pattern = XVECEXP (pattern, 0, 0); ++ ++ if ( reg_set_p (src_reg, pattern) ) ++ { ++ /* Fold in the destination register for the cond. move ++ into this insn. */ ++ SET_DEST (pattern) = dst_reg; ++ if (dump_file) ++ { ++ fprintf (dump_file, ++ ";; Deleting INSN %i since this operation can be folded into INSN %i\n", ++ INSN_UID (insn), INSN_UID (scan)); ++ } ++ ++ /* Scan and check if any of the insns in between uses the src_reg. We ++ must then replace it with the dst_reg. */ ++ while ( (scan = next_nonnote_insn (scan)) != insn ){ ++ avr32_replace_reg (scan, src_reg, dst_reg); ++ } ++ /* Delete the insn. */ ++ SET_INSN_DELETED (insn); ++ ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (insn) = -1; ++ break; ++ } ++ ++ /* If the destination register is used but not set in this insn ++ we cannot fold. */ ++ if ( reg_mentioned_p (dst_reg, pattern) ) ++ break; ++ ++ scan = prev_nonnote_insn (scan); ++ } ++ } ++ } ++ ++} ++ ++ ++/* Exported to toplev.c. ++ ++ Do a final pass over the function, just before delayed branch ++ scheduling. */ ++static void ++avr32_reorg (void) ++{ ++ rtx insn; ++ HOST_WIDE_INT address = 0; ++ Mfix *fix; ++ ++ minipool_fix_head = minipool_fix_tail = NULL; ++ ++ /* The first insn must always be a note, or the code below won't scan it ++ properly. */ ++ insn = get_insns (); ++ if (GET_CODE (insn) != NOTE) ++ abort (); ++ ++ /* Scan all the insns and record the operands that will need fixing. */ ++ for (insn = next_nonnote_insn (insn); insn; insn = next_nonnote_insn (insn)) ++ { ++ if (GET_CODE (insn) == BARRIER) ++ push_minipool_barrier (insn, address); ++ else if (INSN_P (insn)) ++ { ++ rtx table; ++ ++ note_invalid_constants (insn, address, true); ++ address += get_attr_length (insn); ++ ++ /* If the insn is a vector jump, add the size of the table and skip ++ the table. */ ++ if ((table = is_jump_table (insn)) != NULL) ++ { ++ address += get_jump_table_size (table); ++ insn = table; ++ } ++ } ++ } ++ ++ fix = minipool_fix_head; ++ ++ /* Now scan the fixups and perform the required changes. */ ++ while (fix) ++ { ++ Mfix *ftmp; ++ Mfix *fdel; ++ Mfix *last_added_fix; ++ Mfix *last_barrier = NULL; ++ Mfix *this_fix; ++ ++ /* Skip any further barriers before the next fix. */ ++ while (fix && GET_CODE (fix->insn) == BARRIER) ++ fix = fix->next; ++ ++ /* No more fixes. */ ++ if (fix == NULL) ++ break; ++ ++ last_added_fix = NULL; ++ ++ for (ftmp = fix; ftmp; ftmp = ftmp->next) ++ { ++ if (GET_CODE (ftmp->insn) == BARRIER) ++ { ++ if (ftmp->address >= minipool_vector_head->max_address) ++ break; ++ ++ last_barrier = ftmp; ++ } ++ else if ((ftmp->minipool = add_minipool_forward_ref (ftmp)) == NULL) ++ break; ++ ++ last_added_fix = ftmp; /* Keep track of the last fix added. ++ */ ++ } ++ ++ /* If we found a barrier, drop back to that; any fixes that we could ++ have reached but come after the barrier will now go in the next ++ mini-pool. */ ++ if (last_barrier != NULL) ++ { ++ /* Reduce the refcount for those fixes that won't go into this pool ++ after all. */ ++ for (fdel = last_barrier->next; ++ fdel && fdel != ftmp; fdel = fdel->next) ++ { ++ fdel->minipool->refcount--; ++ fdel->minipool = NULL; ++ } ++ ++ ftmp = last_barrier; ++ } ++ else ++ { ++ /* ftmp is first fix that we can't fit into this pool and there no ++ natural barriers that we could use. Insert a new barrier in the ++ code somewhere between the previous fix and this one, and ++ arrange to jump around it. */ ++ HOST_WIDE_INT max_address; ++ ++ /* The last item on the list of fixes must be a barrier, so we can ++ never run off the end of the list of fixes without last_barrier ++ being set. */ ++ if (ftmp == NULL) ++ abort (); ++ ++ max_address = minipool_vector_head->max_address; ++ /* Check that there isn't another fix that is in range that we ++ couldn't fit into this pool because the pool was already too ++ large: we need to put the pool before such an instruction. */ ++ if (ftmp->address < max_address) ++ max_address = ftmp->address; ++ ++ last_barrier = create_fix_barrier (last_added_fix, max_address); ++ } ++ ++ assign_minipool_offsets (last_barrier); ++ ++ while (ftmp) ++ { ++ if (GET_CODE (ftmp->insn) != BARRIER ++ && ((ftmp->minipool = add_minipool_backward_ref (ftmp)) ++ == NULL)) ++ break; ++ ++ ftmp = ftmp->next; ++ } ++ ++ /* Scan over the fixes we have identified for this pool, fixing them up ++ and adding the constants to the pool itself. */ ++ for (this_fix = fix; this_fix && ftmp != this_fix; ++ this_fix = this_fix->next) ++ if (GET_CODE (this_fix->insn) != BARRIER ++ /* Do nothing for entries present just to force the insertion of ++ a minipool. */ ++ && !IS_FORCE_MINIPOOL (this_fix->value)) ++ { ++ rtx addr = plus_constant (gen_rtx_LABEL_REF (VOIDmode, ++ minipool_vector_label), ++ this_fix->minipool->offset); ++ *this_fix->loc = gen_rtx_MEM (this_fix->mode, addr); ++ } ++ ++ dump_minipool (last_barrier->insn); ++ fix = ftmp; ++ } ++ ++ /* Free the minipool memory. */ ++ obstack_free (&minipool_obstack, minipool_startobj); ++ ++ avr32_reorg_optimization (); ++} ++ ++ ++/* Hook for doing some final scanning of instructions. Does nothing yet...*/ ++void ++avr32_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED, ++ rtx * opvec ATTRIBUTE_UNUSED, ++ int noperands ATTRIBUTE_UNUSED) ++{ ++ return; ++} ++ ++ ++/* Function for changing the condition on the next instruction, ++ should be used when emmiting compare instructions and ++ the condition of the next instruction needs to change. ++*/ ++int ++set_next_insn_cond (rtx cur_insn, rtx new_cond) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ if ((next_insn != NULL_RTX) ++ && (INSN_P (next_insn))) ++ { ++ if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) ++ { ++ /* Branch instructions */ ++ XEXP (SET_SRC (PATTERN (next_insn)), 0) = new_cond; ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (next_insn) = -1; ++ return TRUE; ++ } ++ else if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), ++ GET_MODE (SET_SRC (PATTERN (next_insn))))) ++ { ++ /* scc with no compare */ ++ SET_SRC (PATTERN (next_insn)) = new_cond; ++ /* Force the instruction to be recognized again */ ++ INSN_CODE (next_insn) = -1; ++ return TRUE; ++ } ++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) ++ { ++ if ( GET_CODE (new_cond) == UNSPEC ) ++ { ++ COND_EXEC_TEST (PATTERN (next_insn)) = ++ gen_rtx_UNSPEC (CCmode, ++ gen_rtvec (2, ++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 0), ++ XEXP (COND_EXEC_TEST (PATTERN (next_insn)), 1)), ++ XINT (new_cond, 1)); ++ } ++ else ++ { ++ PUT_CODE(COND_EXEC_TEST (PATTERN (next_insn)), GET_CODE(new_cond)); ++ } ++ } ++ } ++ ++ return FALSE; ++} ++ ++ ++/* Function for obtaining the condition for the next instruction after cur_insn. ++*/ ++rtx ++get_next_insn_cond (rtx cur_insn) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ rtx cond = NULL_RTX; ++ if (next_insn != NULL_RTX ++ && INSN_P (next_insn)) ++ { ++ if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE)) ++ { ++ /* Branch and cond if then else instructions */ ++ cond = XEXP (SET_SRC (PATTERN (next_insn)), 0); ++ } ++ else if ((GET_CODE (PATTERN (next_insn)) == SET) ++ && avr32_comparison_operator (SET_SRC (PATTERN (next_insn)), ++ GET_MODE (SET_SRC (PATTERN (next_insn))))) ++ { ++ /* scc with no compare */ ++ cond = SET_SRC (PATTERN (next_insn)); ++ } ++ else if (GET_CODE (PATTERN (next_insn)) == COND_EXEC) ++ { ++ cond = COND_EXEC_TEST (PATTERN (next_insn)); ++ } ++ } ++ return cond; ++} ++ ++ ++/* Check if the next insn is a conditional insn that will emit a compare ++ for itself. ++*/ ++rtx ++next_insn_emits_cmp (rtx cur_insn) ++{ ++ rtx next_insn = next_nonnote_insn (cur_insn); ++ rtx cond = NULL_RTX; ++ if (next_insn != NULL_RTX ++ && INSN_P (next_insn)) ++ { ++ if ( ((GET_CODE (PATTERN (next_insn)) == SET) ++ && (GET_CODE (SET_SRC (PATTERN (next_insn))) == IF_THEN_ELSE) ++ && (XEXP (XEXP (SET_SRC (PATTERN (next_insn)), 0),0) != cc0_rtx)) ++ || GET_CODE (PATTERN (next_insn)) == COND_EXEC ) ++ return TRUE; ++ } ++ return FALSE; ++} ++ ++ ++rtx ++avr32_output_cmp (rtx cond, enum machine_mode mode, rtx op0, rtx op1) ++{ ++ ++ rtx new_cond = NULL_RTX; ++ rtx ops[2]; ++ rtx compare_pattern; ++ ops[0] = op0; ++ ops[1] = op1; ++ ++ if ( GET_CODE (op0) == AND ) ++ compare_pattern = op0; ++ else ++ compare_pattern = gen_rtx_COMPARE (mode, op0, op1); ++ ++ new_cond = is_compare_redundant (compare_pattern, cond); ++ ++ if (new_cond != NULL_RTX) ++ return new_cond; ++ ++ /* Check if we are inserting a bit-load instead of a compare. */ ++ if ( GET_CODE (op0) == AND ) ++ { ++ ops[0] = XEXP (op0, 0); ++ ops[1] = XEXP (op0, 1); ++ output_asm_insn ("bld\t%0, %p1", ops); ++ return cond; ++ } ++ ++ /* Insert compare */ ++ switch (mode) ++ { ++ case QImode: ++ output_asm_insn ("cp.b\t%0, %1", ops); ++ break; ++ case HImode: ++ output_asm_insn ("cp.h\t%0, %1", ops); ++ break; ++ case SImode: ++ output_asm_insn ("cp.w\t%0, %1", ops); ++ break; ++ case DImode: ++ if (GET_CODE (op1) != REG) ++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0", ops); ++ else ++ output_asm_insn ("cp.w\t%0, %1\ncpc\t%m0, %m1", ops); ++ break; ++ default: ++ internal_error ("Unknown comparison mode"); ++ break; ++ } ++ ++ return cond; ++} ++ ++ ++int ++avr32_load_multiple_operation (rtx op, ++ enum machine_mode mode ATTRIBUTE_UNUSED) ++{ ++ int count = XVECLEN (op, 0); ++ unsigned int dest_regno; ++ rtx src_addr; ++ rtx elt; ++ int i = 1, base = 0; ++ ++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) ++ return 0; ++ ++ /* Check to see if this might be a write-back. */ ++ if (GET_CODE (SET_SRC (elt = XVECEXP (op, 0, 0))) == PLUS) ++ { ++ i++; ++ base = 1; ++ ++ /* Now check it more carefully. */ ++ if (GET_CODE (SET_DEST (elt)) != REG ++ || GET_CODE (XEXP (SET_SRC (elt), 0)) != REG ++ || GET_CODE (XEXP (SET_SRC (elt), 1)) != CONST_INT ++ || INTVAL (XEXP (SET_SRC (elt), 1)) != (count - 1) * 4) ++ return 0; ++ } ++ ++ /* Perform a quick check so we don't blow up below. */ ++ if (count <= 1 ++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET ++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != REG ++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) ++ return 0; ++ ++ dest_regno = REGNO (SET_DEST (XVECEXP (op, 0, i - 1))); ++ src_addr = XEXP (SET_SRC (XVECEXP (op, 0, i - 1)), 0); ++ ++ for (; i < count; i++) ++ { ++ elt = XVECEXP (op, 0, i); ++ ++ if (GET_CODE (elt) != SET ++ || GET_CODE (SET_DEST (elt)) != REG ++ || GET_MODE (SET_DEST (elt)) != SImode ++ || GET_CODE (SET_SRC (elt)) != UNSPEC) ++ return 0; ++ } ++ ++ return 1; ++} ++ ++ ++int ++avr32_store_multiple_operation (rtx op, ++ enum machine_mode mode ATTRIBUTE_UNUSED) ++{ ++ int count = XVECLEN (op, 0); ++ int src_regno; ++ rtx dest_addr; ++ rtx elt; ++ int i = 1; ++ ++ if (count <= 1 || GET_CODE (XVECEXP (op, 0, 0)) != SET) ++ return 0; ++ ++ /* Perform a quick check so we don't blow up below. */ ++ if (count <= i ++ || GET_CODE (XVECEXP (op, 0, i - 1)) != SET ++ || GET_CODE (SET_DEST (XVECEXP (op, 0, i - 1))) != MEM ++ || GET_CODE (SET_SRC (XVECEXP (op, 0, i - 1))) != UNSPEC) ++ return 0; ++ ++ src_regno = REGNO (SET_SRC (XVECEXP (op, 0, i - 1))); ++ dest_addr = XEXP (SET_DEST (XVECEXP (op, 0, i - 1)), 0); ++ ++ for (; i < count; i++) ++ { ++ elt = XVECEXP (op, 0, i); ++ ++ if (GET_CODE (elt) != SET ++ || GET_CODE (SET_DEST (elt)) != MEM ++ || GET_MODE (SET_DEST (elt)) != SImode ++ || GET_CODE (SET_SRC (elt)) != UNSPEC) ++ return 0; ++ } ++ ++ return 1; ++} ++ ++ ++int ++avr32_valid_macmac_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if they use the same accumulator */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_mulmac_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* ++ Check if the mul instruction produces the accumulator for the mac ++ instruction. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ return FALSE; ++} ++ ++ ++int ++avr32_store_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Only valid bypass if the output result is used as an src in the store ++ instruction, NOT if used as a pointer or base. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_SRC (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_mul_waw_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if the register holding the result from the mul instruction is ++ used as a result register in the input instruction. */ ++ if (rtx_equal_p ++ (SET_DEST (PATTERN (insn_out)), SET_DEST (PATTERN (insn_in)))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* Check if the first loaded word in insn_out is used in insn_in. */ ++ rtx dst_reg; ++ rtx second_loaded_reg; ++ ++ /* If this is a double alu operation then the bypass is not valid */ ++ if ((get_attr_type (insn_in) == TYPE_ALU ++ || get_attr_type (insn_in) == TYPE_ALU2) ++ && (GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (insn_out)))) > 4)) ++ return FALSE; ++ ++ /* Get the destination register in the load */ ++ if (!REG_P (SET_DEST (PATTERN (insn_out)))) ++ return FALSE; ++ ++ dst_reg = SET_DEST (PATTERN (insn_out)); ++ second_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 1); ++ ++ if (!reg_mentioned_p (second_loaded_reg, PATTERN (insn_in))) ++ return TRUE; ++ ++ return FALSE; ++} ++ ++ ++int ++avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in) ++{ ++ /* ++ Check if the two first loaded word in insn_out are used in insn_in. */ ++ rtx dst_reg; ++ rtx third_loaded_reg, fourth_loaded_reg; ++ ++ /* Get the destination register in the load */ ++ if (!REG_P (SET_DEST (PATTERN (insn_out)))) ++ return FALSE; ++ ++ dst_reg = SET_DEST (PATTERN (insn_out)); ++ third_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 2); ++ fourth_loaded_reg = gen_rtx_REG (SImode, REGNO (dst_reg) + 3); ++ ++ if (!reg_mentioned_p (third_loaded_reg, PATTERN (insn_in)) ++ && !reg_mentioned_p (fourth_loaded_reg, PATTERN (insn_in))) ++ { ++ return TRUE; ++ } ++ ++ return FALSE; ++} ++ ++ ++rtx ++avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ) ++{ ++ rtx branch_insn; ++ rtx cmp_test; ++ rtx compare_op0; ++ rtx compare_op1; ++ ++ ++ if ( !ce_info ++ || test == NULL_RTX ++ || !reg_mentioned_p (cc0_rtx, test)) ++ return test; ++ ++ branch_insn = BB_END (ce_info->test_bb); ++ cmp_test = PATTERN(prev_nonnote_insn (branch_insn)); ++ ++ if (GET_CODE(cmp_test) != SET ++ || !CC0_P(XEXP(cmp_test, 0)) ) ++ return cmp_test; ++ ++ if ( GET_CODE(SET_SRC(cmp_test)) == COMPARE ){ ++ compare_op0 = XEXP(SET_SRC(cmp_test), 0); ++ compare_op1 = XEXP(SET_SRC(cmp_test), 1); ++ } else { ++ compare_op0 = SET_SRC(cmp_test); ++ compare_op1 = const0_rtx; ++ } ++ ++ return gen_rtx_fmt_ee (GET_CODE(test), GET_MODE (compare_op0), ++ compare_op0, compare_op1); ++} ++ ++ ++rtx ++avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, ++ int *num_true_changes) ++{ ++ rtx test = COND_EXEC_TEST(pattern); ++ rtx op = COND_EXEC_CODE(pattern); ++ rtx cmp_insn; ++ rtx cond_exec_insn; ++ int inputs_set_outside_ifblock = 1; ++ basic_block current_bb = BLOCK_FOR_INSN (insn); ++ rtx bb_insn ; ++ enum machine_mode mode = GET_MODE (XEXP (op, 0)); ++ ++ if (CC0_P(XEXP(test, 0))) ++ test = avr32_ifcvt_modify_test (ce_info, ++ test ); ++ ++ /* We do not support multiple tests. */ ++ if ( ce_info ++ && ce_info->num_multiple_test_blocks > 0 ) ++ return NULL_RTX; ++ ++ pattern = gen_rtx_COND_EXEC (VOIDmode, test, op); ++ ++ if ( !reload_completed ) ++ { ++ rtx start; ++ int num_insns; ++ int max_insns = MAX_CONDITIONAL_EXECUTE; ++ ++ if ( !ce_info ) ++ return op; ++ ++ /* Check if the insn is not suitable for conditional ++ execution. */ ++ start_sequence (); ++ cond_exec_insn = emit_insn (pattern); ++ if ( recog_memoized (cond_exec_insn) < 0 ++ && can_create_pseudo_p () ) ++ { ++ /* Insn is not suitable for conditional execution, try ++ to fix it up by using an extra scratch register or ++ by pulling the operation outside the if-then-else ++ and then emiting a conditional move inside the if-then-else. */ ++ end_sequence (); ++ if ( GET_CODE (op) != SET ++ || !REG_P (SET_DEST (op)) ++ || GET_CODE (SET_SRC (op)) == IF_THEN_ELSE ++ || GET_MODE_SIZE (mode) > UNITS_PER_WORD ) ++ return NULL_RTX; ++ ++ /* Check if any of the input operands to the insn is set inside the ++ current block. */ ++ if ( current_bb->index == ce_info->then_bb->index ) ++ start = PREV_INSN (BB_HEAD (ce_info->then_bb)); ++ else ++ start = PREV_INSN (BB_HEAD (ce_info->else_bb)); ++ ++ ++ for ( bb_insn = next_nonnote_insn (start); bb_insn != insn; bb_insn = next_nonnote_insn (bb_insn) ) ++ { ++ rtx set = single_set (bb_insn); ++ ++ if ( set && reg_mentioned_p (SET_DEST (set), SET_SRC (op))) ++ { ++ inputs_set_outside_ifblock = 0; ++ break; ++ } ++ } ++ ++ cmp_insn = prev_nonnote_insn (BB_END (ce_info->test_bb)); ++ ++ ++ /* Check if we can insert more insns. */ ++ num_insns = ( ce_info->num_then_insns + ++ ce_info->num_else_insns + ++ ce_info->num_cond_clobber_insns + ++ ce_info->num_extra_move_insns ); ++ ++ if ( ce_info->num_else_insns != 0 ) ++ max_insns *=2; ++ ++ if ( num_insns >= max_insns ) ++ return NULL_RTX; ++ ++ /* Check if we have an instruction which might be converted to ++ conditional form if we give it a scratch register to clobber. */ ++ { ++ rtx clobber_insn; ++ rtx scratch_reg = gen_reg_rtx (mode); ++ rtx new_pattern = copy_rtx (pattern); ++ rtx set_src = SET_SRC (COND_EXEC_CODE (new_pattern)); ++ ++ rtx clobber = gen_rtx_CLOBBER (mode, scratch_reg); ++ rtx vec[2] = { COND_EXEC_CODE (new_pattern), clobber }; ++ COND_EXEC_CODE (new_pattern) = gen_rtx_PARALLEL (mode, gen_rtvec_v (2, vec)); ++ ++ start_sequence (); ++ clobber_insn = emit_insn (new_pattern); ++ ++ if ( recog_memoized (clobber_insn) >= 0 ++ && ( ( GET_RTX_LENGTH (GET_CODE (set_src)) == 2 ++ && CONST_INT_P (XEXP (set_src, 1)) ++ && avr32_const_ok_for_constraint_p (INTVAL (XEXP (set_src, 1)), 'K', "Ks08") ) ++ || !ce_info->else_bb ++ || current_bb->index == ce_info->else_bb->index )) ++ { ++ end_sequence (); ++ /* Force the insn to be recognized again. */ ++ INSN_CODE (insn) = -1; ++ ++ /* If this is the first change in this IF-block then ++ signal that we have made a change. */ ++ if ( ce_info->num_cond_clobber_insns == 0 ++ && ce_info->num_extra_move_insns == 0 ) ++ *num_true_changes += 1; ++ ++ ce_info->num_cond_clobber_insns++; ++ ++ if (dump_file) ++ fprintf (dump_file, ++ "\nReplacing INSN %d with an insn using a scratch register for later ifcvt passes...\n", ++ INSN_UID (insn)); ++ ++ return COND_EXEC_CODE (new_pattern); ++ } ++ end_sequence (); ++ } ++ ++ if ( inputs_set_outside_ifblock ) ++ { ++ /* Check if the insn before the cmp is an and which used ++ together with the cmp can be optimized into a bld. If ++ so then we should try to put the insn before the and ++ so that we can catch the bld peephole. */ ++ rtx set; ++ rtx insn_before_cmp_insn = prev_nonnote_insn (cmp_insn); ++ if (insn_before_cmp_insn ++ && (set = single_set (insn_before_cmp_insn)) ++ && GET_CODE (SET_SRC (set)) == AND ++ && one_bit_set_operand (XEXP (SET_SRC (set), 1), SImode) ++ /* Also make sure that the insn does not set any ++ of the input operands to the insn we are pulling out. */ ++ && !reg_mentioned_p (SET_DEST (set), SET_SRC (op)) ) ++ cmp_insn = prev_nonnote_insn (cmp_insn); ++ ++ /* We can try to put the operation outside the if-then-else ++ blocks and insert a move. */ ++ if ( !insn_invalid_p (insn) ++ /* Do not allow conditional insns to be moved outside the ++ if-then-else. */ ++ && !reg_mentioned_p (cc0_rtx, insn) ++ /* We cannot move memory loads outside of the if-then-else ++ since the memory access should not be perfomed if the ++ condition is not met. */ ++ && !mem_mentioned_p (SET_SRC (op)) ) ++ { ++ rtx scratch_reg = gen_reg_rtx (mode); ++ rtx op_pattern = copy_rtx (op); ++ rtx new_insn, seq; ++ rtx link, prev_link; ++ op = copy_rtx (op); ++ /* Emit the operation to a temp reg before the compare, ++ and emit a move inside the if-then-else, hoping that the ++ whole if-then-else can be converted to conditional ++ execution. */ ++ SET_DEST (op_pattern) = scratch_reg; ++ start_sequence (); ++ new_insn = emit_insn (op_pattern); ++ seq = get_insns(); ++ end_sequence (); ++ ++ /* Check again that the insn is valid. For some insns the insn might ++ become invalid if the destination register is changed. Ie. for mulacc ++ operations. */ ++ if ( insn_invalid_p (new_insn) ) ++ return NULL_RTX; ++ ++ emit_insn_before_setloc (seq, cmp_insn, INSN_LOCATOR (insn)); ++ ++ if (dump_file) ++ fprintf (dump_file, ++ "\nMoving INSN %d out of IF-block by adding INSN %d...\n", ++ INSN_UID (insn), INSN_UID (new_insn)); ++ ++ ce_info->extra_move_insns[ce_info->num_extra_move_insns] = insn; ++ ce_info->moved_insns[ce_info->num_extra_move_insns] = new_insn; ++ XEXP (op, 1) = scratch_reg; ++ /* Force the insn to be recognized again. */ ++ INSN_CODE (insn) = -1; ++ ++ /* Move REG_DEAD notes to the moved insn. */ ++ prev_link = NULL_RTX; ++ for (link = REG_NOTES (insn); link; link = XEXP (link, 1)) ++ { ++ if (REG_NOTE_KIND (link) == REG_DEAD) ++ { ++ /* Add the REG_DEAD note to the new insn. */ ++ rtx dead_reg = XEXP (link, 0); ++ REG_NOTES (new_insn) = gen_rtx_EXPR_LIST (REG_DEAD, dead_reg, REG_NOTES (new_insn)); ++ /* Remove the REG_DEAD note from the insn we convert to a move. */ ++ if ( prev_link ) ++ XEXP (prev_link, 1) = XEXP (link, 1); ++ else ++ REG_NOTES (insn) = XEXP (link, 1); ++ } ++ else ++ { ++ prev_link = link; ++ } ++ } ++ /* Add a REG_DEAD note to signal that the scratch register is dead. */ ++ REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, scratch_reg, REG_NOTES (insn)); ++ ++ /* If this is the first change in this IF-block then ++ signal that we have made a change. */ ++ if ( ce_info->num_cond_clobber_insns == 0 ++ && ce_info->num_extra_move_insns == 0 ) ++ *num_true_changes += 1; ++ ++ ce_info->num_extra_move_insns++; ++ return op; ++ } ++ } ++ ++ /* We failed to fixup the insns, so this if-then-else can not be made ++ conditional. Just return NULL_RTX so that the if-then-else conversion ++ for this if-then-else will be cancelled. */ ++ return NULL_RTX; ++ } ++ end_sequence (); ++ return op; ++ } ++ ++ /* Signal that we have started if conversion after reload, which means ++ that it should be safe to split all the predicable clobber insns which ++ did not become cond_exec back into a simpler form if possible. */ ++ cfun->machine->ifcvt_after_reload = 1; ++ ++ return pattern; ++} ++ ++ ++void ++avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes) ++{ ++ int n; ++ ++ if ( ce_info->num_extra_move_insns > 0 ++ && ce_info->num_cond_clobber_insns == 0) ++ /* Signal that we did not do any changes after all. */ ++ *num_true_changes -= 1; ++ ++ /* Remove any inserted move insns. */ ++ for ( n = 0; n < ce_info->num_extra_move_insns; n++ ) ++ { ++ rtx link, prev_link; ++ ++ /* Remove REG_DEAD note since we are not needing the scratch register anyway. */ ++ prev_link = NULL_RTX; ++ for (link = REG_NOTES (ce_info->extra_move_insns[n]); link; link = XEXP (link, 1)) ++ { ++ if (REG_NOTE_KIND (link) == REG_DEAD) ++ { ++ if ( prev_link ) ++ XEXP (prev_link, 1) = XEXP (link, 1); ++ else ++ REG_NOTES (ce_info->extra_move_insns[n]) = XEXP (link, 1); ++ } ++ else ++ { ++ prev_link = link; ++ } ++ } ++ ++ /* Revert all reg_notes for the moved insn. */ ++ for (link = REG_NOTES (ce_info->moved_insns[n]); link; link = XEXP (link, 1)) ++ { ++ REG_NOTES (ce_info->extra_move_insns[n]) = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link), ++ XEXP (link, 0), ++ REG_NOTES (ce_info->extra_move_insns[n])); ++ } ++ ++ /* Remove the moved insn. */ ++ remove_insn ( ce_info->moved_insns[n] ); ++ } ++} ++ ++ ++/* Function returning TRUE if INSN with OPERANDS is a splittable ++ conditional immediate clobber insn. We assume that the insn is ++ already a conditional immediate clobber insns and do not check ++ for that. */ ++int ++avr32_cond_imm_clobber_splittable (rtx insn, rtx operands[]) ++{ ++ if ( REGNO (operands[0]) == REGNO (operands[1]) ) ++ { ++ if ( (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is21")) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21"))) ++ return FALSE; ++ } ++ else if ( (logical_binary_operator (SET_SRC (XVECEXP (PATTERN (insn),0,0)), VOIDmode) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == PLUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'I', "Is16")) ++ || (GET_CODE (SET_SRC (XVECEXP (PATTERN (insn),0,0))) == MINUS ++ && !avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks16"))) ) ++ return FALSE; ++ ++ return TRUE; ++} ++ ++ ++/* Function for getting an integer value from a const_int or const_double ++ expression regardless of the HOST_WIDE_INT size. Each target cpu word ++ will be put into the val array where the LSW will be stored at the lowest ++ address and so forth. Assumes that const_expr is either a const_int or ++ const_double. Only valid for modes which have sizes that are a multiple ++ of the word size. ++*/ ++void ++avr32_get_intval (enum machine_mode mode, rtx const_expr, HOST_WIDE_INT *val) ++{ ++ int words_in_mode = GET_MODE_SIZE (mode)/UNITS_PER_WORD; ++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; ++ ++ if ( GET_CODE(const_expr) == CONST_DOUBLE ){ ++ HOST_WIDE_INT hi = CONST_DOUBLE_HIGH(const_expr); ++ HOST_WIDE_INT lo = CONST_DOUBLE_LOW(const_expr); ++ /* Evaluate hi and lo values of const_double. */ ++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), ++ GEN_INT (lo), ++ &val[0]); ++ avr32_get_intval (mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0), ++ GEN_INT (hi), ++ &val[words_in_const_int]); ++ } else if ( GET_CODE(const_expr) == CONST_INT ){ ++ HOST_WIDE_INT value = INTVAL(const_expr); ++ int word; ++ for ( word = 0; (word < words_in_mode) && (word < words_in_const_int); word++ ){ ++ /* Shift word up to the MSW and shift down again to extract the ++ word and sign-extend. */ ++ int lshift = (words_in_const_int - word - 1) * BITS_PER_WORD; ++ int rshift = (words_in_const_int-1) * BITS_PER_WORD; ++ val[word] = (value << lshift) >> rshift; ++ } ++ ++ for ( ; word < words_in_mode; word++ ){ ++ /* Just put the sign bits in the remaining words. */ ++ val[word] = value < 0 ? -1 : 0; ++ } ++ } ++} ++ ++ ++void ++avr32_split_const_expr (enum machine_mode mode, enum machine_mode new_mode, ++ rtx expr, rtx *split_expr) ++{ ++ int i, word; ++ int words_in_intval = GET_MODE_SIZE (mode)/UNITS_PER_WORD; ++ int words_in_split_values = GET_MODE_SIZE (new_mode)/UNITS_PER_WORD; ++ const int words_in_const_int = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD; ++ HOST_WIDE_INT *val = alloca (words_in_intval * UNITS_PER_WORD); ++ ++ avr32_get_intval (mode, expr, val); ++ ++ for ( i=0; i < (words_in_intval/words_in_split_values); i++ ) ++ { ++ HOST_WIDE_INT value_lo = 0, value_hi = 0; ++ for ( word = 0; word < words_in_split_values; word++ ) ++ { ++ if ( word >= words_in_const_int ) ++ value_hi |= ((val[i * words_in_split_values + word] & ++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) ++ << (BITS_PER_WORD * (word - words_in_const_int))); ++ else ++ value_lo |= ((val[i * words_in_split_values + word] & ++ (((HOST_WIDE_INT)1 << BITS_PER_WORD)-1)) ++ << (BITS_PER_WORD * word)); ++ } ++ split_expr[i] = immed_double_const(value_lo, value_hi, new_mode); ++ } ++} ++ ++ ++/* Set up library functions to comply to AVR32 ABI */ ++static void ++avr32_init_libfuncs (void) ++{ ++ /* Convert gcc run-time function names to AVR32 ABI names */ ++ ++ /* Double-precision floating-point arithmetic. */ ++ set_optab_libfunc (neg_optab, DFmode, NULL); ++ ++ /* Double-precision comparisons. */ ++ set_optab_libfunc (eq_optab, DFmode, "__avr32_f64_cmp_eq"); ++ set_optab_libfunc (ne_optab, DFmode, NULL); ++ set_optab_libfunc (lt_optab, DFmode, "__avr32_f64_cmp_lt"); ++ set_optab_libfunc (le_optab, DFmode, NULL); ++ set_optab_libfunc (ge_optab, DFmode, "__avr32_f64_cmp_ge"); ++ set_optab_libfunc (gt_optab, DFmode, NULL); ++ ++ /* Single-precision floating-point arithmetic. */ ++ set_optab_libfunc (smul_optab, SFmode, "__avr32_f32_mul"); ++ set_optab_libfunc (neg_optab, SFmode, NULL); ++ ++ /* Single-precision comparisons. */ ++ set_optab_libfunc (eq_optab, SFmode, "__avr32_f32_cmp_eq"); ++ set_optab_libfunc (ne_optab, SFmode, NULL); ++ set_optab_libfunc (lt_optab, SFmode, "__avr32_f32_cmp_lt"); ++ set_optab_libfunc (le_optab, SFmode, NULL); ++ set_optab_libfunc (ge_optab, SFmode, "__avr32_f32_cmp_ge"); ++ set_optab_libfunc (gt_optab, SFmode, NULL); ++ ++ /* Floating-point to integer conversions. */ ++ set_conv_libfunc (sfix_optab, SImode, DFmode, "__avr32_f64_to_s32"); ++ set_conv_libfunc (ufix_optab, SImode, DFmode, "__avr32_f64_to_u32"); ++ set_conv_libfunc (sfix_optab, DImode, DFmode, "__avr32_f64_to_s64"); ++ set_conv_libfunc (ufix_optab, DImode, DFmode, "__avr32_f64_to_u64"); ++ set_conv_libfunc (sfix_optab, SImode, SFmode, "__avr32_f32_to_s32"); ++ set_conv_libfunc (ufix_optab, SImode, SFmode, "__avr32_f32_to_u32"); ++ set_conv_libfunc (sfix_optab, DImode, SFmode, "__avr32_f32_to_s64"); ++ set_conv_libfunc (ufix_optab, DImode, SFmode, "__avr32_f32_to_u64"); ++ ++ /* Conversions between floating types. */ ++ set_conv_libfunc (trunc_optab, SFmode, DFmode, "__avr32_f64_to_f32"); ++ set_conv_libfunc (sext_optab, DFmode, SFmode, "__avr32_f32_to_f64"); ++ ++ /* Integer to floating-point conversions. Table 8. */ ++ set_conv_libfunc (sfloat_optab, DFmode, SImode, "__avr32_s32_to_f64"); ++ set_conv_libfunc (sfloat_optab, DFmode, DImode, "__avr32_s64_to_f64"); ++ set_conv_libfunc (sfloat_optab, SFmode, SImode, "__avr32_s32_to_f32"); ++ set_conv_libfunc (sfloat_optab, SFmode, DImode, "__avr32_s64_to_f32"); ++ set_conv_libfunc (ufloat_optab, DFmode, SImode, "__avr32_u32_to_f64"); ++ set_conv_libfunc (ufloat_optab, SFmode, SImode, "__avr32_u32_to_f32"); ++ /* TODO: Add these to gcc library functions */ ++ //set_conv_libfunc (ufloat_optab, DFmode, DImode, NULL); ++ //set_conv_libfunc (ufloat_optab, SFmode, DImode, NULL); ++ ++ /* Long long. Table 9. */ ++ set_optab_libfunc (smul_optab, DImode, "__avr32_mul64"); ++ set_optab_libfunc (sdiv_optab, DImode, "__avr32_sdiv64"); ++ set_optab_libfunc (udiv_optab, DImode, "__avr32_udiv64"); ++ set_optab_libfunc (smod_optab, DImode, "__avr32_smod64"); ++ set_optab_libfunc (umod_optab, DImode, "__avr32_umod64"); ++ set_optab_libfunc (ashl_optab, DImode, "__avr32_lsl64"); ++ set_optab_libfunc (lshr_optab, DImode, "__avr32_lsr64"); ++ set_optab_libfunc (ashr_optab, DImode, "__avr32_asr64"); ++ ++ /* Floating point library functions which have fast versions. */ ++ if ( TARGET_FAST_FLOAT ) ++ { ++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div_fast"); ++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul_fast"); ++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add_fast"); ++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub_fast"); ++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add_fast"); ++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub_fast"); ++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div_fast"); ++ } ++ else ++ { ++ set_optab_libfunc (sdiv_optab, DFmode, "__avr32_f64_div"); ++ set_optab_libfunc (smul_optab, DFmode, "__avr32_f64_mul"); ++ set_optab_libfunc (add_optab, DFmode, "__avr32_f64_add"); ++ set_optab_libfunc (sub_optab, DFmode, "__avr32_f64_sub"); ++ set_optab_libfunc (add_optab, SFmode, "__avr32_f32_add"); ++ set_optab_libfunc (sub_optab, SFmode, "__avr32_f32_sub"); ++ set_optab_libfunc (sdiv_optab, SFmode, "__avr32_f32_div"); ++ } ++} ++ ++ ++/* Record a flashvault declaration. */ ++static void ++flashvault_decl_list_add (unsigned int vector_num, const char *name) ++{ ++ struct flashvault_decl_list *p; ++ ++ p = (struct flashvault_decl_list *) ++ xmalloc (sizeof (struct flashvault_decl_list)); ++ p->next = flashvault_decl_list_head; ++ p->name = name; ++ p->vector_num = vector_num; ++ flashvault_decl_list_head = p; ++} ++ ++ ++static void ++avr32_file_end (void) ++{ ++ struct flashvault_decl_list *p; ++ unsigned int num_entries = 0; ++ ++ /* Check if a list of flashvault declarations exists. */ ++ if (flashvault_decl_list_head != NULL) ++ { ++ /* Calculate the number of entries in the table. */ ++ for (p = flashvault_decl_list_head; p != NULL; p = p->next) ++ { ++ num_entries++; ++ } ++ ++ /* Generate the beginning of the flashvault data table. */ ++ fputs ("\t.global __fv_table\n" ++ "\t.data\n" ++ "\t.align 2\n" ++ "\t.set .LFVTABLE, . + 0\n" ++ "\t.type __fv_table, @object\n", asm_out_file); ++ /* Each table entry is 8 bytes. */ ++ fprintf (asm_out_file, "\t.size __fv_table, %u\n", (num_entries * 8)); ++ ++ fputs("__fv_table:\n", asm_out_file); ++ ++ for (p = flashvault_decl_list_head; p != NULL; p = p->next) ++ { ++ /* Output table entry. */ ++ fprintf (asm_out_file, ++ "\t.align 2\n" ++ "\t.int %u\n", p->vector_num); ++ fprintf (asm_out_file, ++ "\t.align 2\n" ++ "\t.int %s\n", p->name); ++ } ++ } ++} +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/avr32-elf.h gcc-4.4.6/gcc/config/avr32/avr32-elf.h +--- gcc-4.4.6.orig/gcc/config/avr32/avr32-elf.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/avr32-elf.h 2011-08-27 19:45:42.679240416 +0200 +@@ -0,0 +1,91 @@ ++/* ++ Elf specific definitions. ++ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++/***************************************************************************** ++ * Controlling the Compiler Driver, 'gcc' ++ *****************************************************************************/ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 GNU with ELF)", stderr); ++ ++/* ++Another C string constant used much like LINK_SPEC. The ++difference between the two is that STARTFILE_SPEC is used at ++the very beginning of the command given to the linker. ++ ++If this macro is not defined, a default is provided that loads the ++standard C startup file from the usual place. See gcc.c. ++*/ ++#if 0 ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "crt0%O%s crti%O%s crtbegin%O%s" ++#endif ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC "%{mflashvault: crtfv.o%s} %{!mflashvault: crt0.o%s} \ ++ crti.o%s crtbegin.o%s" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "%{muse-oscall:--defsym __do_not_use_oscall_coproc__=0} %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}} %{mpart=uc3a3revd:-mavr32elf_uc3a3256s;:%{mpart=*:-mavr32elf_%*}} %{mcpu=*:-mavr32elf_%*}" ++ ++ ++/* ++Another C string constant used much like LINK_SPEC. The ++difference between the two is that ENDFILE_SPEC is used at ++the very end of the command given to the linker. ++ ++Do not define this macro if it does not need to do anything. ++*/ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtend%O%s crtn%O%s" ++ ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_define ("__avr32__"); \ ++ builtin_define ("__AVR32__"); \ ++ builtin_define ("__AVR32_ELF__"); \ ++ builtin_define (avr32_part->macro); \ ++ builtin_define (avr32_arch->macro); \ ++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ ++ builtin_define ("__AVR32_AVR32A__"); \ ++ else \ ++ builtin_define ("__AVR32_AVR32B__"); \ ++ if (TARGET_UNALIGNED_WORD) \ ++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ ++ if (TARGET_SIMD) \ ++ builtin_define ("__AVR32_HAS_SIMD__"); \ ++ if (TARGET_DSP) \ ++ builtin_define ("__AVR32_HAS_DSP__"); \ ++ if (TARGET_RMW) \ ++ builtin_define ("__AVR32_HAS_RMW__"); \ ++ if (TARGET_BRANCH_PRED) \ ++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ ++ if (TARGET_FAST_FLOAT) \ ++ builtin_define ("__AVR32_FAST_FLOAT__"); \ ++ if (TARGET_FLASHVAULT) \ ++ builtin_define ("__AVR32_FLASHVAULT__"); \ ++ if (TARGET_NO_MUL_INSNS) \ ++ builtin_define ("__AVR32_NO_MUL__"); \ ++ } \ ++ while (0) +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/avr32.h gcc-4.4.6/gcc/config/avr32/avr32.h +--- gcc-4.4.6.orig/gcc/config/avr32/avr32.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/avr32.h 2011-08-27 19:45:42.757981238 +0200 +@@ -0,0 +1,3316 @@ ++/* ++ Definitions of target machine for AVR32. ++ Copyright 2003,2004,2005,2006,2007,2008,2009,2010 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++#ifndef GCC_AVR32_H ++#define GCC_AVR32_H ++ ++ ++#ifndef OBJECT_FORMAT_ELF ++#error avr32.h included before elfos.h ++#endif ++ ++#ifndef LOCAL_LABEL_PREFIX ++#define LOCAL_LABEL_PREFIX "." ++#endif ++ ++#ifndef SUBTARGET_CPP_SPEC ++#define SUBTARGET_CPP_SPEC "-D__ELF__" ++#endif ++ ++ ++extern struct rtx_def *avr32_compare_op0; ++extern struct rtx_def *avr32_compare_op1; ++ ++/* comparison type */ ++enum avr32_cmp_type { ++ CMP_QI, /* 1 byte ->char */ ++ CMP_HI, /* 2 byte->half word */ ++ CMP_SI, /* four byte->word*/ ++ CMP_DI, /* eight byte->double word */ ++ CMP_SF, /* single precision floats */ ++ CMP_MAX /* max comparison type */ ++}; ++ ++extern enum avr32_cmp_type avr32_branch_type; /* type of branch to use */ ++ ++ ++extern struct rtx_def *avr32_acc_cache; ++ ++/* cache instruction op5 codes */ ++#define AVR32_CACHE_INVALIDATE_ICACHE 1 ++ ++/* ++These bits describe the different types of function supported by the AVR32 ++backend. They are exclusive, e.g. a function cannot be both a normal function ++and an interworked function. Knowing the type of a function is important for ++determining its prologue and epilogue sequences. Note value 7 is currently ++unassigned. Also note that the interrupt function types all have bit 2 set, ++so that they can be tested for easily. Note that 0 is deliberately chosen for ++AVR32_FT_UNKNOWN so that when the machine_function structure is initialized ++(to zero) func_type will default to unknown. This will force the first use of ++avr32_current_func_type to call avr32_compute_func_type. ++*/ ++#define AVR32_FT_UNKNOWN 0 /* Type has not yet been determined. */ ++#define AVR32_FT_NORMAL 1 /* Normal function. */ ++#define AVR32_FT_ACALL 2 /* An acall function. */ ++#define AVR32_FT_EXCEPTION_HANDLER 3 /* A C++ exception handler. */ ++#define AVR32_FT_ISR_FULL 4 /* A fully shadowed interrupt mode. */ ++#define AVR32_FT_ISR_HALF 5 /* A half shadowed interrupt mode. */ ++#define AVR32_FT_ISR_NONE 6 /* No shadow registers. */ ++ ++#define AVR32_FT_TYPE_MASK ((1 << 3) - 1) ++ ++/* In addition functions can have several type modifiers, outlined by these bit masks: */ ++#define AVR32_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */ ++#define AVR32_FT_NAKED (1 << 3) /* No prologue or epilogue. */ ++#define AVR32_FT_VOLATILE (1 << 4) /* Does not return. */ ++#define AVR32_FT_NESTED (1 << 5) /* Embedded inside another func. */ ++#define AVR32_FT_FLASHVAULT (1 << 6) /* Flashvault function call. */ ++#define AVR32_FT_FLASHVAULT_IMPL (1 << 7) /* Function definition in FlashVault. */ ++ ++ ++/* Some macros to test these flags. */ ++#define AVR32_FUNC_TYPE(t) (t & AVR32_FT_TYPE_MASK) ++#define IS_INTERRUPT(t) (t & AVR32_FT_INTERRUPT) ++#define IS_NAKED(t) (t & AVR32_FT_NAKED) ++#define IS_VOLATILE(t) (t & AVR32_FT_VOLATILE) ++#define IS_NESTED(t) (t & AVR32_FT_NESTED) ++#define IS_FLASHVAULT(t) (t & AVR32_FT_FLASHVAULT) ++#define IS_FLASHVAULT_IMPL(t) (t & AVR32_FT_FLASHVAULT_IMPL) ++ ++#define SYMBOL_FLAG_RMW_ADDR_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT ++#define SYMBOL_REF_RMW_ADDR(RTX) \ ++ ((SYMBOL_REF_FLAGS (RTX) & (1 << SYMBOL_FLAG_RMW_ADDR_SHIFT)) != 0) ++ ++ ++typedef struct minipool_labels ++GTY ((chain_next ("%h.next"), chain_prev ("%h.prev"))) ++{ ++ rtx label; ++ struct minipool_labels *prev; ++ struct minipool_labels *next; ++} minipool_labels; ++ ++/* A C structure for machine-specific, per-function data. ++ This is added to the cfun structure. */ ++ ++typedef struct machine_function ++GTY (()) ++{ ++ /* Records the type of the current function. */ ++ unsigned long func_type; ++ /* List of minipool labels, use for checking if code label is valid in a ++ memory expression */ ++ minipool_labels *minipool_label_head; ++ minipool_labels *minipool_label_tail; ++ int ifcvt_after_reload; ++} machine_function; ++ ++/* Initialize data used by insn expanders. This is called from insn_emit, ++ once for every function before code is generated. */ ++#define INIT_EXPANDERS avr32_init_expanders () ++ ++/****************************************************************************** ++ * SPECS ++ *****************************************************************************/ ++ ++#ifndef ASM_SPEC ++#define ASM_SPEC "%{fpic:--pic} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{march=ucr2nomul:-march=ucr2;:%{march=*:-march=%*}} %{mpart=uc3a3revd:-mpart=uc3a3256s;:%{mpart=*:-mpart=%*}}" ++#endif ++ ++#ifndef MULTILIB_DEFAULTS ++#define MULTILIB_DEFAULTS { "march=ap", "" } ++#endif ++ ++/****************************************************************************** ++ * Run-time Target Specification ++ *****************************************************************************/ ++#ifndef TARGET_VERSION ++#define TARGET_VERSION fprintf(stderr, " (AVR32, GNU assembler syntax)"); ++#endif ++ ++ ++/* Part types. Keep this in sync with the order of avr32_part_types in avr32.c*/ ++enum part_type ++{ ++ PART_TYPE_AVR32_NONE, ++ PART_TYPE_AVR32_AP7000, ++ PART_TYPE_AVR32_AP7001, ++ PART_TYPE_AVR32_AP7002, ++ PART_TYPE_AVR32_AP7200, ++ PART_TYPE_AVR32_UC3A0128, ++ PART_TYPE_AVR32_UC3A0256, ++ PART_TYPE_AVR32_UC3A0512, ++ PART_TYPE_AVR32_UC3A0512ES, ++ PART_TYPE_AVR32_UC3A1128, ++ PART_TYPE_AVR32_UC3A1256, ++ PART_TYPE_AVR32_UC3A1512, ++ PART_TYPE_AVR32_UC3A1512ES, ++ PART_TYPE_AVR32_UC3A3REVD, ++ PART_TYPE_AVR32_UC3A364, ++ PART_TYPE_AVR32_UC3A364S, ++ PART_TYPE_AVR32_UC3A3128, ++ PART_TYPE_AVR32_UC3A3128S, ++ PART_TYPE_AVR32_UC3A3256, ++ PART_TYPE_AVR32_UC3A3256S, ++ PART_TYPE_AVR32_UC3A464, ++ PART_TYPE_AVR32_UC3A464S, ++ PART_TYPE_AVR32_UC3A4128, ++ PART_TYPE_AVR32_UC3A4128S, ++ PART_TYPE_AVR32_UC3A4256, ++ PART_TYPE_AVR32_UC3A4256S, ++ PART_TYPE_AVR32_UC3B064, ++ PART_TYPE_AVR32_UC3B0128, ++ PART_TYPE_AVR32_UC3B0256, ++ PART_TYPE_AVR32_UC3B0256ES, ++ PART_TYPE_AVR32_UC3B0512, ++ PART_TYPE_AVR32_UC3B0512REVC, ++ PART_TYPE_AVR32_UC3B164, ++ PART_TYPE_AVR32_UC3B1128, ++ PART_TYPE_AVR32_UC3B1256, ++ PART_TYPE_AVR32_UC3B1256ES, ++ PART_TYPE_AVR32_UC3B1512, ++ PART_TYPE_AVR32_UC3B1512REVC, ++ PART_TYPE_AVR32_UC64D3, ++ PART_TYPE_AVR32_UC128D3, ++ PART_TYPE_AVR32_UC64D4, ++ PART_TYPE_AVR32_UC128D4, ++ PART_TYPE_AVR32_UC3C0512CREVC, ++ PART_TYPE_AVR32_UC3C1512CREVC, ++ PART_TYPE_AVR32_UC3C2512CREVC, ++ PART_TYPE_AVR32_UC3L0256, ++ PART_TYPE_AVR32_UC3L0128, ++ PART_TYPE_AVR32_UC3L064, ++ PART_TYPE_AVR32_UC3L032, ++ PART_TYPE_AVR32_UC3L016, ++ PART_TYPE_AVR32_UC3L064REVB, ++ PART_TYPE_AVR32_UC64L3U, ++ PART_TYPE_AVR32_UC128L3U, ++ PART_TYPE_AVR32_UC256L3U, ++ PART_TYPE_AVR32_UC64L4U, ++ PART_TYPE_AVR32_UC128L4U, ++ PART_TYPE_AVR32_UC256L4U, ++ PART_TYPE_AVR32_UC3C064C, ++ PART_TYPE_AVR32_UC3C0128C, ++ PART_TYPE_AVR32_UC3C0256C, ++ PART_TYPE_AVR32_UC3C0512C, ++ PART_TYPE_AVR32_UC3C164C, ++ PART_TYPE_AVR32_UC3C1128C, ++ PART_TYPE_AVR32_UC3C1256C, ++ PART_TYPE_AVR32_UC3C1512C, ++ PART_TYPE_AVR32_UC3C264C, ++ PART_TYPE_AVR32_UC3C2128C, ++ PART_TYPE_AVR32_UC3C2256C, ++ PART_TYPE_AVR32_UC3C2512C, ++ PART_TYPE_AVR32_MXT768E ++}; ++ ++/* Microarchitectures. */ ++enum microarchitecture_type ++{ ++ UARCH_TYPE_AVR32A, ++ UARCH_TYPE_AVR32B, ++ UARCH_TYPE_NONE ++}; ++ ++/* Architectures types which specifies the pipeline. ++ Keep this in sync with avr32_arch_types in avr32.c ++ and the pipeline attribute in avr32.md */ ++enum architecture_type ++{ ++ ARCH_TYPE_AVR32_AP, ++ ARCH_TYPE_AVR32_UCR1, ++ ARCH_TYPE_AVR32_UCR2, ++ ARCH_TYPE_AVR32_UCR2NOMUL, ++ ARCH_TYPE_AVR32_UCR3, ++ ARCH_TYPE_AVR32_UCR3FP, ++ ARCH_TYPE_AVR32_NONE ++}; ++ ++/* Flag specifying if the cpu has support for DSP instructions.*/ ++#define FLAG_AVR32_HAS_DSP (1 << 0) ++/* Flag specifying if the cpu has support for Read-Modify-Write ++ instructions.*/ ++#define FLAG_AVR32_HAS_RMW (1 << 1) ++/* Flag specifying if the cpu has support for SIMD instructions. */ ++#define FLAG_AVR32_HAS_SIMD (1 << 2) ++/* Flag specifying if the cpu has support for unaligned memory word access. */ ++#define FLAG_AVR32_HAS_UNALIGNED_WORD (1 << 3) ++/* Flag specifying if the cpu has support for branch prediction. */ ++#define FLAG_AVR32_HAS_BRANCH_PRED (1 << 4) ++/* Flag specifying if the cpu has support for a return stack. */ ++#define FLAG_AVR32_HAS_RETURN_STACK (1 << 5) ++/* Flag specifying if the cpu has caches. */ ++#define FLAG_AVR32_HAS_CACHES (1 << 6) ++/* Flag specifying if the cpu has support for v2 insns. */ ++#define FLAG_AVR32_HAS_V2_INSNS (1 << 7) ++/* Flag specifying that the cpu has buggy mul insns. */ ++#define FLAG_AVR32_HAS_NO_MUL_INSNS (1 << 8) ++/* Flag specifying that the device has FPU instructions according ++ to AVR32002 specifications*/ ++#define FLAG_AVR32_HAS_FPU (1 << 9) ++ ++/* Structure for holding information about different avr32 CPUs/parts */ ++struct part_type_s ++{ ++ const char *const name; ++ enum part_type part_type; ++ enum architecture_type arch_type; ++ /* Must lie outside user's namespace. NULL == no macro. */ ++ const char *const macro; ++}; ++ ++/* Structure for holding information about different avr32 pipeline ++ architectures. */ ++struct arch_type_s ++{ ++ const char *const name; ++ enum architecture_type arch_type; ++ enum microarchitecture_type uarch_type; ++ const unsigned long feature_flags; ++ /* Must lie outside user's namespace. NULL == no macro. */ ++ const char *const macro; ++}; ++ ++extern const struct part_type_s *avr32_part; ++extern const struct arch_type_s *avr32_arch; ++ ++#define TARGET_SIMD (avr32_arch->feature_flags & FLAG_AVR32_HAS_SIMD) ++#define TARGET_DSP (avr32_arch->feature_flags & FLAG_AVR32_HAS_DSP) ++#define TARGET_RMW (avr32_arch->feature_flags & FLAG_AVR32_HAS_RMW) ++#define TARGET_UNALIGNED_WORD (avr32_arch->feature_flags & FLAG_AVR32_HAS_UNALIGNED_WORD) ++#define TARGET_BRANCH_PRED (avr32_arch->feature_flags & FLAG_AVR32_HAS_BRANCH_PRED) ++#define TARGET_RETURN_STACK (avr32_arch->feature_flags & FLAG_AVR32_HAS_RETURN_STACK) ++#define TARGET_V2_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_V2_INSNS) ++#define TARGET_CACHES (avr32_arch->feature_flags & FLAG_AVR32_HAS_CACHES) ++#define TARGET_NO_MUL_INSNS (avr32_arch->feature_flags & FLAG_AVR32_HAS_NO_MUL_INSNS) ++#define TARGET_ARCH_AP (avr32_arch->arch_type == ARCH_TYPE_AVR32_AP) ++#define TARGET_ARCH_UCR1 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR1) ++#define TARGET_ARCH_UCR2 (avr32_arch->arch_type == ARCH_TYPE_AVR32_UCR2) ++#define TARGET_ARCH_UC (TARGET_ARCH_UCR1 || TARGET_ARCH_UCR2) ++#define TARGET_UARCH_AVR32A (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) ++#define TARGET_UARCH_AVR32B (avr32_arch->uarch_type == UARCH_TYPE_AVR32B) ++#define TARGET_ARCH_FPU (avr32_arch->feature_flags & FLAG_AVR32_HAS_FPU) ++ ++#define CAN_DEBUG_WITHOUT_FP ++ ++ ++ ++ ++/****************************************************************************** ++ * Storage Layout ++ *****************************************************************************/ ++ ++/* ++Define this macro to have the value 1 if the most significant bit in a ++byte has the lowest number; otherwise define it to have the value zero. ++This means that bit-field instructions count from the most significant ++bit. If the machine has no bit-field instructions, then this must still ++be defined, but it doesn't matter which value it is defined to. This ++macro need not be a constant. ++ ++This macro does not affect the way structure fields are packed into ++bytes or words; that is controlled by BYTES_BIG_ENDIAN. ++*/ ++#define BITS_BIG_ENDIAN 0 ++ ++/* ++Define this macro to have the value 1 if the most significant byte in a ++word has the lowest number. This macro need not be a constant. ++*/ ++/* ++ Data is stored in an big-endian way. ++*/ ++#define BYTES_BIG_ENDIAN 1 ++ ++/* ++Define this macro to have the value 1 if, in a multiword object, the ++most significant word has the lowest number. This applies to both ++memory locations and registers; GCC fundamentally assumes that the ++order of words in memory is the same as the order in registers. This ++macro need not be a constant. ++*/ ++/* ++ Data is stored in an bin-endian way. ++*/ ++#define WORDS_BIG_ENDIAN 1 ++ ++/* ++Define this macro if WORDS_BIG_ENDIAN is not constant. This must be a ++constant value with the same meaning as WORDS_BIG_ENDIAN, which will be ++used only when compiling libgcc2.c. Typically the value will be set ++based on preprocessor defines. ++*/ ++#define LIBGCC2_WORDS_BIG_ENDIAN WORDS_BIG_ENDIAN ++ ++/* ++Define this macro to have the value 1 if DFmode, XFmode or ++TFmode floating point numbers are stored in memory with the word ++containing the sign bit at the lowest address; otherwise define it to ++have the value 0. This macro need not be a constant. ++ ++You need not define this macro if the ordering is the same as for ++multi-word integers. ++*/ ++/* #define FLOAT_WORDS_BIG_ENDIAN 1 */ ++ ++/* ++Define this macro to be the number of bits in an addressable storage ++unit (byte); normally 8. ++*/ ++#define BITS_PER_UNIT 8 ++ ++/* ++Number of bits in a word; normally 32. ++*/ ++#define BITS_PER_WORD 32 ++ ++/* ++Maximum number of bits in a word. If this is undefined, the default is ++BITS_PER_WORD. Otherwise, it is the constant value that is the ++largest value that BITS_PER_WORD can have at run-time. ++*/ ++/* MAX_BITS_PER_WORD not defined*/ ++ ++/* ++Number of storage units in a word; normally 4. ++*/ ++#define UNITS_PER_WORD 4 ++ ++/* ++Minimum number of units in a word. If this is undefined, the default is ++UNITS_PER_WORD. Otherwise, it is the constant value that is the ++smallest value that UNITS_PER_WORD can have at run-time. ++*/ ++/* MIN_UNITS_PER_WORD not defined */ ++ ++/* ++Width of a pointer, in bits. You must specify a value no wider than the ++width of Pmode. If it is not equal to the width of Pmode, ++you must define POINTERS_EXTEND_UNSIGNED. ++*/ ++#define POINTER_SIZE 32 ++ ++/* ++A C expression whose value is greater than zero if pointers that need to be ++extended from being POINTER_SIZE bits wide to Pmode are to ++be zero-extended and zero if they are to be sign-extended. If the value ++is less then zero then there must be an "ptr_extend" instruction that ++extends a pointer from POINTER_SIZE to Pmode. ++ ++You need not define this macro if the POINTER_SIZE is equal ++to the width of Pmode. ++*/ ++/* #define POINTERS_EXTEND_UNSIGNED */ ++ ++/* ++A Macro to update M and UNSIGNEDP when an object whose type ++is TYPE and which has the specified mode and signedness is to be ++stored in a register. This macro is only called when TYPE is a ++scalar type. ++ ++On most RISC machines, which only have operations that operate on a full ++register, define this macro to set M to word_mode if ++M is an integer mode narrower than BITS_PER_WORD. In most ++cases, only integer modes should be widened because wider-precision ++floating-point operations are usually more expensive than their narrower ++counterparts. ++ ++For most machines, the macro definition does not change UNSIGNEDP. ++However, some machines, have instructions that preferentially handle ++either signed or unsigned quantities of certain modes. For example, on ++the DEC Alpha, 32-bit loads from memory and 32-bit add instructions ++sign-extend the result to 64 bits. On such machines, set ++UNSIGNEDP according to which kind of extension is more efficient. ++ ++Do not define this macro if it would never modify M. ++*/ ++#define PROMOTE_MODE(M, UNSIGNEDP, TYPE) \ ++ { \ ++ if (!AGGREGATE_TYPE_P (TYPE) \ ++ && GET_MODE_CLASS (mode) == MODE_INT \ ++ && GET_MODE_SIZE (mode) < 4) \ ++ { \ ++ if (M == QImode) \ ++ (UNSIGNEDP) = 1; \ ++ else if (M == HImode) \ ++ (UNSIGNEDP) = 0; \ ++ (M) = SImode; \ ++ } \ ++ } ++ ++#define PROMOTE_FUNCTION_MODE(M, UNSIGNEDP, TYPE) \ ++ PROMOTE_MODE(M, UNSIGNEDP, TYPE) ++ ++/* Define if operations between registers always perform the operation ++ on the full register even if a narrower mode is specified. */ ++#define WORD_REGISTER_OPERATIONS ++ ++/* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD ++ will either zero-extend or sign-extend. The value of this macro should ++ be the code that says which one of the two operations is implicitly ++ done, UNKNOWN if not known. */ ++#define LOAD_EXTEND_OP(MODE) \ ++ (((MODE) == QImode) ? ZERO_EXTEND \ ++ : ((MODE) == HImode) ? SIGN_EXTEND : UNKNOWN) ++ ++ ++/* ++Normal alignment required for function parameters on the stack, in ++bits. All stack parameters receive at least this much alignment ++regardless of data type. On most machines, this is the same as the ++size of an integer. ++*/ ++#define PARM_BOUNDARY 32 ++ ++/* ++Define this macro to the minimum alignment enforced by hardware for the ++stack pointer on this machine. The definition is a C expression for the ++desired alignment (measured in bits). This value is used as a default ++if PREFERRED_STACK_BOUNDARY is not defined. On most machines, ++this should be the same as PARM_BOUNDARY. ++*/ ++#define STACK_BOUNDARY 32 ++ ++/* ++Define this macro if you wish to preserve a certain alignment for the ++stack pointer, greater than what the hardware enforces. The definition ++is a C expression for the desired alignment (measured in bits). This ++macro must evaluate to a value equal to or larger than ++STACK_BOUNDARY. ++*/ ++#define PREFERRED_STACK_BOUNDARY (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) ++ ++/* ++Alignment required for a function entry point, in bits. ++*/ ++#define FUNCTION_BOUNDARY 16 ++ ++/* ++Biggest alignment that any data type can require on this machine, in bits. ++*/ ++#define BIGGEST_ALIGNMENT (TARGET_FORCE_DOUBLE_ALIGN ? 64 : 32 ) ++ ++/* ++If defined, the smallest alignment, in bits, that can be given to an ++object that can be referenced in one operation, without disturbing any ++nearby object. Normally, this is BITS_PER_UNIT, but may be larger ++on machines that don't have byte or half-word store operations. ++*/ ++#define MINIMUM_ATOMIC_ALIGNMENT BITS_PER_UNIT ++ ++ ++/* ++An integer expression for the size in bits of the largest integer machine mode that ++should actually be used. All integer machine modes of this size or smaller can be ++used for structures and unions with the appropriate sizes. If this macro is undefined, ++GET_MODE_BITSIZE (DImode) is assumed.*/ ++#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode) ++ ++ ++/* ++If defined, a C expression to compute the alignment given to a constant ++that is being placed in memory. CONSTANT is the constant and ++BASIC_ALIGN is the alignment that the object would ordinarily ++have. The value of this macro is used instead of that alignment to ++align the object. ++ ++If this macro is not defined, then BASIC_ALIGN is used. ++ ++The typical use of this macro is to increase alignment for string ++constants to be word aligned so that strcpy calls that copy ++constants can be done inline. ++*/ ++#define CONSTANT_ALIGNMENT(CONSTANT, BASIC_ALIGN) \ ++ ((TREE_CODE(CONSTANT) == STRING_CST) ? BITS_PER_WORD : BASIC_ALIGN) ++ ++/* Try to align string to a word. */ ++#define DATA_ALIGNMENT(TYPE, ALIGN) \ ++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ ++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) ++ ++/* Try to align local store strings to a word. */ ++#define LOCAL_ALIGNMENT(TYPE, ALIGN) \ ++ ({(TREE_CODE (TYPE) == ARRAY_TYPE \ ++ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ ++ && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN));}) ++ ++/* ++Define this macro to be the value 1 if instructions will fail to work ++if given data not on the nominal alignment. If instructions will merely ++go slower in that case, define this macro as 0. ++*/ ++#define STRICT_ALIGNMENT 1 ++ ++/* ++Define this if you wish to imitate the way many other C compilers handle ++alignment of bit-fields and the structures that contain them. ++ ++The behavior is that the type written for a bit-field (int, ++short, or other integer type) imposes an alignment for the ++entire structure, as if the structure really did contain an ordinary ++field of that type. In addition, the bit-field is placed within the ++structure so that it would fit within such a field, not crossing a ++boundary for it. ++ ++Thus, on most machines, a bit-field whose type is written as int ++would not cross a four-byte boundary, and would force four-byte ++alignment for the whole structure. (The alignment used may not be four ++bytes; it is controlled by the other alignment parameters.) ++ ++If the macro is defined, its definition should be a C expression; ++a nonzero value for the expression enables this behavior. ++ ++Note that if this macro is not defined, or its value is zero, some ++bit-fields may cross more than one alignment boundary. The compiler can ++support such references if there are insv, extv, and ++extzv insns that can directly reference memory. ++ ++The other known way of making bit-fields work is to define ++STRUCTURE_SIZE_BOUNDARY as large as BIGGEST_ALIGNMENT. ++Then every structure can be accessed with fullwords. ++ ++Unless the machine has bit-field instructions or you define ++STRUCTURE_SIZE_BOUNDARY that way, you must define ++PCC_BITFIELD_TYPE_MATTERS to have a nonzero value. ++ ++If your aim is to make GCC use the same conventions for laying out ++bit-fields as are used by another compiler, here is how to investigate ++what the other compiler does. Compile and run this program: ++ ++struct foo1 ++{ ++ char x; ++ char :0; ++ char y; ++}; ++ ++struct foo2 ++{ ++ char x; ++ int :0; ++ char y; ++}; ++ ++main () ++{ ++ printf ("Size of foo1 is %d\n", ++ sizeof (struct foo1)); ++ printf ("Size of foo2 is %d\n", ++ sizeof (struct foo2)); ++ exit (0); ++} ++ ++If this prints 2 and 5, then the compiler's behavior is what you would ++get from PCC_BITFIELD_TYPE_MATTERS. ++*/ ++#define PCC_BITFIELD_TYPE_MATTERS 1 ++ ++ ++/****************************************************************************** ++ * Layout of Source Language Data Types ++ *****************************************************************************/ ++ ++/* ++A C expression for the size in bits of the type int on the ++target machine. If you don't define this, the default is one word. ++*/ ++#define INT_TYPE_SIZE 32 ++ ++/* ++A C expression for the size in bits of the type short on the ++target machine. If you don't define this, the default is half a word. (If ++this would be less than one storage unit, it is rounded up to one unit.) ++*/ ++#define SHORT_TYPE_SIZE 16 ++ ++/* ++A C expression for the size in bits of the type long on the ++target machine. If you don't define this, the default is one word. ++*/ ++#define LONG_TYPE_SIZE 32 ++ ++ ++/* ++A C expression for the size in bits of the type long long on the ++target machine. If you don't define this, the default is two ++words. If you want to support GNU Ada on your machine, the value of this ++macro must be at least 64. ++*/ ++#define LONG_LONG_TYPE_SIZE 64 ++ ++/* ++A C expression for the size in bits of the type char on the ++target machine. If you don't define this, the default is ++BITS_PER_UNIT. ++*/ ++#define CHAR_TYPE_SIZE 8 ++ ++ ++/* ++A C expression for the size in bits of the C++ type bool and ++C99 type _Bool on the target machine. If you don't define ++this, and you probably shouldn't, the default is CHAR_TYPE_SIZE. ++*/ ++#define BOOL_TYPE_SIZE 8 ++ ++ ++/* ++An expression whose value is 1 or 0, according to whether the type ++char should be signed or unsigned by default. The user can ++always override this default with the options -fsigned-char ++and -funsigned-char. ++*/ ++/* We are using unsigned char */ ++#define DEFAULT_SIGNED_CHAR 0 ++ ++ ++/* ++A C expression for a string describing the name of the data type to use ++for size values. The typedef name size_t is defined using the ++contents of the string. ++ ++The string can contain more than one keyword. If so, separate them with ++spaces, and write first any length keyword, then unsigned if ++appropriate, and finally int. The string must exactly match one ++of the data type names defined in the function ++init_decl_processing in the file c-decl.c. You may not ++omit int or change the order - that would cause the compiler to ++crash on startup. ++ ++If you don't define this macro, the default is "long unsigned int". ++*/ ++#define SIZE_TYPE "long unsigned int" ++ ++/* ++A C expression for a string describing the name of the data type to use ++for the result of subtracting two pointers. The typedef name ++ptrdiff_t is defined using the contents of the string. See ++SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is "long int". ++*/ ++#define PTRDIFF_TYPE "long int" ++ ++ ++/* ++A C expression for the size in bits of the data type for wide ++characters. This is used in cpp, which cannot make use of ++WCHAR_TYPE. ++*/ ++#define WCHAR_TYPE_SIZE 32 ++ ++ ++/* ++A C expression for a string describing the name of the data type to ++use for wide characters passed to printf and returned from ++getwc. The typedef name wint_t is defined using the ++contents of the string. See SIZE_TYPE above for more ++information. ++ ++If you don't define this macro, the default is "unsigned int". ++*/ ++#define WINT_TYPE "unsigned int" ++ ++/* ++A C expression for a string describing the name of the data type that ++can represent any value of any standard or extended signed integer type. ++The typedef name intmax_t is defined using the contents of the ++string. See SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is the first of ++"int", "long int", or "long long int" that has as ++much precision as long long int. ++*/ ++#define INTMAX_TYPE "long long int" ++ ++/* ++A C expression for a string describing the name of the data type that ++can represent any value of any standard or extended unsigned integer ++type. The typedef name uintmax_t is defined using the contents ++of the string. See SIZE_TYPE above for more information. ++ ++If you don't define this macro, the default is the first of ++"unsigned int", "long unsigned int", or "long long unsigned int" ++that has as much precision as long long unsigned int. ++*/ ++#define UINTMAX_TYPE "long long unsigned int" ++ ++ ++/****************************************************************************** ++ * Register Usage ++ *****************************************************************************/ ++ ++/* Convert from gcc internal register number to register number ++ used in assembly code */ ++#define ASM_REGNUM(reg) (LAST_REGNUM - (reg)) ++ ++/* Convert between register number used in assembly to gcc ++ internal register number */ ++#define INTERNAL_REGNUM(reg) (LAST_REGNUM - (reg)) ++ ++/** Basic Characteristics of Registers **/ ++ ++/* ++Number of hardware registers known to the compiler. They receive ++numbers 0 through FIRST_PSEUDO_REGISTER-1; thus, the first ++pseudo register's number really is assigned the number ++FIRST_PSEUDO_REGISTER. ++*/ ++#define FIRST_PSEUDO_REGISTER (LAST_REGNUM + 1) ++ ++#define FIRST_REGNUM 0 ++#define LAST_REGNUM 15 ++ ++/* ++An initializer that says which registers are used for fixed purposes ++all throughout the compiled code and are therefore not available for ++general allocation. These would include the stack pointer, the frame ++pointer (except on machines where that can be used as a general ++register when no frame pointer is needed), the program counter on ++machines where that is considered one of the addressable registers, ++and any other numbered register with a standard use. ++ ++This information is expressed as a sequence of numbers, separated by ++commas and surrounded by braces. The nth number is 1 if ++register n is fixed, 0 otherwise. ++ ++The table initialized from this macro, and the table initialized by ++the following one, may be overridden at run time either automatically, ++by the actions of the macro CONDITIONAL_REGISTER_USAGE, or by ++the user with the command options -ffixed-[reg], ++-fcall-used-[reg] and -fcall-saved-[reg]. ++*/ ++ ++/* The internal gcc register numbers are reversed ++ compared to the real register numbers since ++ gcc expects data types stored over multiple ++ registers in the register file to be big endian ++ if the memory layout is big endian. But this ++ is not the case for avr32 so we fake a big ++ endian register file. */ ++ ++#define FIXED_REGISTERS { \ ++ 1, /* Program Counter */ \ ++ 0, /* Link Register */ \ ++ 1, /* Stack Pointer */ \ ++ 0, /* r12 */ \ ++ 0, /* r11 */ \ ++ 0, /* r10 */ \ ++ 0, /* r9 */ \ ++ 0, /* r8 */ \ ++ 0, /* r7 */ \ ++ 0, /* r6 */ \ ++ 0, /* r5 */ \ ++ 0, /* r4 */ \ ++ 0, /* r3 */ \ ++ 0, /* r2 */ \ ++ 0, /* r1 */ \ ++ 0, /* r0 */ \ ++} ++ ++/* ++Like FIXED_REGISTERS but has 1 for each register that is ++clobbered (in general) by function calls as well as for fixed ++registers. This macro therefore identifies the registers that are not ++available for general allocation of values that must live across ++function calls. ++ ++If a register has 0 in CALL_USED_REGISTERS, the compiler ++automatically saves it on function entry and restores it on function ++exit, if the register is used within the function. ++*/ ++#define CALL_USED_REGISTERS { \ ++ 1, /* Program Counter */ \ ++ 0, /* Link Register */ \ ++ 1, /* Stack Pointer */ \ ++ 1, /* r12 */ \ ++ 1, /* r11 */ \ ++ 1, /* r10 */ \ ++ 1, /* r9 */ \ ++ 1, /* r8 */ \ ++ 0, /* r7 */ \ ++ 0, /* r6 */ \ ++ 0, /* r5 */ \ ++ 0, /* r4 */ \ ++ 0, /* r3 */ \ ++ 0, /* r2 */ \ ++ 0, /* r1 */ \ ++ 0, /* r0 */ \ ++} ++ ++/* Interrupt functions can only use registers that have already been ++ saved by the prologue, even if they would normally be ++ call-clobbered. */ ++#define HARD_REGNO_RENAME_OK(SRC, DST) \ ++ (! IS_INTERRUPT (cfun->machine->func_type) || \ ++ df_regs_ever_live_p (DST)) ++ ++ ++/* ++Zero or more C statements that may conditionally modify five variables ++fixed_regs, call_used_regs, global_regs, ++reg_names, and reg_class_contents, to take into account ++any dependence of these register sets on target flags. The first three ++of these are of type char [] (interpreted as Boolean vectors). ++global_regs is a const char *[], and ++reg_class_contents is a HARD_REG_SET. Before the macro is ++called, fixed_regs, call_used_regs, ++reg_class_contents, and reg_names have been initialized ++from FIXED_REGISTERS, CALL_USED_REGISTERS, ++REG_CLASS_CONTENTS, and REGISTER_NAMES, respectively. ++global_regs has been cleared, and any -ffixed-[reg], ++-fcall-used-[reg] and -fcall-saved-[reg] ++command options have been applied. ++ ++You need not define this macro if it has no work to do. ++ ++If the usage of an entire class of registers depends on the target ++flags, you may indicate this to GCC by using this macro to modify ++fixed_regs and call_used_regs to 1 for each of the ++registers in the classes which should not be used by GCC. Also define ++the macro REG_CLASS_FROM_LETTER to return NO_REGS if it ++is called with a letter for a class that shouldn't be used. ++ ++ (However, if this class is not included in GENERAL_REGS and all ++of the insn patterns whose constraints permit this class are ++controlled by target switches, then GCC will automatically avoid using ++these registers when the target switches are opposed to them.) ++*/ ++#define CONDITIONAL_REGISTER_USAGE \ ++ do \ ++ { \ ++ if (flag_pic) \ ++ { \ ++ fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ ++ call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1; \ ++ } \ ++ } \ ++ while (0) ++ ++ ++/* ++If the program counter has a register number, define this as that ++register number. Otherwise, do not define it. ++*/ ++ ++#define LAST_AVR32_REGNUM 16 ++ ++ ++/** Order of Allocation of Registers **/ ++ ++/* ++If defined, an initializer for a vector of integers, containing the ++numbers of hard registers in the order in which GCC should prefer ++to use them (from most preferred to least). ++ ++If this macro is not defined, registers are used lowest numbered first ++(all else being equal). ++ ++One use of this macro is on machines where the highest numbered ++registers must always be saved and the save-multiple-registers ++instruction supports only sequences of consecutive registers. On such ++machines, define REG_ALLOC_ORDER to be an initializer that lists ++the highest numbered allocable register first. ++*/ ++#define REG_ALLOC_ORDER \ ++{ \ ++ INTERNAL_REGNUM(8), \ ++ INTERNAL_REGNUM(9), \ ++ INTERNAL_REGNUM(10), \ ++ INTERNAL_REGNUM(11), \ ++ INTERNAL_REGNUM(12), \ ++ LR_REGNUM, \ ++ INTERNAL_REGNUM(7), \ ++ INTERNAL_REGNUM(6), \ ++ INTERNAL_REGNUM(5), \ ++ INTERNAL_REGNUM(4), \ ++ INTERNAL_REGNUM(3), \ ++ INTERNAL_REGNUM(2), \ ++ INTERNAL_REGNUM(1), \ ++ INTERNAL_REGNUM(0), \ ++ SP_REGNUM, \ ++ PC_REGNUM \ ++} ++ ++ ++/** How Values Fit in Registers **/ ++ ++/* ++A C expression for the number of consecutive hard registers, starting ++at register number REGNO, required to hold a value of mode ++MODE. ++ ++On a machine where all registers are exactly one word, a suitable ++definition of this macro is ++ ++#define HARD_REGNO_NREGS(REGNO, MODE) \ ++ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ ++ / UNITS_PER_WORD) ++*/ ++#define HARD_REGNO_NREGS(REGNO, MODE) \ ++ ((unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD -1 ) / UNITS_PER_WORD)) ++ ++/* ++A C expression that is nonzero if it is permissible to store a value ++of mode MODE in hard register number REGNO (or in several ++registers starting with that one). For a machine where all registers ++are equivalent, a suitable definition is ++ ++ #define HARD_REGNO_MODE_OK(REGNO, MODE) 1 ++ ++You need not include code to check for the numbers of fixed registers, ++because the allocation mechanism considers them to be always occupied. ++ ++On some machines, double-precision values must be kept in even/odd ++register pairs. You can implement that by defining this macro to reject ++odd register numbers for such modes. ++ ++The minimum requirement for a mode to be OK in a register is that the ++mov[mode] instruction pattern support moves between the ++register and other hard register in the same class and that moving a ++value into the register and back out not alter it. ++ ++Since the same instruction used to move word_mode will work for ++all narrower integer modes, it is not necessary on any machine for ++HARD_REGNO_MODE_OK to distinguish between these modes, provided ++you define patterns movhi, etc., to take advantage of this. This ++is useful because of the interaction between HARD_REGNO_MODE_OK ++and MODES_TIEABLE_P; it is very desirable for all integer modes ++to be tieable. ++ ++Many machines have special registers for floating point arithmetic. ++Often people assume that floating point machine modes are allowed only ++in floating point registers. This is not true. Any registers that ++can hold integers can safely hold a floating point machine ++mode, whether or not floating arithmetic can be done on it in those ++registers. Integer move instructions can be used to move the values. ++ ++On some machines, though, the converse is true: fixed-point machine ++modes may not go in floating registers. This is true if the floating ++registers normalize any value stored in them, because storing a ++non-floating value there would garble it. In this case, ++HARD_REGNO_MODE_OK should reject fixed-point machine modes in ++floating registers. But if the floating registers do not automatically ++normalize, if you can store any bit pattern in one and retrieve it ++unchanged without a trap, then any machine mode may go in a floating ++register, so you can define this macro to say so. ++ ++The primary significance of special floating registers is rather that ++they are the registers acceptable in floating point arithmetic ++instructions. However, this is of no concern to ++HARD_REGNO_MODE_OK. You handle it by writing the proper ++constraints for those instructions. ++ ++On some machines, the floating registers are especially slow to access, ++so that it is better to store a value in a stack frame than in such a ++register if floating point arithmetic is not being done. As long as the ++floating registers are not in class GENERAL_REGS, they will not ++be used unless some pattern's constraint asks for one. ++*/ ++#define HARD_REGNO_MODE_OK(REGNO, MODE) avr32_hard_regno_mode_ok(REGNO, MODE) ++ ++/* ++A C expression that is nonzero if a value of mode ++MODE1 is accessible in mode MODE2 without copying. ++ ++If HARD_REGNO_MODE_OK(R, MODE1) and ++HARD_REGNO_MODE_OK(R, MODE2) are always the same for ++any R, then MODES_TIEABLE_P(MODE1, MODE2) ++should be nonzero. If they differ for any R, you should define ++this macro to return zero unless some other mechanism ensures the ++accessibility of the value in a narrower mode. ++ ++You should define this macro to return nonzero in as many cases as ++possible since doing so will allow GCC to perform better register ++allocation. ++*/ ++#define MODES_TIEABLE_P(MODE1, MODE2) \ ++ (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2)) ++ ++ ++ ++/****************************************************************************** ++ * Register Classes ++ *****************************************************************************/ ++ ++/* ++An enumeral type that must be defined with all the register class names ++as enumeral values. NO_REGS must be first. ALL_REGS ++must be the last register class, followed by one more enumeral value, ++LIM_REG_CLASSES, which is not a register class but rather ++tells how many classes there are. ++ ++Each register class has a number, which is the value of casting ++the class name to type int. The number serves as an index ++in many of the tables described below. ++*/ ++enum reg_class ++{ ++ NO_REGS, ++ GENERAL_REGS, ++ ALL_REGS, ++ LIM_REG_CLASSES ++}; ++ ++/* ++The number of distinct register classes, defined as follows: ++ #define N_REG_CLASSES (int) LIM_REG_CLASSES ++*/ ++#define N_REG_CLASSES (int)LIM_REG_CLASSES ++ ++/* ++An initializer containing the names of the register classes as C string ++constants. These names are used in writing some of the debugging dumps. ++*/ ++#define REG_CLASS_NAMES \ ++{ \ ++ "NO_REGS", \ ++ "GENERAL_REGS", \ ++ "ALL_REGS" \ ++} ++ ++/* ++An initializer containing the contents of the register classes, as integers ++which are bit masks. The nth integer specifies the contents of class ++n. The way the integer mask is interpreted is that ++register r is in the class if mask & (1 << r) is 1. ++ ++When the machine has more than 32 registers, an integer does not suffice. ++Then the integers are replaced by sub-initializers, braced groupings containing ++several integers. Each sub-initializer must be suitable as an initializer ++for the type HARD_REG_SET which is defined in hard-reg-set.h. ++In this situation, the first integer in each sub-initializer corresponds to ++registers 0 through 31, the second integer to registers 32 through 63, and ++so on. ++*/ ++#define REG_CLASS_CONTENTS { \ ++ {0x00000000}, /* NO_REGS */ \ ++ {0x0000FFFF}, /* GENERAL_REGS */ \ ++ {0x7FFFFFFF}, /* ALL_REGS */ \ ++} ++ ++ ++/* ++A C expression whose value is a register class containing hard register ++REGNO. In general there is more than one such class; choose a class ++which is minimal, meaning that no smaller class also contains the ++register. ++*/ ++#define REGNO_REG_CLASS(REGNO) (GENERAL_REGS) ++ ++/* ++A macro whose definition is the name of the class to which a valid ++base register must belong. A base register is one used in an address ++which is the register value plus a displacement. ++*/ ++#define BASE_REG_CLASS GENERAL_REGS ++ ++/* ++This is a variation of the BASE_REG_CLASS macro which allows ++the selection of a base register in a mode depenedent manner. If ++mode is VOIDmode then it should return the same value as ++BASE_REG_CLASS. ++*/ ++#define MODE_BASE_REG_CLASS(MODE) BASE_REG_CLASS ++ ++/* ++A macro whose definition is the name of the class to which a valid ++index register must belong. An index register is one used in an ++address where its value is either multiplied by a scale factor or ++added to another register (as well as added to a displacement). ++*/ ++#define INDEX_REG_CLASS BASE_REG_CLASS ++ ++/* ++A C expression which defines the machine-dependent operand constraint ++letters for register classes. If CHAR is such a letter, the ++value should be the register class corresponding to it. Otherwise, ++the value should be NO_REGS. The register letter r, ++corresponding to class GENERAL_REGS, will not be passed ++to this macro; you do not need to handle it. ++*/ ++#define REG_CLASS_FROM_LETTER(CHAR) NO_REGS ++ ++/* These assume that REGNO is a hard or pseudo reg number. ++ They give nonzero only if REGNO is a hard reg of the suitable class ++ or a pseudo reg currently allocated to a suitable hard reg. ++ Since they use reg_renumber, they are safe only once reg_renumber ++ has been allocated, which happens in local-alloc.c. */ ++#define TEST_REGNO(R, TEST, VALUE) \ ++ ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE)) ++ ++/* ++A C expression which is nonzero if register number num is suitable for use as a base ++register in operand addresses. It may be either a suitable hard register or a pseudo ++register that has been allocated such a hard register. ++*/ ++#define REGNO_OK_FOR_BASE_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) ++ ++/* The following macro defines cover classes for Integrated Register ++ Allocator. Cover classes is a set of non-intersected register ++ classes covering all hard registers used for register allocation ++ purpose. Any move between two registers of a cover class should be ++ cheaper than load or store of the registers. The macro value is ++ array of register classes with LIM_REG_CLASSES used as the end ++ marker. */ ++ ++#define IRA_COVER_CLASSES \ ++{ \ ++ GENERAL_REGS, LIM_REG_CLASSES \ ++} ++ ++/* ++A C expression which is nonzero if register number NUM is ++suitable for use as an index register in operand addresses. It may be ++either a suitable hard register or a pseudo register that has been ++allocated such a hard register. ++ ++The difference between an index register and a base register is that ++the index register may be scaled. If an address involves the sum of ++two registers, neither one of them scaled, then either one may be ++labeled the ``base'' and the other the ``index''; but whichever ++labeling is used must fit the machine's constraints of which registers ++may serve in each capacity. The compiler will try both labelings, ++looking for one that is valid, and will reload one or both registers ++only if neither labeling works. ++*/ ++#define REGNO_OK_FOR_INDEX_P(NUM) TEST_REGNO(NUM, <=, LAST_REGNUM) ++ ++/* ++A C expression that places additional restrictions on the register class ++to use when it is necessary to copy value X into a register in class ++CLASS. The value is a register class; perhaps CLASS, or perhaps ++another, smaller class. On many machines, the following definition is ++safe: #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS ++ ++Sometimes returning a more restrictive class makes better code. For ++example, on the 68000, when X is an integer constant that is in range ++for a 'moveq' instruction, the value of this macro is always ++DATA_REGS as long as CLASS includes the data registers. ++Requiring a data register guarantees that a 'moveq' will be used. ++ ++If X is a const_double, by returning NO_REGS ++you can force X into a memory constant. This is useful on ++certain machines where immediate floating values cannot be loaded into ++certain kinds of registers. ++*/ ++#define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS ++ ++ ++ ++/* ++A C expression for the maximum number of consecutive registers ++of class CLASS needed to hold a value of mode MODE. ++ ++This is closely related to the macro HARD_REGNO_NREGS. In fact, ++the value of the macro CLASS_MAX_NREGS(CLASS, MODE) ++should be the maximum value of HARD_REGNO_NREGS(REGNO, MODE) ++for all REGNO values in the class CLASS. ++ ++This macro helps control the handling of multiple-word values ++in the reload pass. ++*/ ++#define CLASS_MAX_NREGS(CLASS, MODE) /* ToDo:fixme */ \ ++ (unsigned int)((GET_MODE_SIZE(MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) ++ ++ ++/* ++ Using CONST_OK_FOR_CONSTRAINT_P instead of CONS_OK_FOR_LETTER_P ++ in order to support constraints with more than one letter. ++ Only two letters are then used for constant constraints, ++ the letter 'K' and the letter 'I'. The constraint starting with ++ these letters must consist of four characters. The character following ++ 'K' or 'I' must be either 'u' (unsigned) or 's' (signed) to specify ++ if the constant is zero or sign extended. The last two characters specify ++ the length in bits of the constant. The base constraint letter 'I' means ++ that this is an negated constant, meaning that actually -VAL should be ++ checked to lie withing the valid range instead of VAL which is used when ++ 'K' is the base constraint letter. ++ ++*/ ++ ++#define CONSTRAINT_LEN(C, STR) \ ++ ( ((C) == 'K' || (C) == 'I') ? 4 : \ ++ ((C) == 'R') ? 5 : \ ++ ((C) == 'P') ? -1 : \ ++ DEFAULT_CONSTRAINT_LEN((C), (STR)) ) ++ ++#define CONST_OK_FOR_CONSTRAINT_P(VALUE, C, STR) \ ++ avr32_const_ok_for_constraint_p(VALUE, C, STR) ++ ++/* ++A C expression that defines the machine-dependent operand constraint ++letters that specify particular ranges of const_double values ('G' or 'H'). ++ ++If C is one of those letters, the expression should check that ++VALUE, an RTX of code const_double, is in the appropriate ++range and return 1 if so, 0 otherwise. If C is not one of those ++letters, the value should be 0 regardless of VALUE. ++ ++const_double is used for all floating-point constants and for ++DImode fixed-point constants. A given letter can accept either ++or both kinds of values. It can use GET_MODE to distinguish ++between these kinds. ++*/ ++#define CONST_DOUBLE_OK_FOR_LETTER_P(OP, C) \ ++ ((C) == 'G' ? avr32_const_double_immediate(OP) : 0) ++ ++/* ++A C expression that defines the optional machine-dependent constraint ++letters that can be used to segregate specific types of operands, usually ++memory references, for the target machine. Any letter that is not ++elsewhere defined and not matched by REG_CLASS_FROM_LETTER ++may be used. Normally this macro will not be defined. ++ ++If it is required for a particular target machine, it should return 1 ++if VALUE corresponds to the operand type represented by the ++constraint letter C. If C is not defined as an extra ++constraint, the value returned should be 0 regardless of VALUE. ++ ++For example, on the ROMP, load instructions cannot have their output ++in r0 if the memory reference contains a symbolic address. Constraint ++letter 'Q' is defined as representing a memory address that does ++not contain a symbolic address. An alternative is specified with ++a 'Q' constraint on the input and 'r' on the output. The next ++alternative specifies 'm' on the input and a register class that ++does not include r0 on the output. ++*/ ++#define EXTRA_CONSTRAINT_STR(OP, C, STR) \ ++ ((C) == 'W' ? avr32_address_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'R' ? (avr32_indirect_register_operand(OP, GET_MODE(OP)) || \ ++ (avr32_imm_disp_memory_operand(OP, GET_MODE(OP)) \ ++ && avr32_const_ok_for_constraint_p( \ ++ INTVAL(XEXP(XEXP(OP, 0), 1)), \ ++ (STR)[1], &(STR)[1]))) : \ ++ (C) == 'S' ? avr32_indexed_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'T' ? avr32_const_pool_ref_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'U' ? SYMBOL_REF_RCALL_FUNCTION_P(OP) : \ ++ (C) == 'Z' ? avr32_cop_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'Q' ? avr32_non_rmw_memory_operand(OP, GET_MODE(OP)) : \ ++ (C) == 'Y' ? avr32_rmw_memory_operand(OP, GET_MODE(OP)) : \ ++ 0) ++ ++ ++#define EXTRA_MEMORY_CONSTRAINT(C, STR) ( ((C) == 'R') || \ ++ ((C) == 'Q') || \ ++ ((C) == 'S') || \ ++ ((C) == 'Y') || \ ++ ((C) == 'Z') ) ++ ++ ++/* Returns nonzero if op is a function SYMBOL_REF which ++ can be called using an rcall instruction */ ++#define SYMBOL_REF_RCALL_FUNCTION_P(op) \ ++ ( GET_CODE(op) == SYMBOL_REF \ ++ && SYMBOL_REF_FUNCTION_P(op) \ ++ && SYMBOL_REF_LOCAL_P(op) \ ++ && !SYMBOL_REF_EXTERNAL_P(op) \ ++ && !TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ ++/****************************************************************************** ++ * Stack Layout and Calling Conventions ++ *****************************************************************************/ ++ ++/** Basic Stack Layout **/ ++ ++/* ++Define this macro if pushing a word onto the stack moves the stack ++pointer to a smaller address. ++ ++When we say, ``define this macro if ...,'' it means that the ++compiler checks this macro only with #ifdef so the precise ++definition used does not matter. ++*/ ++/* pushm decrece SP: *(--SP) <-- Rx */ ++#define STACK_GROWS_DOWNWARD ++ ++/* ++This macro defines the operation used when something is pushed ++on the stack. In RTL, a push operation will be ++(set (mem (STACK_PUSH_CODE (reg sp))) ...) ++ ++The choices are PRE_DEC, POST_DEC, PRE_INC, ++and POST_INC. Which of these is correct depends on ++the stack direction and on whether the stack pointer points ++to the last item on the stack or whether it points to the ++space for the next item on the stack. ++ ++The default is PRE_DEC when STACK_GROWS_DOWNWARD is ++defined, which is almost always right, and PRE_INC otherwise, ++which is often wrong. ++*/ ++/* pushm: *(--SP) <-- Rx */ ++#define STACK_PUSH_CODE PRE_DEC ++ ++/* Define this to nonzero if the nominal address of the stack frame ++ is at the high-address end of the local variables; ++ that is, each additional local variable allocated ++ goes at a more negative offset in the frame. */ ++#define FRAME_GROWS_DOWNWARD 1 ++ ++ ++/* ++Offset from the frame pointer to the first local variable slot to be allocated. ++ ++If FRAME_GROWS_DOWNWARD, find the next slot's offset by ++subtracting the first slot's length from STARTING_FRAME_OFFSET. ++Otherwise, it is found by adding the length of the first slot to the ++value STARTING_FRAME_OFFSET. ++ (i'm not sure if the above is still correct.. had to change it to get ++ rid of an overfull. --mew 2feb93 ) ++*/ ++#define STARTING_FRAME_OFFSET 0 ++ ++/* ++Offset from the stack pointer register to the first location at which ++outgoing arguments are placed. If not specified, the default value of ++zero is used. This is the proper value for most machines. ++ ++If ARGS_GROW_DOWNWARD, this is the offset to the location above ++the first location at which outgoing arguments are placed. ++*/ ++#define STACK_POINTER_OFFSET 0 ++ ++/* ++Offset from the argument pointer register to the first argument's ++address. On some machines it may depend on the data type of the ++function. ++ ++If ARGS_GROW_DOWNWARD, this is the offset to the location above ++the first argument's address. ++*/ ++#define FIRST_PARM_OFFSET(FUNDECL) 0 ++ ++ ++/* ++A C expression whose value is RTL representing the address in a stack ++frame where the pointer to the caller's frame is stored. Assume that ++FRAMEADDR is an RTL expression for the address of the stack frame ++itself. ++ ++If you don't define this macro, the default is to return the value ++of FRAMEADDR - that is, the stack frame address is also the ++address of the stack word that points to the previous frame. ++*/ ++#define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) plus_constant ((FRAMEADDR), 4) ++ ++ ++/* ++A C expression whose value is RTL representing the value of the return ++address for the frame COUNT steps up from the current frame, after ++the prologue. FRAMEADDR is the frame pointer of the COUNT ++frame, or the frame pointer of the COUNT - 1 frame if ++RETURN_ADDR_IN_PREVIOUS_FRAME is defined. ++ ++The value of the expression must always be the correct address when ++COUNT is zero, but may be NULL_RTX if there is not way to ++determine the return address of other frames. ++*/ ++#define RETURN_ADDR_RTX(COUNT, FRAMEADDR) avr32_return_addr(COUNT, FRAMEADDR) ++ ++ ++/* ++A C expression whose value is RTL representing the location of the ++incoming return address at the beginning of any function, before the ++prologue. This RTL is either a REG, indicating that the return ++value is saved in 'REG', or a MEM representing a location in ++the stack. ++ ++You only need to define this macro if you want to support call frame ++debugging information like that provided by DWARF 2. ++ ++If this RTL is a REG, you should also define ++DWARF_FRAME_RETURN_COLUMN to DWARF_FRAME_REGNUM (REGNO). ++*/ ++#define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM) ++ ++/* ++A C expression whose value is an integer giving the offset, in bytes, ++from the value of the stack pointer register to the top of the stack ++frame at the beginning of any function, before the prologue. The top of ++the frame is defined to be the value of the stack pointer in the ++previous frame, just before the call instruction. ++ ++You only need to define this macro if you want to support call frame ++debugging information like that provided by DWARF 2. ++*/ ++#define INCOMING_FRAME_SP_OFFSET 0 ++ ++ ++/** Exception Handling Support **/ ++ ++/* Use setjump/longjump for exception handling. */ ++#define DWARF2_UNWIND_INFO 0 ++#define MUST_USE_SJLJ_EXCEPTIONS 1 ++ ++/* ++A C expression whose value is the Nth register number used for ++data by exception handlers, or INVALID_REGNUM if fewer than ++N registers are usable. ++ ++The exception handling library routines communicate with the exception ++handlers via a set of agreed upon registers. Ideally these registers ++should be call-clobbered; it is possible to use call-saved registers, ++but may negatively impact code size. The target must support at least ++2 data registers, but should define 4 if there are enough free registers. ++ ++You must define this macro if you want to support call frame exception ++handling like that provided by DWARF 2. ++*/ ++/* ++ Use r9-r11 ++*/ ++#define EH_RETURN_DATA_REGNO(N) \ ++ ((N<3) ? INTERNAL_REGNUM(N+9) : INVALID_REGNUM) ++ ++/* ++A C expression whose value is RTL representing a location in which ++to store a stack adjustment to be applied before function return. ++This is used to unwind the stack to an exception handler's call frame. ++It will be assigned zero on code paths that return normally. ++ ++Typically this is a call-clobbered hard register that is otherwise ++untouched by the epilogue, but could also be a stack slot. ++ ++You must define this macro if you want to support call frame exception ++handling like that provided by DWARF 2. ++*/ ++/* ++ Use r8 ++*/ ++#define EH_RETURN_STACKADJ_REGNO INTERNAL_REGNUM(8) ++#define EH_RETURN_STACKADJ_RTX gen_rtx_REG(SImode, EH_RETURN_STACKADJ_REGNO) ++ ++/* ++A C expression whose value is RTL representing a location in which ++to store the address of an exception handler to which we should ++return. It will not be assigned on code paths that return normally. ++ ++Typically this is the location in the call frame at which the normal ++return address is stored. For targets that return by popping an ++address off the stack, this might be a memory address just below ++the target call frame rather than inside the current call ++frame. EH_RETURN_STACKADJ_RTX will have already been assigned, ++so it may be used to calculate the location of the target call frame. ++ ++Some targets have more complex requirements than storing to an ++address calculable during initial code generation. In that case ++the eh_return instruction pattern should be used instead. ++ ++If you want to support call frame exception handling, you must ++define either this macro or the eh_return instruction pattern. ++*/ ++/* ++ We define the eh_return instruction pattern, so this isn't needed. ++*/ ++/* #define EH_RETURN_HANDLER_RTX gen_rtx_REG(Pmode, RET_REGISTER) */ ++ ++/* ++ This macro chooses the encoding of pointers embedded in the ++ exception handling sections. If at all possible, this should be ++ defined such that the exception handling section will not require ++ dynamic relocations, and so may be read-only. ++ ++ code is 0 for data, 1 for code labels, 2 for function ++ pointers. global is true if the symbol may be affected by dynamic ++ relocations. The macro should return a combination of the DW_EH_PE_* ++ defines as found in dwarf2.h. ++ ++ If this macro is not defined, pointers will not be encoded but ++ represented directly. ++*/ ++#define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ ++ ((flag_pic && (GLOBAL) ? DW_EH_PE_indirect : 0) \ ++ | (flag_pic ? DW_EH_PE_pcrel : DW_EH_PE_absptr) \ ++ | DW_EH_PE_sdata4) ++ ++/* ToDo: The rest of this subsection */ ++ ++/** Specifying How Stack Checking is Done **/ ++/* ToDo: All in this subsection */ ++ ++/** Registers That Address the Stack Frame **/ ++ ++/* ++The register number of the stack pointer register, which must also be a ++fixed register according to FIXED_REGISTERS. On most machines, ++the hardware determines which register this is. ++*/ ++/* Using r13 as stack pointer. */ ++#define STACK_POINTER_REGNUM INTERNAL_REGNUM(13) ++ ++/* ++The register number of the frame pointer register, which is used to ++access automatic variables in the stack frame. On some machines, the ++hardware determines which register this is. On other machines, you can ++choose any register you wish for this purpose. ++*/ ++/* Use r7 */ ++#define FRAME_POINTER_REGNUM INTERNAL_REGNUM(7) ++ ++/* ++The register number of the arg pointer register, which is used to access ++the function's argument list. On some machines, this is the same as the ++frame pointer register. On some machines, the hardware determines which ++register this is. On other machines, you can choose any register you ++wish for this purpose. If this is not the same register as the frame ++pointer register, then you must mark it as a fixed register according to ++FIXED_REGISTERS, or arrange to be able to eliminate it (see Section ++10.10.5 [Elimination], page 224). ++*/ ++/* Using r5 */ ++#define ARG_POINTER_REGNUM INTERNAL_REGNUM(4) ++ ++ ++/* ++Register numbers used for passing a function's static chain pointer. If ++register windows are used, the register number as seen by the called ++function is STATIC_CHAIN_INCOMING_REGNUM, while the register ++number as seen by the calling function is STATIC_CHAIN_REGNUM. If ++these registers are the same, STATIC_CHAIN_INCOMING_REGNUM need ++not be defined. ++ ++The static chain register need not be a fixed register. ++ ++If the static chain is passed in memory, these macros should not be ++defined; instead, the next two macros should be defined. ++*/ ++/* Using r0 */ ++#define STATIC_CHAIN_REGNUM INTERNAL_REGNUM(0) ++ ++/** Eliminating Frame Pointer and Arg Pointer **/ ++ ++/* ++A C expression which is nonzero if a function must have and use a frame ++pointer. This expression is evaluated in the reload pass. If its value is ++nonzero the function will have a frame pointer. ++ ++The expression can in principle examine the current function and decide ++according to the facts, but on most machines the constant 0 or the ++constant 1 suffices. Use 0 when the machine allows code to be generated ++with no frame pointer, and doing so saves some time or space. Use 1 ++when there is no possible advantage to avoiding a frame pointer. ++ ++In certain cases, the compiler does not know how to produce valid code ++without a frame pointer. The compiler recognizes those cases and ++automatically gives the function a frame pointer regardless of what ++FRAME_POINTER_REQUIRED says. You don't need to worry about ++them. ++ ++In a function that does not require a frame pointer, the frame pointer ++register can be allocated for ordinary usage, unless you mark it as a ++fixed register. See FIXED_REGISTERS for more information. ++*/ ++/* We need the frame pointer when compiling for profiling */ ++#define FRAME_POINTER_REQUIRED (crtl->profile) ++ ++/* ++A C statement to store in the variable DEPTH_VAR the difference ++between the frame pointer and the stack pointer values immediately after ++the function prologue. The value would be computed from information ++such as the result of get_frame_size () and the tables of ++registers regs_ever_live and call_used_regs. ++ ++If ELIMINABLE_REGS is defined, this macro will be not be used and ++need not be defined. Otherwise, it must be defined even if ++FRAME_POINTER_REQUIRED is defined to always be true; in that ++case, you may set DEPTH_VAR to anything. ++*/ ++#define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) ((DEPTH_VAR) = get_frame_size()) ++ ++/* ++If defined, this macro specifies a table of register pairs used to ++eliminate unneeded registers that point into the stack frame. If it is not ++defined, the only elimination attempted by the compiler is to replace ++references to the frame pointer with references to the stack pointer. ++ ++The definition of this macro is a list of structure initializations, each ++of which specifies an original and replacement register. ++ ++On some machines, the position of the argument pointer is not known until ++the compilation is completed. In such a case, a separate hard register ++must be used for the argument pointer. This register can be eliminated by ++replacing it with either the frame pointer or the argument pointer, ++depending on whether or not the frame pointer has been eliminated. ++ ++In this case, you might specify: ++ #define ELIMINABLE_REGS \ ++ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ ++ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ ++ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} ++ ++Note that the elimination of the argument pointer with the stack pointer is ++specified first since that is the preferred elimination. ++*/ ++#define ELIMINABLE_REGS \ ++{ \ ++ { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ ++ { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \ ++ { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM } \ ++} ++ ++/* ++A C expression that returns nonzero if the compiler is allowed to try ++to replace register number FROM with register number ++TO. This macro need only be defined if ELIMINABLE_REGS ++is defined, and will usually be the constant 1, since most of the cases ++preventing register elimination are things that the compiler already ++knows about. ++*/ ++#define CAN_ELIMINATE(FROM, TO) 1 ++ ++/* ++This macro is similar to INITIAL_FRAME_POINTER_OFFSET. It ++specifies the initial difference between the specified pair of ++registers. This macro must be defined if ELIMINABLE_REGS is ++defined. ++*/ ++#define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ ++ ((OFFSET) = avr32_initial_elimination_offset(FROM, TO)) ++ ++/** Passing Function Arguments on the Stack **/ ++ ++ ++/* ++A C expression. If nonzero, push insns will be used to pass ++outgoing arguments. ++If the target machine does not have a push instruction, set it to zero. ++That directs GCC to use an alternate strategy: to ++allocate the entire argument block and then store the arguments into ++it. When PUSH_ARGS is nonzero, PUSH_ROUNDING must be defined too. ++*/ ++#define PUSH_ARGS 1 ++ ++/* ++A C expression that is the number of bytes actually pushed onto the ++stack when an instruction attempts to push NPUSHED bytes. ++ ++On some machines, the definition ++ ++ #define PUSH_ROUNDING(BYTES) (BYTES) ++ ++will suffice. But on other machines, instructions that appear ++to push one byte actually push two bytes in an attempt to maintain ++alignment. Then the definition should be ++ ++ #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) ++*/ ++/* Push 4 bytes at the time. */ ++#define PUSH_ROUNDING(NPUSHED) (((NPUSHED) + 3) & ~3) ++ ++/* ++A C expression. If nonzero, the maximum amount of space required for ++outgoing arguments will be computed and placed into the variable ++current_function_outgoing_args_size. No space will be pushed ++onto the stack for each call; instead, the function prologue should ++increase the stack frame size by this amount. ++ ++Setting both PUSH_ARGS and ACCUMULATE_OUTGOING_ARGS is not proper. ++*/ ++#define ACCUMULATE_OUTGOING_ARGS 0 ++ ++/* ++A C expression that should indicate the number of bytes of its own ++arguments that a function pops on returning, or 0 if the ++function pops no arguments and the caller must therefore pop them all ++after the function returns. ++ ++FUNDECL is a C variable whose value is a tree node that describes ++the function in question. Normally it is a node of type ++FUNCTION_DECL that describes the declaration of the function. ++From this you can obtain the DECL_ATTRIBUTES of the function. ++ ++FUNTYPE is a C variable whose value is a tree node that ++describes the function in question. Normally it is a node of type ++FUNCTION_TYPE that describes the data type of the function. ++From this it is possible to obtain the data types of the value and ++arguments (if known). ++ ++When a call to a library function is being considered, FUNDECL ++will contain an identifier node for the library function. Thus, if ++you need to distinguish among various library functions, you can do so ++by their names. Note that ``library function'' in this context means ++a function used to perform arithmetic, whose name is known specially ++in the compiler and was not mentioned in the C code being compiled. ++ ++STACK_SIZE is the number of bytes of arguments passed on the ++stack. If a variable number of bytes is passed, it is zero, and ++argument popping will always be the responsibility of the calling function. ++ ++On the VAX, all functions always pop their arguments, so the definition ++of this macro is STACK_SIZE. On the 68000, using the standard ++calling convention, no functions pop their arguments, so the value of ++the macro is always 0 in this case. But an alternative calling ++convention is available in which functions that take a fixed number of ++arguments pop them but other functions (such as printf) pop ++nothing (the caller pops all). When this convention is in use, ++FUNTYPE is examined to determine whether a function takes a fixed ++number of arguments. ++*/ ++#define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0 ++ ++ ++/*Return true if this function can we use a single return instruction*/ ++#define USE_RETURN_INSN(ISCOND) avr32_use_return_insn(ISCOND) ++ ++/* ++A C expression that should indicate the number of bytes a call sequence ++pops off the stack. It is added to the value of RETURN_POPS_ARGS ++when compiling a function call. ++ ++CUM is the variable in which all arguments to the called function ++have been accumulated. ++ ++On certain architectures, such as the SH5, a call trampoline is used ++that pops certain registers off the stack, depending on the arguments ++that have been passed to the function. Since this is a property of the ++call site, not of the called function, RETURN_POPS_ARGS is not ++appropriate. ++*/ ++#define CALL_POPS_ARGS(CUM) 0 ++ ++/* Passing Arguments in Registers */ ++ ++/* ++A C expression that controls whether a function argument is passed ++in a register, and which register. ++ ++The arguments are CUM, which summarizes all the previous ++arguments; MODE, the machine mode of the argument; TYPE, ++the data type of the argument as a tree node or 0 if that is not known ++(which happens for C support library functions); and NAMED, ++which is 1 for an ordinary argument and 0 for nameless arguments that ++correspond to '...' in the called function's prototype. ++TYPE can be an incomplete type if a syntax error has previously ++occurred. ++ ++The value of the expression is usually either a reg RTX for the ++hard register in which to pass the argument, or zero to pass the ++argument on the stack. ++ ++For machines like the VAX and 68000, where normally all arguments are ++pushed, zero suffices as a definition. ++ ++The value of the expression can also be a parallel RTX. This is ++used when an argument is passed in multiple locations. The mode of the ++of the parallel should be the mode of the entire argument. The ++parallel holds any number of expr_list pairs; each one ++describes where part of the argument is passed. In each ++expr_list the first operand must be a reg RTX for the hard ++register in which to pass this part of the argument, and the mode of the ++register RTX indicates how large this part of the argument is. The ++second operand of the expr_list is a const_int which gives ++the offset in bytes into the entire argument of where this part starts. ++As a special exception the first expr_list in the parallel ++RTX may have a first operand of zero. This indicates that the entire ++argument is also stored on the stack. ++ ++The last time this macro is called, it is called with MODE == VOIDmode, ++and its result is passed to the call or call_value ++pattern as operands 2 and 3 respectively. ++ ++The usual way to make the ISO library 'stdarg.h' work on a machine ++where some arguments are usually passed in registers, is to cause ++nameless arguments to be passed on the stack instead. This is done ++by making FUNCTION_ARG return 0 whenever NAMED is 0. ++ ++You may use the macro MUST_PASS_IN_STACK (MODE, TYPE) ++in the definition of this macro to determine if this argument is of a ++type that must be passed in the stack. If REG_PARM_STACK_SPACE ++is not defined and FUNCTION_ARG returns nonzero for such an ++argument, the compiler will abort. If REG_PARM_STACK_SPACE is ++defined, the argument will be computed in the stack and then loaded into ++a register. */ ++ ++#define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \ ++ avr32_function_arg(&(CUM), MODE, TYPE, NAMED) ++ ++/* ++A C type for declaring a variable that is used as the first argument of ++FUNCTION_ARG and other related values. For some target machines, ++the type int suffices and can hold the number of bytes of ++argument so far. ++ ++There is no need to record in CUMULATIVE_ARGS anything about the ++arguments that have been passed on the stack. The compiler has other ++variables to keep track of that. For target machines on which all ++arguments are passed on the stack, there is no need to store anything in ++CUMULATIVE_ARGS; however, the data structure must exist and ++should not be empty, so use int. ++*/ ++typedef struct avr32_args ++{ ++ /* Index representing the argument register the current function argument ++ will occupy */ ++ int index; ++ /* A mask with bits representing the argument registers: if a bit is set ++ then this register is used for an argument */ ++ int used_index; ++ /* TRUE if this function has anonymous arguments */ ++ int uses_anonymous_args; ++ /* The size in bytes of the named arguments pushed on the stack */ ++ int stack_pushed_args_size; ++ /* Set to true if this function needs a Return Value Pointer */ ++ int use_rvp; ++ /* Set to true if function is a flashvault function. */ ++ int flashvault_func; ++ ++} CUMULATIVE_ARGS; ++ ++ ++#define FIRST_CUM_REG_INDEX 0 ++#define LAST_CUM_REG_INDEX 4 ++#define GET_REG_INDEX(CUM) ((CUM)->index) ++#define SET_REG_INDEX(CUM, INDEX) ((CUM)->index = (INDEX)); ++#define GET_USED_INDEX(CUM, INDEX) ((CUM)->used_index & (1 << (INDEX))) ++#define SET_USED_INDEX(CUM, INDEX) \ ++ do \ ++ { \ ++ if (INDEX >= 0) \ ++ (CUM)->used_index |= (1 << (INDEX)); \ ++ } \ ++ while (0) ++#define SET_INDEXES_UNUSED(CUM) ((CUM)->used_index = 0) ++ ++/* ++ A C statement (sans semicolon) for initializing the variable cum for the ++ state at the beginning of the argument list. The variable has type ++ CUMULATIVE_ARGS. The value of FNTYPE is the tree node for the data type of ++ the function which will receive the args, or 0 if the args are to a compiler ++ support library function. For direct calls that are not libcalls, FNDECL ++ contain the declaration node of the function. FNDECL is also set when ++ INIT_CUMULATIVE_ARGS is used to find arguments for the function being ++ compiled. N_NAMED_ARGS is set to the number of named arguments, including a ++ structure return address if it is passed as a parameter, when making a call. ++ When processing incoming arguments, N_NAMED_ARGS is set to -1. ++ ++ When processing a call to a compiler support library function, LIBNAME ++ identifies which one. It is a symbol_ref rtx which contains the name of the ++ function, as a string. LIBNAME is 0 when an ordinary C function call is ++ being processed. Thus, each time this macro is called, either LIBNAME or ++ FNTYPE is nonzero, but never both of them at once. ++*/ ++#define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \ ++ avr32_init_cumulative_args(&(CUM), FNTYPE, LIBNAME, FNDECL) ++ ++/* ++A C statement (sans semicolon) to update the summarizer variable ++CUM to advance past an argument in the argument list. The ++values MODE, TYPE and NAMED describe that argument. ++Once this is done, the variable CUM is suitable for analyzing ++the following argument with FUNCTION_ARG, etc. ++ ++This macro need not do anything if the argument in question was passed ++on the stack. The compiler knows how to track the amount of stack space ++used for arguments without any special help. ++*/ ++#define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \ ++ avr32_function_arg_advance(&(CUM), MODE, TYPE, NAMED) ++ ++/* ++If defined, a C expression which determines whether, and in which direction, ++to pad out an argument with extra space. The value should be of type ++enum direction: either 'upward' to pad above the argument, ++'downward' to pad below, or 'none' to inhibit padding. ++ ++The amount of padding is always just enough to reach the next ++multiple of FUNCTION_ARG_BOUNDARY; this macro does not control ++it. ++ ++This macro has a default definition which is right for most systems. ++For little-endian machines, the default is to pad upward. For ++big-endian machines, the default is to pad downward for an argument of ++constant size shorter than an int, and upward otherwise. ++*/ ++#define FUNCTION_ARG_PADDING(MODE, TYPE) \ ++ avr32_function_arg_padding(MODE, TYPE) ++ ++/* ++ Specify padding for the last element of a block move between registers ++ and memory. First is nonzero if this is the only element. Defining ++ this macro allows better control of register function parameters on ++ big-endian machines, without using PARALLEL rtl. In particular, ++ MUST_PASS_IN_STACK need not test padding and mode of types in registers, ++ as there is no longer a "wrong" part of a register; For example, a three ++ byte aggregate may be passed in the high part of a register if so required. ++*/ ++#define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \ ++ avr32_function_arg_padding(MODE, TYPE) ++ ++/* ++If defined, a C expression which determines whether the default ++implementation of va_arg will attempt to pad down before reading the ++next argument, if that argument is smaller than its aligned space as ++controlled by PARM_BOUNDARY. If this macro is not defined, all such ++arguments are padded down if BYTES_BIG_ENDIAN is true. ++*/ ++#define PAD_VARARGS_DOWN \ ++ (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward) ++ ++/* ++A C expression that is nonzero if REGNO is the number of a hard ++register in which function arguments are sometimes passed. This does ++not include implicit arguments such as the static chain and ++the structure-value address. On many machines, no registers can be ++used for this purpose since all function arguments are pushed on the ++stack. ++*/ ++/* ++ Use r8 - r12 for function arguments. ++*/ ++#define FUNCTION_ARG_REGNO_P(REGNO) \ ++ (REGNO >= 3 && REGNO <= 7) ++ ++/* Number of registers used for passing function arguments */ ++#define NUM_ARG_REGS 5 ++ ++/* ++If defined, the order in which arguments are loaded into their ++respective argument registers is reversed so that the last ++argument is loaded first. This macro only affects arguments ++passed in registers. ++*/ ++/* #define LOAD_ARGS_REVERSED */ ++ ++/** How Scalar Function Values Are Returned **/ ++ ++/* AVR32 is using r12 as return register. */ ++#define RET_REGISTER (15 - 12) ++ ++/* ++A C expression to create an RTX representing the place where a library ++function returns a value of mode MODE. If the precise function ++being called is known, FUNC is a tree node ++(FUNCTION_DECL) for it; otherwise, func is a null ++pointer. This makes it possible to use a different value-returning ++convention for specific functions when all their calls are ++known. ++ ++Note that "library function" in this context means a compiler ++support routine, used to perform arithmetic, whose name is known ++specially by the compiler and was not mentioned in the C code being ++compiled. ++ ++The definition of LIBRARY_VALUE need not be concerned aggregate ++data types, because none of the library functions returns such types. ++*/ ++#define LIBCALL_VALUE(MODE) avr32_libcall_value(MODE) ++ ++/* ++A C expression that is nonzero if REGNO is the number of a hard ++register in which the values of called function may come back. ++ ++A register whose use for returning values is limited to serving as the ++second of a pair (for a value of type double, say) need not be ++recognized by this macro. So for most machines, this definition ++suffices: ++ #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0) ++ ++If the machine has register windows, so that the caller and the called ++function use different registers for the return value, this macro ++should recognize only the caller's register numbers. ++*/ ++/* ++ When returning a value of mode DImode, r11:r10 is used, else r12 is used. ++*/ ++#define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RET_REGISTER \ ++ || (REGNO) == INTERNAL_REGNUM(11)) ++ ++ ++/** How Large Values Are Returned **/ ++ ++ ++/* ++Define this macro to be 1 if all structure and union return values must be ++in memory. Since this results in slower code, this should be defined ++only if needed for compatibility with other compilers or with an ABI. ++If you define this macro to be 0, then the conventions used for structure ++and union return values are decided by the RETURN_IN_MEMORY macro. ++ ++If not defined, this defaults to the value 1. ++*/ ++#define DEFAULT_PCC_STRUCT_RETURN 0 ++ ++ ++ ++ ++/** Generating Code for Profiling **/ ++ ++/* ++A C statement or compound statement to output to FILE some ++assembler code to call the profiling subroutine mcount. ++ ++The details of how mcount expects to be called are determined by ++your operating system environment, not by GCC. To figure them out, ++compile a small program for profiling using the system's installed C ++compiler and look at the assembler code that results. ++ ++Older implementations of mcount expect the address of a counter ++variable to be loaded into some register. The name of this variable is ++'LP' followed by the number LABELNO, so you would generate ++the name using 'LP%d' in a fprintf. ++*/ ++/* ToDo: fixme */ ++#ifndef FUNCTION_PROFILER ++#define FUNCTION_PROFILER(FILE, LABELNO) \ ++ fprintf((FILE), "/* profiler %d */", (LABELNO)) ++#endif ++ ++ ++/***************************************************************************** ++ * Trampolines for Nested Functions * ++ *****************************************************************************/ ++ ++/* ++A C statement to output, on the stream FILE, assembler code for a ++block of data that contains the constant parts of a trampoline. This ++code should not include a label - the label is taken care of ++automatically. ++ ++If you do not define this macro, it means no template is needed ++for the target. Do not define this macro on systems where the block move ++code to copy the trampoline into place would be larger than the code ++to generate it on the spot. ++*/ ++/* ToDo: correct? */ ++#define TRAMPOLINE_TEMPLATE(FILE) avr32_trampoline_template(FILE); ++ ++ ++/* ++A C expression for the size in bytes of the trampoline, as an integer. ++*/ ++/* ToDo: fixme */ ++#define TRAMPOLINE_SIZE 0x0C ++ ++/* ++Alignment required for trampolines, in bits. ++ ++If you don't define this macro, the value of BIGGEST_ALIGNMENT ++is used for aligning trampolines. ++*/ ++#define TRAMPOLINE_ALIGNMENT 16 ++ ++/* ++A C statement to initialize the variable parts of a trampoline. ++ADDR is an RTX for the address of the trampoline; FNADDR is ++an RTX for the address of the nested function; STATIC_CHAIN is an ++RTX for the static chain value that should be passed to the function ++when it is called. ++*/ ++#define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \ ++ avr32_initialize_trampoline(ADDR, FNADDR, STATIC_CHAIN) ++ ++ ++/****************************************************************************** ++ * Implicit Calls to Library Routines ++ *****************************************************************************/ ++ ++/* Tail calling. */ ++ ++/* A C expression that evaluates to true if it is ok to perform a sibling ++ call to DECL. */ ++#define FUNCTION_OK_FOR_SIBCALL(DECL) 0 ++ ++#define OVERRIDE_OPTIONS avr32_override_options () ++ ++#define OPTIMIZATION_OPTIONS(LEVEL, SIZE) avr32_optimization_options (LEVEL, SIZE) ++ ++/****************************************************************************** ++ * Addressing Modes ++ *****************************************************************************/ ++ ++/* ++A C expression that is nonzero if the machine supports pre-increment, ++pre-decrement, post-increment, or post-decrement addressing respectively. ++*/ ++/* ++ AVR32 supports Rp++ and --Rp ++*/ ++#define HAVE_PRE_INCREMENT 0 ++#define HAVE_PRE_DECREMENT 1 ++#define HAVE_POST_INCREMENT 1 ++#define HAVE_POST_DECREMENT 0 ++ ++/* ++A C expression that is nonzero if the machine supports pre- or ++post-address side-effect generation involving constants other than ++the size of the memory operand. ++*/ ++#define HAVE_PRE_MODIFY_DISP 0 ++#define HAVE_POST_MODIFY_DISP 0 ++ ++/* ++A C expression that is nonzero if the machine supports pre- or ++post-address side-effect generation involving a register displacement. ++*/ ++#define HAVE_PRE_MODIFY_REG 0 ++#define HAVE_POST_MODIFY_REG 0 ++ ++/* ++A C expression that is 1 if the RTX X is a constant which ++is a valid address. On most machines, this can be defined as ++CONSTANT_P (X), but a few machines are more restrictive ++in which constant addresses are supported. ++ ++CONSTANT_P accepts integer-values expressions whose values are ++not explicitly known, such as symbol_ref, label_ref, and ++high expressions and const arithmetic expressions, in ++addition to const_int and const_double expressions. ++*/ ++#define CONSTANT_ADDRESS_P(X) CONSTANT_P(X) ++ ++/* ++A number, the maximum number of registers that can appear in a valid ++memory address. Note that it is up to you to specify a value equal to ++the maximum number that GO_IF_LEGITIMATE_ADDRESS would ever ++accept. ++*/ ++#define MAX_REGS_PER_ADDRESS 2 ++ ++/* ++A C compound statement with a conditional goto LABEL; ++executed if X (an RTX) is a legitimate memory address on the ++target machine for a memory operand of mode MODE. ++ ++It usually pays to define several simpler macros to serve as ++subroutines for this one. Otherwise it may be too complicated to ++understand. ++ ++This macro must exist in two variants: a strict variant and a ++non-strict one. The strict variant is used in the reload pass. It ++must be defined so that any pseudo-register that has not been ++allocated a hard register is considered a memory reference. In ++contexts where some kind of register is required, a pseudo-register ++with no hard register must be rejected. ++ ++The non-strict variant is used in other passes. It must be defined to ++accept all pseudo-registers in every context where some kind of ++register is required. ++ ++Compiler source files that want to use the strict variant of this ++macro define the macro REG_OK_STRICT. You should use an ++#ifdef REG_OK_STRICT conditional to define the strict variant ++in that case and the non-strict variant otherwise. ++ ++Subroutines to check for acceptable registers for various purposes (one ++for base registers, one for index registers, and so on) are typically ++among the subroutines used to define GO_IF_LEGITIMATE_ADDRESS. ++Then only these subroutine macros need have two variants; the higher ++levels of macros may be the same whether strict or not. ++ ++Normally, constant addresses which are the sum of a symbol_ref ++and an integer are stored inside a const RTX to mark them as ++constant. Therefore, there is no need to recognize such sums ++specifically as legitimate addresses. Normally you would simply ++recognize any const as legitimate. ++ ++Usually PRINT_OPERAND_ADDRESS is not prepared to handle constant ++sums that are not marked with const. It assumes that a naked ++plus indicates indexing. If so, then you must reject such ++naked constant sums as illegitimate addresses, so that none of them will ++be given to PRINT_OPERAND_ADDRESS. ++ ++On some machines, whether a symbolic address is legitimate depends on ++the section that the address refers to. On these machines, define the ++macro ENCODE_SECTION_INFO to store the information into the ++symbol_ref, and then check for it here. When you see a ++const, you will have to look inside it to find the ++symbol_ref in order to determine the section. ++ ++The best way to modify the name string is by adding text to the ++beginning, with suitable punctuation to prevent any ambiguity. Allocate ++the new name in saveable_obstack. You will have to modify ++ASM_OUTPUT_LABELREF to remove and decode the added text and ++output the name accordingly, and define STRIP_NAME_ENCODING to ++access the original name string. ++ ++You can check the information stored here into the symbol_ref in ++the definitions of the macros GO_IF_LEGITIMATE_ADDRESS and ++PRINT_OPERAND_ADDRESS. ++*/ ++#ifdef REG_OK_STRICT ++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ ++ do \ ++ { \ ++ if (avr32_legitimate_address(MODE, X, 1)) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++#else ++# define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \ ++ do \ ++ { \ ++ if (avr32_legitimate_address(MODE, X, 0)) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++#endif ++ ++ ++ ++/* ++A C compound statement that attempts to replace X with a valid ++memory address for an operand of mode MODE. win will be a ++C statement label elsewhere in the code; the macro definition may use ++ ++ GO_IF_LEGITIMATE_ADDRESS (MODE, X, WIN); ++ ++to avoid further processing if the address has become legitimate. ++ ++X will always be the result of a call to break_out_memory_refs, ++and OLDX will be the operand that was given to that function to produce ++X. ++ ++The code generated by this macro should not alter the substructure of ++X. If it transforms X into a more legitimate form, it ++should assign X (which will always be a C variable) a new value. ++ ++It is not necessary for this macro to come up with a legitimate ++address. The compiler has standard ways of doing so in all cases. In ++fact, it is safe for this macro to do nothing. But often a ++machine-dependent strategy can generate better code. ++*/ ++#define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \ ++ do \ ++ { \ ++ if (GET_CODE(X) == PLUS \ ++ && GET_CODE(XEXP(X, 0)) == REG \ ++ && GET_CODE(XEXP(X, 1)) == CONST_INT \ ++ && !CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(X, 1)), \ ++ 'K', "Ks16")) \ ++ { \ ++ rtx index = force_reg(SImode, XEXP(X, 1)); \ ++ X = gen_rtx_PLUS( SImode, XEXP(X, 0), index); \ ++ } \ ++ GO_IF_LEGITIMATE_ADDRESS(MODE, X, WIN); \ ++ } \ ++ while(0) ++ ++ ++/* ++A C statement or compound statement with a conditional ++goto LABEL; executed if memory address X (an RTX) can have ++different meanings depending on the machine mode of the memory ++reference it is used for or if the address is valid for some modes ++but not others. ++ ++Autoincrement and autodecrement addresses typically have mode-dependent ++effects because the amount of the increment or decrement is the size ++of the operand being addressed. Some machines have other mode-dependent ++addresses. Many RISC machines have no mode-dependent addresses. ++ ++You may assume that ADDR is a valid address for the machine. ++*/ ++#define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \ ++ do \ ++ { \ ++ if (GET_CODE (ADDR) == POST_INC \ ++ || GET_CODE (ADDR) == PRE_DEC) \ ++ goto LABEL; \ ++ } \ ++ while (0) ++ ++/* ++A C expression that is nonzero if X is a legitimate constant for ++an immediate operand on the target machine. You can assume that ++X satisfies CONSTANT_P, so you need not check this. In fact, ++'1' is a suitable definition for this macro on machines where ++anything CONSTANT_P is valid. ++*/ ++#define LEGITIMATE_CONSTANT_P(X) avr32_legitimate_constant_p(X) ++ ++ ++/****************************************************************************** ++ * Condition Code Status ++ *****************************************************************************/ ++ ++/* ++C code for a data type which is used for declaring the mdep ++component of cc_status. It defaults to int. ++ ++This macro is not used on machines that do not use cc0. ++*/ ++ ++typedef struct ++{ ++ int flags; ++ rtx value; ++ int cond_exec_cmp_clobbered; ++} avr32_status_reg; ++ ++ ++#define CC_STATUS_MDEP avr32_status_reg ++ ++/* ++A C expression to initialize the mdep field to "empty". ++The default definition does nothing, since most machines don't use ++the field anyway. If you want to use the field, you should probably ++define this macro to initialize it. ++ ++This macro is not used on machines that do not use cc0. ++*/ ++ ++#define CC_STATUS_MDEP_INIT \ ++ (cc_status.mdep.flags = CC_NONE , cc_status.mdep.cond_exec_cmp_clobbered = 0, cc_status.mdep.value = 0) ++ ++/* ++A C compound statement to set the components of cc_status ++appropriately for an insn INSN whose body is EXP. It is ++this macro's responsibility to recognize insns that set the condition ++code as a byproduct of other activity as well as those that explicitly ++set (cc0). ++ ++This macro is not used on machines that do not use cc0. ++ ++If there are insns that do not set the condition code but do alter ++other machine registers, this macro must check to see whether they ++invalidate the expressions that the condition code is recorded as ++reflecting. For example, on the 68000, insns that store in address ++registers do not set the condition code, which means that usually ++NOTICE_UPDATE_CC can leave cc_status unaltered for such ++insns. But suppose that the previous insn set the condition code ++based on location 'a4@@(102)' and the current insn stores a new ++value in 'a4'. Although the condition code is not changed by ++this, it will no longer be true that it reflects the contents of ++'a4@@(102)'. Therefore, NOTICE_UPDATE_CC must alter ++cc_status in this case to say that nothing is known about the ++condition code value. ++ ++The definition of NOTICE_UPDATE_CC must be prepared to deal ++with the results of peephole optimization: insns whose patterns are ++parallel RTXs containing various reg, mem or ++constants which are just the operands. The RTL structure of these ++insns is not sufficient to indicate what the insns actually do. What ++NOTICE_UPDATE_CC should do when it sees one is just to run ++CC_STATUS_INIT. ++ ++A possible definition of NOTICE_UPDATE_CC is to call a function ++that looks at an attribute (see Insn Attributes) named, for example, ++'cc'. This avoids having detailed information about patterns in ++two places, the 'md' file and in NOTICE_UPDATE_CC. ++*/ ++ ++#define NOTICE_UPDATE_CC(EXP, INSN) avr32_notice_update_cc(EXP, INSN) ++ ++ ++ ++ ++/****************************************************************************** ++ * Describing Relative Costs of Operations ++ *****************************************************************************/ ++ ++ ++ ++/* ++A C expression for the cost of moving data of mode MODE from a ++register in class FROM to one in class TO. The classes are ++expressed using the enumeration values such as GENERAL_REGS. A ++value of 2 is the default; other values are interpreted relative to ++that. ++ ++It is not required that the cost always equal 2 when FROM is the ++same as TO; on some machines it is expensive to move between ++registers if they are not general registers. ++ ++If reload sees an insn consisting of a single set between two ++hard registers, and if REGISTER_MOVE_COST applied to their ++classes returns a value of 2, reload does not check to ensure that the ++constraints of the insn are met. Setting a cost of other than 2 will ++allow reload to verify that the constraints are met. You should do this ++if the movm pattern's constraints do not allow such copying. ++*/ ++#define REGISTER_MOVE_COST(MODE, FROM, TO) \ ++ ((GET_MODE_SIZE(MODE) <= 4) ? 2: \ ++ (GET_MODE_SIZE(MODE) <= 8) ? 3: \ ++ 4) ++ ++/* ++A C expression for the cost of moving data of mode MODE between a ++register of class CLASS and memory; IN is zero if the value ++is to be written to memory, nonzero if it is to be read in. This cost ++is relative to those in REGISTER_MOVE_COST. If moving between ++registers and memory is more expensive than between two registers, you ++should define this macro to express the relative cost. ++ ++If you do not define this macro, GCC uses a default cost of 4 plus ++the cost of copying via a secondary reload register, if one is ++needed. If your machine requires a secondary reload register to copy ++between memory and a register of CLASS but the reload mechanism is ++more complex than copying via an intermediate, define this macro to ++reflect the actual cost of the move. ++ ++GCC defines the function memory_move_secondary_cost if ++secondary reloads are needed. It computes the costs due to copying via ++a secondary register. If your machine copies from memory using a ++secondary register in the conventional way but the default base value of ++4 is not correct for your machine, define this macro to add some other ++value to the result of that function. The arguments to that function ++are the same as to this macro. ++*/ ++/* ++ Memory moves are costly ++*/ ++#define MEMORY_MOVE_COST(MODE, CLASS, IN) \ ++ (((IN) ? ((GET_MODE_SIZE(MODE) < 4) ? 4 : \ ++ (GET_MODE_SIZE(MODE) > 8) ? 6 : \ ++ 3) \ ++ : ((GET_MODE_SIZE(MODE) > 8) ? 6 : 3))) ++ ++/* ++A C expression for the cost of a branch instruction. A value of 1 is ++the default; other values are interpreted relative to that. ++*/ ++ /* Try to use conditionals as much as possible */ ++#define BRANCH_COST(speed_p, predictable_p) (TARGET_BRANCH_PRED ? 3 : 4) ++ ++/*A C expression for the maximum number of instructions to execute via conditional ++ execution instructions instead of a branch. A value of BRANCH_COST+1 is the default ++ if the machine does not use cc0, and 1 if it does use cc0.*/ ++#define MAX_CONDITIONAL_EXECUTE 4 ++ ++/* ++Define this macro as a C expression which is nonzero if accessing less ++than a word of memory (i.e.: a char or a short) is no ++faster than accessing a word of memory, i.e., if such access ++require more than one instruction or if there is no difference in cost ++between byte and (aligned) word loads. ++ ++When this macro is not defined, the compiler will access a field by ++finding the smallest containing object; when it is defined, a fullword ++load will be used if alignment permits. Unless bytes accesses are ++faster than word accesses, using word accesses is preferable since it ++may eliminate subsequent memory access if subsequent accesses occur to ++other fields in the same word of the structure, but to different bytes. ++*/ ++#define SLOW_BYTE_ACCESS 1 ++ ++ ++/* ++Define this macro if it is as good or better to call a constant ++function address than to call an address kept in a register. ++*/ ++#define NO_FUNCTION_CSE ++ ++ ++/****************************************************************************** ++ * Adjusting the Instruction Scheduler ++ *****************************************************************************/ ++ ++/***************************************************************************** ++ * Dividing the Output into Sections (Texts, Data, ...) * ++ *****************************************************************************/ ++ ++/* ++A C expression whose value is a string, including spacing, containing the ++assembler operation that should precede instructions and read-only data. ++Normally "\t.text" is right. ++*/ ++#define TEXT_SECTION_ASM_OP "\t.text" ++/* ++A C statement that switches to the default section containing instructions. ++Normally this is not needed, as simply defining TEXT_SECTION_ASM_OP ++is enough. The MIPS port uses this to sort all functions after all data ++declarations. ++*/ ++/* #define TEXT_SECTION */ ++ ++/* ++A C expression whose value is a string, including spacing, containing the ++assembler operation to identify the following data as writable initialized ++data. Normally "\t.data" is right. ++*/ ++#define DATA_SECTION_ASM_OP "\t.data" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++shared data. If not defined, DATA_SECTION_ASM_OP will be used. ++*/ ++ ++/* ++A C expression whose value is a string, including spacing, containing ++the assembler operation to identify the following data as read-only ++initialized data. ++*/ ++#undef READONLY_DATA_SECTION_ASM_OP ++#define READONLY_DATA_SECTION_ASM_OP \ ++ ((TARGET_USE_RODATA_SECTION) ? \ ++ "\t.section\t.rodata" : \ ++ TEXT_SECTION_ASM_OP ) ++ ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++uninitialized global data. If not defined, and neither ++ASM_OUTPUT_BSS nor ASM_OUTPUT_ALIGNED_BSS are defined, ++uninitialized global data will be output in the data section if ++-fno-common is passed, otherwise ASM_OUTPUT_COMMON will be ++used. ++*/ ++#define BSS_SECTION_ASM_OP "\t.section\t.bss" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++uninitialized global shared data. If not defined, and ++BSS_SECTION_ASM_OP is, the latter will be used. ++*/ ++/*#define SHARED_BSS_SECTION_ASM_OP "\trseg\tshared_bbs_section:data:noroot(0)\n"*/ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++initialization code. If not defined, GCC will assume such a section does ++not exist. ++*/ ++#undef INIT_SECTION_ASM_OP ++#define INIT_SECTION_ASM_OP "\t.section\t.init" ++ ++/* ++If defined, a C expression whose value is a string, including spacing, ++containing the assembler operation to identify the following data as ++finalization code. If not defined, GCC will assume such a section does ++not exist. ++*/ ++#undef FINI_SECTION_ASM_OP ++#define FINI_SECTION_ASM_OP "\t.section\t.fini" ++ ++/* ++If defined, an ASM statement that switches to a different section ++via SECTION_OP, calls FUNCTION, and switches back to ++the text section. This is used in crtstuff.c if ++INIT_SECTION_ASM_OP or FINI_SECTION_ASM_OP to calls ++to initialization and finalization functions from the init and fini ++sections. By default, this macro uses a simple function call. Some ++ports need hand-crafted assembly code to avoid dependencies on ++registers initialized in the function prologue or to ensure that ++constant pools don't end up too far way in the text section. ++*/ ++#define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ ++ asm ( SECTION_OP "\n" \ ++ "mcall r6[" USER_LABEL_PREFIX #FUNC "@got]\n" \ ++ TEXT_SECTION_ASM_OP); ++ ++ ++/* ++Define this macro to be an expression with a nonzero value if jump ++tables (for tablejump insns) should be output in the text ++section, along with the assembler instructions. Otherwise, the ++readonly data section is used. ++ ++This macro is irrelevant if there is no separate readonly data section. ++*/ ++/* Put jump tables in text section if we have caches. Otherwise assume that ++ loading data from code memory is slow. */ ++#define JUMP_TABLES_IN_TEXT_SECTION \ ++ (TARGET_CACHES ? 1 : 0) ++ ++ ++/****************************************************************************** ++ * Position Independent Code (PIC) ++ *****************************************************************************/ ++ ++#ifndef AVR32_ALWAYS_PIC ++#define AVR32_ALWAYS_PIC 0 ++#endif ++ ++/* GOT is set to r6 */ ++#define PIC_OFFSET_TABLE_REGNUM INTERNAL_REGNUM(6) ++ ++/* ++A C expression that is nonzero if X is a legitimate immediate ++operand on the target machine when generating position independent code. ++You can assume that X satisfies CONSTANT_P, so you need not ++check this. You can also assume flag_pic is true, so you need not ++check it either. You need not define this macro if all constants ++(including SYMBOL_REF) can be immediate operands when generating ++position independent code. ++*/ ++/* We can't directly access anything that contains a symbol, ++ nor can we indirect via the constant pool. */ ++#define LEGITIMATE_PIC_OPERAND_P(X) avr32_legitimate_pic_operand_p(X) ++ ++ ++/* We need to know when we are making a constant pool; this determines ++ whether data needs to be in the GOT or can be referenced via a GOT ++ offset. */ ++extern int making_const_table; ++ ++/****************************************************************************** ++ * Defining the Output Assembler Language ++ *****************************************************************************/ ++ ++ ++/* ++A C string constant describing how to begin a comment in the target ++assembler language. The compiler assumes that the comment will end at ++the end of the line. ++*/ ++#define ASM_COMMENT_START "# " ++ ++/* ++A C string constant for text to be output before each asm ++statement or group of consecutive ones. Normally this is ++"#APP", which is a comment that has no effect on most ++assemblers but tells the GNU assembler that it must check the lines ++that follow for all valid assembler constructs. ++*/ ++#undef ASM_APP_ON ++#define ASM_APP_ON "#APP\n" ++ ++/* ++A C string constant for text to be output after each asm ++statement or group of consecutive ones. Normally this is ++"#NO_APP", which tells the GNU assembler to resume making the ++time-saving assumptions that are valid for ordinary compiler output. ++*/ ++#undef ASM_APP_OFF ++#define ASM_APP_OFF "#NO_APP\n" ++ ++ ++ ++#define FILE_ASM_OP "\t.file\n" ++#define IDENT_ASM_OP "\t.ident\t" ++#define SET_ASM_OP "\t.set\t" ++ ++ ++/* ++ * Output assembly directives to switch to section name. The section ++ * should have attributes as specified by flags, which is a bit mask ++ * of the SECTION_* flags defined in 'output.h'. If align is nonzero, ++ * it contains an alignment in bytes to be used for the section, ++ * otherwise some target default should be used. Only targets that ++ * must specify an alignment within the section directive need pay ++ * attention to align -- we will still use ASM_OUTPUT_ALIGN. ++ * ++ * NOTE: This one must not be moved to avr32.c ++ */ ++#undef TARGET_ASM_NAMED_SECTION ++#define TARGET_ASM_NAMED_SECTION default_elf_asm_named_section ++ ++ ++/* ++You may define this macro as a C expression. You should define the ++expression to have a nonzero value if GCC should output the constant ++pool for a function before the code for the function, or a zero value if ++GCC should output the constant pool after the function. If you do ++not define this macro, the usual case, GCC will output the constant ++pool before the function. ++*/ ++#define CONSTANT_POOL_BEFORE_FUNCTION 0 ++ ++ ++/* ++Define this macro as a C expression which is nonzero if the constant ++EXP, of type tree, should be output after the code for a ++function. The compiler will normally output all constants before the ++function; you need not define this macro if this is OK. ++*/ ++#define CONSTANT_AFTER_FUNCTION_P(EXP) 1 ++ ++ ++/* ++Define this macro as a C expression which is nonzero if C is ++as a logical line separator by the assembler. STR points to the ++position in the string where C was found; this can be used if a ++line separator uses multiple characters. ++ ++If you do not define this macro, the default is that only ++the character ';' is treated as a logical line separator. ++*/ ++#define IS_ASM_LOGICAL_LINE_SEPARATOR(C,STR) (((C) == '\n') || ((C) == ';')) ++ ++ ++/** Output of Uninitialized Variables **/ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a common-label named ++NAME whose size is SIZE bytes. The variable ROUNDED ++is the size rounded up to whatever alignment the caller wants. ++ ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++ ++This macro controls how the assembler definitions of uninitialized ++common global variables are output. ++*/ ++/* ++#define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \ ++ avr32_asm_output_common(STREAM, NAME, SIZE, ROUNDED) ++*/ ++ ++#define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fputs ("\t.comm ", (FILE)); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ",%d\n", (SIZE)); \ ++ } \ ++ while (0) ++ ++/* ++ * Like ASM_OUTPUT_BSS except takes the required alignment as a ++ * separate, explicit argument. If you define this macro, it is used ++ * in place of ASM_OUTPUT_BSS, and gives you more flexibility in ++ * handling the required alignment of the variable. The alignment is ++ * specified as the number of bits. ++ * ++ * Try to use function asm_output_aligned_bss defined in file varasm.c ++ * when defining this macro. ++ */ ++#define ASM_OUTPUT_ALIGNED_BSS(STREAM, DECL, NAME, SIZE, ALIGNMENT) \ ++ asm_output_aligned_bss (STREAM, DECL, NAME, SIZE, ALIGNMENT) ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a local-common-label named ++NAME whose size is SIZE bytes. The variable ROUNDED ++is the size rounded up to whatever alignment the caller wants. ++ ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++ ++This macro controls how the assembler definitions of uninitialized ++static variables are output. ++*/ ++#define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \ ++ do \ ++ { \ ++ fputs ("\t.lcomm ", (FILE)); \ ++ assemble_name ((FILE), (NAME)); \ ++ fprintf ((FILE), ",%d, %d\n", (SIZE), 2); \ ++ } \ ++ while (0) ++ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM the assembler definition of a label named NAME. ++Use the expression assemble_name(STREAM, NAME) to ++output the name itself; before and after that, output the additional ++assembler syntax for defining the name, and a newline. ++*/ ++#define ASM_OUTPUT_LABEL(STREAM, NAME) avr32_asm_output_label(STREAM, NAME) ++ ++/* A C string containing the appropriate assembler directive to ++ * specify the size of a symbol, without any arguments. On systems ++ * that use ELF, the default (in 'config/elfos.h') is '"\t.size\t"'; ++ * on other systems, the default is not to define this macro. ++ * ++ * Define this macro only if it is correct to use the default ++ * definitions of ASM_ OUTPUT_SIZE_DIRECTIVE and ++ * ASM_OUTPUT_MEASURED_SIZE for your system. If you need your own ++ * custom definitions of those macros, or if you do not need explicit ++ * symbol sizes at all, do not define this macro. ++ */ ++#define SIZE_ASM_OP "\t.size\t" ++ ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM some commands that will make the label NAME global; ++that is, available for reference from other files. Use the expression ++assemble_name(STREAM, NAME) to output the name ++itself; before and after that, output the additional assembler syntax ++for making that name global, and a newline. ++*/ ++#define GLOBAL_ASM_OP "\t.global\t" ++ ++ ++ ++/* ++A C expression which evaluates to true if the target supports weak symbols. ++ ++If you don't define this macro, defaults.h provides a default ++definition. If either ASM_WEAKEN_LABEL or ASM_WEAKEN_DECL ++is defined, the default definition is '1'; otherwise, it is ++'0'. Define this macro if you want to control weak symbol support ++with a compiler flag such as -melf. ++*/ ++#define SUPPORTS_WEAK 1 ++ ++/* ++A C statement (sans semicolon) to output to the stdio stream ++STREAM a reference in assembler syntax to a label named ++NAME. This should add '_' to the front of the name, if that ++is customary on your operating system, as it is in most Berkeley Unix ++systems. This macro is used in assemble_name. ++*/ ++#define ASM_OUTPUT_LABELREF(STREAM, NAME) \ ++ avr32_asm_output_labelref(STREAM, NAME) ++ ++ ++ ++/* ++A C expression to assign to OUTVAR (which is a variable of type ++char *) a newly allocated string made from the string ++NAME and the number NUMBER, with some suitable punctuation ++added. Use alloca to get space for the string. ++ ++The string will be used as an argument to ASM_OUTPUT_LABELREF to ++produce an assembler label for an internal static variable whose name is ++NAME. Therefore, the string must be such as to result in valid ++assembler code. The argument NUMBER is different each time this ++macro is executed; it prevents conflicts between similarly-named ++internal static variables in different scopes. ++ ++Ideally this string should not be a valid C identifier, to prevent any ++conflict with the user's own symbols. Most assemblers allow periods ++or percent signs in assembler symbols; putting at least one of these ++between the name and the number will suffice. ++*/ ++#define ASM_FORMAT_PRIVATE_NAME(OUTVAR, NAME, NUMBER) \ ++ do \ ++ { \ ++ (OUTVAR) = (char *) alloca (strlen ((NAME)) + 10); \ ++ sprintf ((OUTVAR), "%s.%d", (NAME), (NUMBER)); \ ++ } \ ++ while (0) ++ ++ ++/** Macros Controlling Initialization Routines **/ ++ ++ ++/* ++If defined, main will not call __main as described above. ++This macro should be defined for systems that control start-up code ++on a symbol-by-symbol basis, such as OSF/1, and should not ++be defined explicitly for systems that support INIT_SECTION_ASM_OP. ++*/ ++/* ++ __main is not defined when debugging. ++*/ ++#define HAS_INIT_SECTION ++ ++ ++/** Output of Assembler Instructions **/ ++ ++/* ++A C initializer containing the assembler's names for the machine ++registers, each one as a C string constant. This is what translates ++register numbers in the compiler into assembler language. ++*/ ++ ++#define REGISTER_NAMES \ ++{ \ ++ "pc", "lr", \ ++ "sp", "r12", \ ++ "r11", "r10", \ ++ "r9", "r8", \ ++ "r7", "r6", \ ++ "r5", "r4", \ ++ "r3", "r2", \ ++ "r1", "r0", \ ++} ++ ++/* ++A C compound statement to output to stdio stream STREAM the ++assembler syntax for an instruction operand X. X is an ++RTL expression. ++ ++CODE is a value that can be used to specify one of several ways ++of printing the operand. It is used when identical operands must be ++printed differently depending on the context. CODE comes from ++the '%' specification that was used to request printing of the ++operand. If the specification was just '%digit' then ++CODE is 0; if the specification was '%ltr digit' ++then CODE is the ASCII code for ltr. ++ ++If X is a register, this macro should print the register's name. ++The names can be found in an array reg_names whose type is ++char *[]. reg_names is initialized from REGISTER_NAMES. ++ ++When the machine description has a specification '%punct' ++(a '%' followed by a punctuation character), this macro is called ++with a null pointer for X and the punctuation character for ++CODE. ++*/ ++#define PRINT_OPERAND(STREAM, X, CODE) avr32_print_operand(STREAM, X, CODE) ++ ++/* A C statement to be executed just prior to the output of ++ assembler code for INSN, to modify the extracted operands so ++ they will be output differently. ++ ++ Here the argument OPVEC is the vector containing the operands ++ extracted from INSN, and NOPERANDS is the number of elements of ++ the vector which contain meaningful data for this insn. ++ The contents of this vector are what will be used to convert the insn ++ template into assembler code, so you can change the assembler output ++ by changing the contents of the vector. */ ++#define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \ ++ avr32_final_prescan_insn ((INSN), (OPVEC), (NOPERANDS)) ++ ++/* ++A C expression which evaluates to true if CODE is a valid ++punctuation character for use in the PRINT_OPERAND macro. If ++PRINT_OPERAND_PUNCT_VALID_P is not defined, it means that no ++punctuation characters (except for the standard one, '%') are used ++in this way. ++*/ ++#define PRINT_OPERAND_PUNCT_VALID_P(CODE) \ ++ (((CODE) == '?') \ ++ || ((CODE) == '!')) ++ ++/* ++A C compound statement to output to stdio stream STREAM the ++assembler syntax for an instruction operand that is a memory reference ++whose address is X. X is an RTL expression. ++ ++On some machines, the syntax for a symbolic address depends on the ++section that the address refers to. On these machines, define the macro ++ENCODE_SECTION_INFO to store the information into the ++symbol_ref, and then check for it here. (see Assembler Format.) ++*/ ++#define PRINT_OPERAND_ADDRESS(STREAM, X) avr32_print_operand_address(STREAM, X) ++ ++ ++/** Output of Dispatch Tables **/ ++ ++/* ++ * A C statement to output to the stdio stream stream an assembler ++ * pseudo-instruction to generate a difference between two ++ * labels. value and rel are the numbers of two internal labels. The ++ * definitions of these labels are output using ++ * (*targetm.asm_out.internal_label), and they must be printed in the ++ * same way here. For example, ++ * ++ * fprintf (stream, "\t.word L%d-L%d\n", ++ * value, rel) ++ * ++ * You must provide this macro on machines where the addresses in a ++ * dispatch table are relative to the table's own address. If defined, ++ * GCC will also use this macro on all machines when producing ++ * PIC. body is the body of the ADDR_DIFF_VEC; it is provided so that ++ * the mode and flags can be read. ++ */ ++#define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ ++ fprintf(STREAM, "\tbral\t%sL%d\n", LOCAL_LABEL_PREFIX, VALUE) ++ ++/* ++This macro should be provided on machines where the addresses ++in a dispatch table are absolute. ++ ++The definition should be a C statement to output to the stdio stream ++STREAM an assembler pseudo-instruction to generate a reference to ++a label. VALUE is the number of an internal label whose ++definition is output using ASM_OUTPUT_INTERNAL_LABEL. ++For example, ++ ++fprintf(STREAM, "\t.word L%d\n", VALUE) ++*/ ++ ++#define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ ++ fprintf(STREAM, "\t.long %sL%d\n", LOCAL_LABEL_PREFIX, VALUE) ++ ++/** Assembler Commands for Exception Regions */ ++ ++/* ToDo: All of this subsection */ ++ ++/** Assembler Commands for Alignment */ ++ ++ ++/* ++A C statement to output to the stdio stream STREAM an assembler ++command to advance the location counter to a multiple of 2 to the ++POWER bytes. POWER will be a C expression of type int. ++*/ ++#define ASM_OUTPUT_ALIGN(STREAM, POWER) \ ++ do \ ++ { \ ++ if ((POWER) != 0) \ ++ fprintf(STREAM, "\t.align\t%d\n", POWER); \ ++ } \ ++ while (0) ++ ++/* ++Like ASM_OUTPUT_ALIGN, except that the \nop" instruction is used for padding, if ++necessary. ++*/ ++#define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \ ++ fprintf(STREAM, "\t.balignw\t%d, 0xd703\n", (1 << POWER)) ++ ++ ++ ++/****************************************************************************** ++ * Controlling Debugging Information Format ++ *****************************************************************************/ ++ ++/* How to renumber registers for dbx and gdb. */ ++#define DBX_REGISTER_NUMBER(REGNO) ASM_REGNUM (REGNO) ++ ++/* The DWARF 2 CFA column which tracks the return address. */ ++#define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM(LR_REGNUM) ++ ++/* ++Define this macro if GCC should produce dwarf version 2 format ++debugging output in response to the -g option. ++ ++To support optional call frame debugging information, you must also ++define INCOMING_RETURN_ADDR_RTX and either set ++RTX_FRAME_RELATED_P on the prologue insns if you use RTL for the ++prologue, or call dwarf2out_def_cfa and dwarf2out_reg_save ++as appropriate from TARGET_ASM_FUNCTION_PROLOGUE if you don't. ++*/ ++#define DWARF2_DEBUGGING_INFO 1 ++ ++ ++#define DWARF2_ASM_LINE_DEBUG_INFO 1 ++#define DWARF2_FRAME_INFO 1 ++ ++ ++/****************************************************************************** ++ * Miscellaneous Parameters ++ *****************************************************************************/ ++ ++/* ToDo: a lot */ ++ ++/* ++An alias for a machine mode name. This is the machine mode that ++elements of a jump-table should have. ++*/ ++#define CASE_VECTOR_MODE SImode ++ ++/* ++Define this macro to be a C expression to indicate when jump-tables ++should contain relative addresses. If jump-tables never contain ++relative addresses, then you need not define this macro. ++*/ ++#define CASE_VECTOR_PC_RELATIVE 0 ++ ++/* Increase the threshold for using table jumps on the UC arch. */ ++#define CASE_VALUES_THRESHOLD (TARGET_BRANCH_PRED ? 4 : 7) ++ ++/* ++The maximum number of bytes that a single instruction can move quickly ++between memory and registers or between two memory locations. ++*/ ++#define MOVE_MAX (2*UNITS_PER_WORD) ++ ++ ++/* A C expression that is nonzero if on this machine the number of bits actually used ++ for the count of a shift operation is equal to the number of bits needed to represent ++ the size of the object being shifted. When this macro is nonzero, the compiler will ++ assume that it is safe to omit a sign-extend, zero-extend, and certain bitwise 'and' ++ instructions that truncates the count of a shift operation. On machines that have ++ instructions that act on bit-fields at variable positions, which may include 'bit test' ++ 378 GNU Compiler Collection (GCC) Internals ++ instructions, a nonzero SHIFT_COUNT_TRUNCATED also enables deletion of truncations ++ of the values that serve as arguments to bit-field instructions. ++ If both types of instructions truncate the count (for shifts) and position (for bit-field ++ operations), or if no variable-position bit-field instructions exist, you should define ++ this macro. ++ However, on some machines, such as the 80386 and the 680x0, truncation only applies ++ to shift operations and not the (real or pretended) bit-field operations. Define SHIFT_ ++ COUNT_TRUNCATED to be zero on such machines. Instead, add patterns to the 'md' file ++ that include the implied truncation of the shift instructions. ++ You need not dene this macro if it would always have the value of zero. */ ++#define SHIFT_COUNT_TRUNCATED 1 ++ ++/* ++A C expression which is nonzero if on this machine it is safe to ++convert an integer of INPREC bits to one of OUTPREC ++bits (where OUTPREC is smaller than INPREC) by merely ++operating on it as if it had only OUTPREC bits. ++ ++On many machines, this expression can be 1. ++ ++When TRULY_NOOP_TRUNCATION returns 1 for a pair of sizes for ++modes for which MODES_TIEABLE_P is 0, suboptimal code can result. ++If this is the case, making TRULY_NOOP_TRUNCATION return 0 in ++such cases may improve things. ++*/ ++#define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1 ++ ++/* ++An alias for the machine mode for pointers. On most machines, define ++this to be the integer mode corresponding to the width of a hardware ++pointer; SImode on 32-bit machine or DImode on 64-bit machines. ++On some machines you must define this to be one of the partial integer ++modes, such as PSImode. ++ ++The width of Pmode must be at least as large as the value of ++POINTER_SIZE. If it is not equal, you must define the macro ++POINTERS_EXTEND_UNSIGNED to specify how pointers are extended ++to Pmode. ++*/ ++#define Pmode SImode ++ ++/* ++An alias for the machine mode used for memory references to functions ++being called, in call RTL expressions. On most machines this ++should be QImode. ++*/ ++#define FUNCTION_MODE SImode ++ ++ ++#define REG_S_P(x) \ ++ (REG_P (x) || (GET_CODE (x) == SUBREG && REG_P (XEXP (x, 0)))) ++ ++ ++/* If defined, modifies the length assigned to instruction INSN as a ++ function of the context in which it is used. LENGTH is an lvalue ++ that contains the initially computed length of the insn and should ++ be updated with the correct length of the insn. */ ++#define ADJUST_INSN_LENGTH(INSN, LENGTH) \ ++ ((LENGTH) = avr32_adjust_insn_length ((INSN), (LENGTH))) ++ ++ ++#define CLZ_DEFINED_VALUE_AT_ZERO(mode, value) \ ++ (value = 32, (mode == SImode)) ++ ++#define CTZ_DEFINED_VALUE_AT_ZERO(mode, value) \ ++ (value = 32, (mode == SImode)) ++ ++#define UNITS_PER_SIMD_WORD(mode) UNITS_PER_WORD ++ ++#define STORE_FLAG_VALUE 1 ++ ++ ++/* IF-conversion macros. */ ++#define IFCVT_MODIFY_INSN( CE_INFO, PATTERN, INSN ) \ ++ { \ ++ (PATTERN) = avr32_ifcvt_modify_insn (CE_INFO, PATTERN, INSN, &num_true_changes); \ ++ } ++ ++#define IFCVT_EXTRA_FIELDS \ ++ int num_cond_clobber_insns; \ ++ int num_extra_move_insns; \ ++ rtx extra_move_insns[MAX_CONDITIONAL_EXECUTE]; \ ++ rtx moved_insns[MAX_CONDITIONAL_EXECUTE]; ++ ++#define IFCVT_INIT_EXTRA_FIELDS( CE_INFO ) \ ++ { \ ++ (CE_INFO)->num_cond_clobber_insns = 0; \ ++ (CE_INFO)->num_extra_move_insns = 0; \ ++ } ++ ++ ++#define IFCVT_MODIFY_CANCEL( CE_INFO ) avr32_ifcvt_modify_cancel (CE_INFO, &num_true_changes) ++ ++#define IFCVT_ALLOW_MODIFY_TEST_IN_INSN 1 ++#define IFCVT_COND_EXEC_BEFORE_RELOAD (TARGET_COND_EXEC_BEFORE_RELOAD) ++ ++enum avr32_builtins ++{ ++ AVR32_BUILTIN_MTSR, ++ AVR32_BUILTIN_MFSR, ++ AVR32_BUILTIN_MTDR, ++ AVR32_BUILTIN_MFDR, ++ AVR32_BUILTIN_CACHE, ++ AVR32_BUILTIN_SYNC, ++ AVR32_BUILTIN_SSRF, ++ AVR32_BUILTIN_CSRF, ++ AVR32_BUILTIN_TLBR, ++ AVR32_BUILTIN_TLBS, ++ AVR32_BUILTIN_TLBW, ++ AVR32_BUILTIN_BREAKPOINT, ++ AVR32_BUILTIN_XCHG, ++ AVR32_BUILTIN_LDXI, ++ AVR32_BUILTIN_BSWAP16, ++ AVR32_BUILTIN_BSWAP32, ++ AVR32_BUILTIN_COP, ++ AVR32_BUILTIN_MVCR_W, ++ AVR32_BUILTIN_MVRC_W, ++ AVR32_BUILTIN_MVCR_D, ++ AVR32_BUILTIN_MVRC_D, ++ AVR32_BUILTIN_MULSATHH_H, ++ AVR32_BUILTIN_MULSATHH_W, ++ AVR32_BUILTIN_MULSATRNDHH_H, ++ AVR32_BUILTIN_MULSATRNDWH_W, ++ AVR32_BUILTIN_MULSATWH_W, ++ AVR32_BUILTIN_MACSATHH_W, ++ AVR32_BUILTIN_SATADD_H, ++ AVR32_BUILTIN_SATSUB_H, ++ AVR32_BUILTIN_SATADD_W, ++ AVR32_BUILTIN_SATSUB_W, ++ AVR32_BUILTIN_MULWH_D, ++ AVR32_BUILTIN_MULNWH_D, ++ AVR32_BUILTIN_MACWH_D, ++ AVR32_BUILTIN_MACHH_D, ++ AVR32_BUILTIN_MUSFR, ++ AVR32_BUILTIN_MUSTR, ++ AVR32_BUILTIN_SATS, ++ AVR32_BUILTIN_SATU, ++ AVR32_BUILTIN_SATRNDS, ++ AVR32_BUILTIN_SATRNDU, ++ AVR32_BUILTIN_MEMS, ++ AVR32_BUILTIN_MEMC, ++ AVR32_BUILTIN_MEMT, ++ AVR32_BUILTIN_SLEEP, ++ AVR32_BUILTIN_DELAY_CYCLES ++}; ++ ++ ++#define FLOAT_LIB_COMPARE_RETURNS_BOOL(MODE, COMPARISON) \ ++ ((MODE == SFmode) || (MODE == DFmode)) ++ ++#define RENAME_LIBRARY_SET ".set" ++ ++/* Make ABI_NAME an alias for __GCC_NAME. */ ++#define RENAME_LIBRARY(GCC_NAME, ABI_NAME) \ ++ __asm__ (".globl\t__avr32_" #ABI_NAME "\n" \ ++ ".set\t__avr32_" #ABI_NAME \ ++ ", __" #GCC_NAME "\n"); ++ ++/* Give libgcc functions avr32 ABI name. */ ++#ifdef L_muldi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (muldi3, mul64) ++#endif ++#ifdef L_divdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (divdi3, sdiv64) ++#endif ++#ifdef L_udivdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (udivdi3, udiv64) ++#endif ++#ifdef L_moddi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (moddi3, smod64) ++#endif ++#ifdef L_umoddi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (umoddi3, umod64) ++#endif ++#ifdef L_ashldi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashldi3, lsl64) ++#endif ++#ifdef L_lshrdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (lshrdi3, lsr64) ++#endif ++#ifdef L_ashrdi3 ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (ashrdi3, asr64) ++#endif ++ ++#ifdef L_fixsfdi ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixsfdi, f32_to_s64) ++#endif ++#ifdef L_fixunssfdi ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (fixunssfdi, f32_to_u64) ++#endif ++#ifdef L_floatdidf ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdidf, s64_to_f64) ++#endif ++#ifdef L_floatdisf ++#define DECLARE_LIBRARY_RENAMES RENAME_LIBRARY (floatdisf, s64_to_f32) ++#endif ++ ++#endif +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/avr32.md gcc-4.4.6/gcc/config/avr32/avr32.md +--- gcc-4.4.6.orig/gcc/config/avr32/avr32.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/avr32.md 2011-08-27 19:45:42.807981430 +0200 +@@ -0,0 +1,5198 @@ ++;; AVR32 machine description file. ++;; Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++;; -*- Mode: Scheme -*- ++ ++(define_attr "type" "alu,alu2,alu_sat,mulhh,mulwh,mulww_w,mulww_d,div,machh_w,macww_w,macww_d,branch,call,load,load_rm,store,load2,load4,store2,store4,fmul,fcmps,fcmpd,fcast,fmv,fmvcpu,fldd,fstd,flds,fsts,fstm" ++ (const_string "alu")) ++ ++ ++(define_attr "cc" "none,set_vncz,set_ncz,set_cz,set_z,set_z_if_not_v2,bld,compare,cmp_cond_insn,clobber,call_set,fpcompare,from_fpcc" ++ (const_string "none")) ++ ++ ++; NB! Keep this in sync with enum architecture_type in avr32.h ++(define_attr "pipeline" "ap,ucr1,ucr2,ucr2nomul,ucr3,ucr3fp" ++ (const (symbol_ref "avr32_arch->arch_type"))) ++ ++; Insn length in bytes ++(define_attr "length" "" ++ (const_int 4)) ++ ++; Signal if an insn is predicable and hence can be conditionally executed. ++(define_attr "predicable" "no,yes" (const_string "no")) ++ ++;; Uses of UNSPEC in this file: ++(define_constants ++ [(UNSPEC_PUSHM 0) ++ (UNSPEC_POPM 1) ++ (UNSPEC_UDIVMODSI4_INTERNAL 2) ++ (UNSPEC_DIVMODSI4_INTERNAL 3) ++ (UNSPEC_STM 4) ++ (UNSPEC_LDM 5) ++ (UNSPEC_MOVSICC 6) ++ (UNSPEC_ADDSICC 7) ++ (UNSPEC_COND_MI 8) ++ (UNSPEC_COND_PL 9) ++ (UNSPEC_PIC_SYM 10) ++ (UNSPEC_PIC_BASE 11) ++ (UNSPEC_STORE_MULTIPLE 12) ++ (UNSPEC_STMFP 13) ++ (UNSPEC_FRCPA 14) ++ (UNSPEC_REG_TO_CC 15) ++ (UNSPEC_FORCE_MINIPOOL 16) ++ (UNSPEC_SATS 17) ++ (UNSPEC_SATU 18) ++ (UNSPEC_SATRNDS 19) ++ (UNSPEC_SATRNDU 20) ++ ]) ++ ++(define_constants ++ [(VUNSPEC_EPILOGUE 0) ++ (VUNSPEC_CACHE 1) ++ (VUNSPEC_MTSR 2) ++ (VUNSPEC_MFSR 3) ++ (VUNSPEC_BLOCKAGE 4) ++ (VUNSPEC_SYNC 5) ++ (VUNSPEC_TLBR 6) ++ (VUNSPEC_TLBW 7) ++ (VUNSPEC_TLBS 8) ++ (VUNSPEC_BREAKPOINT 9) ++ (VUNSPEC_MTDR 10) ++ (VUNSPEC_MFDR 11) ++ (VUNSPEC_MVCR 12) ++ (VUNSPEC_MVRC 13) ++ (VUNSPEC_COP 14) ++ (VUNSPEC_ALIGN 15) ++ (VUNSPEC_POOL_START 16) ++ (VUNSPEC_POOL_END 17) ++ (VUNSPEC_POOL_4 18) ++ (VUNSPEC_POOL_8 19) ++ (VUNSPEC_POOL_16 20) ++ (VUNSPEC_MUSFR 21) ++ (VUNSPEC_MUSTR 22) ++ (VUNSPEC_SYNC_CMPXCHG 23) ++ (VUNSPEC_SYNC_SET_LOCK_AND_LOAD 24) ++ (VUNSPEC_SYNC_STORE_IF_LOCK 25) ++ (VUNSPEC_EH_RETURN 26) ++ (VUNSPEC_FRS 27) ++ (VUNSPEC_CSRF 28) ++ (VUNSPEC_SSRF 29) ++ (VUNSPEC_SLEEP 30) ++ (VUNSPEC_DELAY_CYCLES 31) ++ (VUNSPEC_DELAY_CYCLES_1 32) ++ (VUNSPEC_DELAY_CYCLES_2 33) ++ (VUNSPEC_NOP 34) ++ (VUNSPEC_NOP3 35) ++ ]) ++ ++(define_constants ++ [ ++ ;; R7 = 15-7 = 8 ++ (FP_REGNUM 8) ++ ;; Return Register = R12 = 15 - 12 = 3 ++ (RETVAL_REGNUM 3) ++ ;; SP = R13 = 15 - 13 = 2 ++ (SP_REGNUM 2) ++ ;; LR = R14 = 15 - 14 = 1 ++ (LR_REGNUM 1) ++ ;; PC = R15 = 15 - 15 = 0 ++ (PC_REGNUM 0) ++ ;; FPSR = GENERAL_REGS + 1 = 17 ++ (FPCC_REGNUM 17) ++ ]) ++ ++ ++ ++ ++;;****************************************************************************** ++;; Macros ++;;****************************************************************************** ++ ++;; Integer Modes for basic alu insns ++(define_mode_iterator INTM [SI HI QI]) ++(define_mode_attr alu_cc_attr [(SI "set_vncz") (HI "clobber") (QI "clobber")]) ++ ++;; Move word modes ++(define_mode_iterator MOVM [SI V2HI V4QI]) ++ ++;; For mov/addcc insns ++(define_mode_iterator ADDCC [SI HI QI]) ++(define_mode_iterator MOVCC [SF SI HI QI]) ++(define_mode_iterator CMP [DI SI HI QI]) ++(define_mode_attr store_postfix [(SF ".w") (SI ".w") (HI ".h") (QI ".b")]) ++(define_mode_attr load_postfix [(SF ".w") (SI ".w") (HI ".sh") (QI ".ub")]) ++(define_mode_attr load_postfix_s [(SI ".w") (HI ".sh") (QI ".sb")]) ++(define_mode_attr load_postfix_u [(SI ".w") (HI ".uh") (QI ".ub")]) ++(define_mode_attr pred_mem_constraint [(SF "RKu11") (SI "RKu11") (HI "RKu10") (QI "RKu09")]) ++(define_mode_attr cmp_constraint [(DI "rKu20") (SI "rKs21") (HI "r") (QI "r")]) ++(define_mode_attr cmp_predicate [(DI "register_immediate_operand") ++ (SI "register_const_int_operand") ++ (HI "register_operand") ++ (QI "register_operand")]) ++(define_mode_attr cmp_length [(DI "6") ++ (SI "4") ++ (HI "4") ++ (QI "4")]) ++ ++;; For all conditional insns ++(define_code_iterator any_cond_b [ge lt geu ltu]) ++(define_code_iterator any_cond [gt ge lt le gtu geu ltu leu]) ++(define_code_iterator any_cond4 [gt le gtu leu]) ++(define_code_attr cond [(eq "eq") (ne "ne") (gt "gt") (ge "ge") (lt "lt") (le "le") ++ (gtu "hi") (geu "hs") (ltu "lo") (leu "ls")]) ++(define_code_attr invcond [(eq "ne") (ne "eq") (gt "le") (ge "lt") (lt "ge") (le "gt") ++ (gtu "ls") (geu "lo") (ltu "hs") (leu "hi")]) ++ ++;; For logical operations ++(define_code_iterator logical [and ior xor]) ++(define_code_attr logical_insn [(and "and") (ior "or") (xor "eor")]) ++ ++;; Predicable operations with three register operands ++(define_code_iterator predicable_op3 [and ior xor plus minus]) ++(define_code_attr predicable_insn3 [(and "and") (ior "or") (xor "eor") (plus "add") (minus "sub")]) ++(define_code_attr predicable_commutative3 [(and "%") (ior "%") (xor "%") (plus "%") (minus "")]) ++ ++;; Load the predicates ++(include "predicates.md") ++ ++ ++;;****************************************************************************** ++;; Automaton pipeline description for avr32 ++;;****************************************************************************** ++ ++(define_automaton "avr32_ap") ++ ++ ++(define_cpu_unit "is" "avr32_ap") ++(define_cpu_unit "a1,m1,da" "avr32_ap") ++(define_cpu_unit "a2,m2,d" "avr32_ap") ++ ++;;Alu instructions ++(define_insn_reservation "alu_op" 1 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu")) ++ "is,a1,a2") ++ ++(define_insn_reservation "alu2_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu2")) ++ "is,is+a1,a1+a2,a2") ++ ++(define_insn_reservation "alu_sat_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "alu_sat")) ++ "is,a1,a2") ++ ++ ++;;Mul instructions ++(define_insn_reservation "mulhh_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulhh,mulwh")) ++ "is,m1,m2") ++ ++(define_insn_reservation "mulww_w_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulww_w")) ++ "is,m1,m1+m2,m2") ++ ++(define_insn_reservation "mulww_d_op" 5 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "mulww_d")) ++ "is,m1,m1+m2,m1+m2,m2,m2") ++ ++(define_insn_reservation "div_op" 33 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "div")) ++ "is,m1,m1*31 + m2*31,m2") ++ ++(define_insn_reservation "machh_w_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "machh_w")) ++ "is*2,m1,m2") ++ ++ ++(define_insn_reservation "macww_w_op" 4 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "macww_w")) ++ "is*2,m1,m1,m2") ++ ++ ++(define_insn_reservation "macww_d_op" 6 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "macww_d")) ++ "is*2,m1,m1+m2,m1+m2,m2") ++ ++;;Bypasses for Mac instructions, because of accumulator cache. ++;;Set latency as low as possible in order to let the compiler let ++;;mul -> mac and mac -> mac combinations which use the same ++;;accumulator cache be placed close together to avoid any ++;;instructions which can ruin the accumulator cache come inbetween. ++(define_bypass 4 "machh_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 5 "macww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 7 "macww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++ ++(define_bypass 3 "mulhh_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 4 "mulww_w_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++(define_bypass 6 "mulww_d_op" "alu_op,alu2_op,alu_sat_op,load_op" "avr32_mul_waw_bypass") ++ ++ ++;;Bypasses for all mul/mac instructions followed by an instruction ++;;which reads the output AND writes the result to the same register. ++;;This will generate an Write After Write hazard which gives an ++;;extra cycle before the result is ready. ++(define_bypass 0 "machh_w_op" "machh_w_op" "avr32_valid_macmac_bypass") ++(define_bypass 0 "macww_w_op" "macww_w_op" "avr32_valid_macmac_bypass") ++(define_bypass 0 "macww_d_op" "macww_d_op" "avr32_valid_macmac_bypass") ++ ++(define_bypass 0 "mulhh_op" "machh_w_op" "avr32_valid_mulmac_bypass") ++(define_bypass 0 "mulww_w_op" "macww_w_op" "avr32_valid_mulmac_bypass") ++(define_bypass 0 "mulww_d_op" "macww_d_op" "avr32_valid_mulmac_bypass") ++ ++;;Branch and call instructions ++;;We assume that all branches and rcalls are predicted correctly :-) ++;;while calls use a lot of cycles. ++(define_insn_reservation "branch_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "branch")) ++ "nothing") ++ ++(define_insn_reservation "call_op" 10 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "call")) ++ "nothing") ++ ++ ++;;Load store instructions ++(define_insn_reservation "load_op" 2 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load")) ++ "is,da,d") ++ ++(define_insn_reservation "load_rm_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load_rm")) ++ "is,da,d") ++ ++ ++(define_insn_reservation "store_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store")) ++ "is,da,d") ++ ++ ++(define_insn_reservation "load_double_op" 3 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load2")) ++ "is,da,da+d,d") ++ ++(define_insn_reservation "load_quad_op" 4 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "load4")) ++ "is,da,da+d,da+d,d") ++ ++(define_insn_reservation "store_double_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store2")) ++ "is,da,da+d,d") ++ ++ ++(define_insn_reservation "store_quad_op" 0 ++ (and (eq_attr "pipeline" "ap") ++ (eq_attr "type" "store4")) ++ "is,da,da+d,da+d,d") ++ ++;;For store the operand to write to memory is read in d and ++;;the real latency between any instruction and a store is therefore ++;;one less than for the instructions which reads the operands in the first ++;;excecution stage ++(define_bypass 2 "load_double_op" "store_double_op" "avr32_store_bypass") ++(define_bypass 3 "load_quad_op" "store_quad_op" "avr32_store_bypass") ++(define_bypass 1 "load_op" "store_op" "avr32_store_bypass") ++(define_bypass 2 "load_rm_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "alu_sat_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "alu2_op" "store_op" "avr32_store_bypass") ++(define_bypass 1 "mulhh_op" "store_op" "avr32_store_bypass") ++(define_bypass 2 "mulww_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 4 "mulww_d_op" "store_op" "avr32_store_bypass" ) ++(define_bypass 2 "machh_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 3 "macww_w_op" "store_op" "avr32_store_bypass") ++(define_bypass 5 "macww_d_op" "store_op" "avr32_store_bypass") ++ ++ ++; Bypass for load double operation. If only the first loaded word is needed ++; then the latency is 2 ++(define_bypass 2 "load_double_op" ++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, ++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" ++ "avr32_valid_load_double_bypass") ++ ++; Bypass for load quad operation. If only the first or second loaded word is needed ++; we set the latency to 2 ++(define_bypass 2 "load_quad_op" ++ "load_op,load_rm_op,alu_sat_op, alu2_op, alu_op, mulhh_op, mulww_w_op, ++ mulww_d_op, machh_w_op, macww_w_op, macww_d_op" ++ "avr32_valid_load_quad_bypass") ++ ++ ++;;****************************************************************************** ++;; End of Automaton pipeline description for avr32 ++;;****************************************************************************** ++ ++(define_cond_exec ++ [(match_operator 0 "avr32_comparison_operator" ++ [(match_operand:CMP 1 "register_operand" "r") ++ (match_operand:CMP 2 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")])] ++ "TARGET_V2_INSNS" ++ "%!" ++) ++ ++(define_cond_exec ++ [(match_operator 0 "avr32_comparison_operator" ++ [(and:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "one_bit_set_operand" "i")) ++ (const_int 0)])] ++ "TARGET_V2_INSNS" ++ "%!" ++ ) ++ ++;;============================================================================= ++;; move ++;;----------------------------------------------------------------------------- ++ ++ ++;;== char - 8 bits ============================================================ ++(define_expand "movqi" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "") ++ (match_operand:QI 1 "general_operand" ""))] ++ "" ++ { ++ if ( can_create_pseudo_p () ){ ++ if (GET_CODE (operands[1]) == MEM && optimize){ ++ rtx reg = gen_reg_rtx (SImode); ++ ++ emit_insn (gen_zero_extendqisi2 (reg, operands[1])); ++ operands[1] = gen_lowpart (QImode, reg); ++ } ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (QImode, operands[1]); ++ } ++ ++ }) ++ ++(define_insn "*movqi_internal" ++ [(set (match_operand:QI 0 "nonimmediate_operand" "=r,r,m,r") ++ (match_operand:QI 1 "general_operand" "rKs08,m,r,i"))] ++ "register_operand (operands[0], QImode) ++ || register_operand (operands[1], QImode)" ++ "@ ++ mov\t%0, %1 ++ ld.ub\t%0, %1 ++ st.b\t%0, %1 ++ mov\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,load_rm,store,alu")]) ++ ++ ++ ++;;== short - 16 bits ========================================================== ++(define_expand "movhi" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "") ++ (match_operand:HI 1 "general_operand" ""))] ++ "" ++ { ++ if ( can_create_pseudo_p () ){ ++ if (GET_CODE (operands[1]) == MEM && optimize){ ++ rtx reg = gen_reg_rtx (SImode); ++ ++ emit_insn (gen_extendhisi2 (reg, operands[1])); ++ operands[1] = gen_lowpart (HImode, reg); ++ } ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (HImode, operands[1]); ++ } ++ ++ }) ++ ++ ++(define_insn "*movhi_internal" ++ [(set (match_operand:HI 0 "nonimmediate_operand" "=r,r,m,r") ++ (match_operand:HI 1 "general_operand" "rKs08,m,r,i"))] ++ "register_operand (operands[0], HImode) ++ || register_operand (operands[1], HImode)" ++ "@ ++ mov\t%0, %1 ++ ld.sh\t%0, %1 ++ st.h\t%0, %1 ++ mov\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,load_rm,store,alu")]) ++ ++ ++;;== int - 32 bits ============================================================ ++ ++(define_expand "movmisalignsi" ++ [(set (match_operand:SI 0 "nonimmediate_operand" "") ++ (match_operand:SI 1 "nonimmediate_operand" ""))] ++ "TARGET_UNALIGNED_WORD" ++ { ++ } ++) ++ ++(define_expand "mov<mode>" ++ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "") ++ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" ""))] ++ "" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) == MEM) ++ operands[1] = force_reg (<MODE>mode, operands[1]); ++ ++ /* Check for out of range immediate constants as these may ++ occur during reloading, since it seems like reload does ++ not check if the immediate is legitimate. Don't know if ++ this is a bug? */ ++ if ( reload_in_progress ++ && avr32_imm_in_const_pool ++ && GET_CODE(operands[1]) == CONST_INT ++ && !avr32_const_ok_for_constraint_p(INTVAL(operands[1]), 'K', "Ks21") ){ ++ operands[1] = force_const_mem(SImode, operands[1]); ++ } ++ /* Check for RMW memory operands. They are not allowed for mov operations ++ only the atomic memc/s/t operations */ ++ if ( !reload_in_progress ++ && avr32_rmw_memory_operand (operands[0], <MODE>mode) ){ ++ operands[0] = copy_rtx (operands[0]); ++ XEXP(operands[0], 0) = force_reg (<MODE>mode, XEXP(operands[0], 0)); ++ } ++ ++ if ( !reload_in_progress ++ && avr32_rmw_memory_operand (operands[1], <MODE>mode) ){ ++ operands[1] = copy_rtx (operands[1]); ++ XEXP(operands[1], 0) = force_reg (<MODE>mode, XEXP(operands[1], 0)); ++ } ++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS) ++ && !avr32_legitimate_pic_operand_p(operands[1]) ) ++ operands[1] = legitimize_pic_address (operands[1], <MODE>mode, ++ (can_create_pseudo_p () ? 0: operands[0])); ++ else if ( flag_pic && avr32_address_operand(operands[1], GET_MODE(operands[1])) ) ++ /* If we have an address operand then this function uses the pic register. */ ++ crtl->uses_pic_offset_table = 1; ++ }) ++ ++ ++(define_insn "mov<mode>_internal" ++ [(set (match_operand:MOVM 0 "avr32_non_rmw_nonimmediate_operand" "=r, r, r,r,r,Q,r") ++ (match_operand:MOVM 1 "avr32_non_rmw_general_operand" "rKs08,Ks21,J,n,Q,r,W"))] ++ "(register_operand (operands[0], <MODE>mode) ++ || register_operand (operands[1], <MODE>mode)) ++ && !avr32_rmw_memory_operand (operands[0], <MODE>mode) ++ && !avr32_rmw_memory_operand (operands[1], <MODE>mode)" ++ { ++ switch (which_alternative) { ++ case 0: ++ case 1: return "mov\t%0, %1"; ++ case 2: ++ if ( TARGET_V2_INSNS ) ++ return "movh\t%0, hi(%1)"; ++ /* Fallthrough */ ++ case 3: return "mov\t%0, lo(%1)\;orh\t%0,hi(%1)"; ++ case 4: ++ if ( (REG_P(XEXP(operands[1], 0)) ++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) ++ return "lddsp\t%0, %1"; ++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) ++ return "lddpc\t%0, %1"; ++ else ++ return "ld.w\t%0, %1"; ++ case 5: ++ if ( (REG_P(XEXP(operands[0], 0)) ++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) ++ return "stdsp\t%0, %1"; ++ else ++ return "st.w\t%0, %1"; ++ case 6: ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ return "lda.w\t%0, %1"; ++ else ++ return "ld.w\t%0, r6[%1@got]"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,4,8,4,4,8") ++ (set_attr "type" "alu,alu,alu,alu2,load,store,load") ++ (set_attr "cc" "none,none,set_z_if_not_v2,set_z,none,none,clobber")]) ++ ++ ++(define_expand "reload_out_rmw_memory_operand" ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (match_operand:SI 0 "address_operand" "")) ++ (set (mem:SI (match_dup 2)) ++ (match_operand:SI 1 "register_operand" ""))] ++ "" ++ { ++ operands[0] = XEXP(operands[0], 0); ++ } ++) ++ ++(define_expand "reload_in_rmw_memory_operand" ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (match_operand:SI 1 "address_operand" "")) ++ (set (match_operand:SI 0 "register_operand" "") ++ (mem:SI (match_dup 2)))] ++ "" ++ { ++ operands[1] = XEXP(operands[1], 0); ++ } ++) ++ ++ ++;; These instructions are for loading constants which cannot be loaded ++;; directly from the constant pool because the offset is too large ++;; high and lo_sum are used even tough for our case it should be ++;; low and high sum :-) ++(define_insn "mov_symbol_lo" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (high:SI (match_operand:SI 1 "immediate_operand" "i" )))] ++ "" ++ "mov\t%0, lo(%1)" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4")] ++) ++ ++(define_insn "add_symbol_hi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (lo_sum:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i" )))] ++ "" ++ "orh\t%0, hi(%1)" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4")] ++) ++ ++ ++ ++;; When generating pic, we need to load the symbol offset into a register. ++;; So that the optimizer does not confuse this with a normal symbol load ++;; we use an unspec. The offset will be loaded from a constant pool entry, ++;; since that is the only type of relocation we can use. ++(define_insn "pic_load_addr" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(match_operand:SI 1 "" "")] UNSPEC_PIC_SYM))] ++ "flag_pic && CONSTANT_POOL_ADDRESS_P(XEXP(operands[1], 0))" ++ "lddpc\t%0, %1" ++ [(set_attr "type" "load") ++ (set_attr "length" "4")] ++) ++ ++(define_insn "pic_compute_got_from_pc" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(minus:SI (pc) ++ (match_dup 0))] UNSPEC_PIC_BASE)) ++ (use (label_ref (match_operand 1 "" "")))] ++ "flag_pic" ++ { ++ (*targetm.asm_out.internal_label) (asm_out_file, "L", ++ CODE_LABEL_NUMBER (operands[1])); ++ return \"rsub\t%0, pc\"; ++ } ++ [(set_attr "cc" "clobber") ++ (set_attr "length" "2")] ++) ++ ++;;== long long int - 64 bits ================================================== ++ ++(define_expand "movdi" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "") ++ (match_operand:DI 1 "general_operand" ""))] ++ "" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (DImode, operands[1]); ++ ++ }) ++ ++ ++(define_insn_and_split "*movdi_internal" ++ [(set (match_operand:DI 0 "nonimmediate_operand" "=r,r, r, r,r,r,m") ++ (match_operand:DI 1 "general_operand" "r, Ks08,Ks21,G,n,m,r"))] ++ "register_operand (operands[0], DImode) ++ || register_operand (operands[1], DImode)" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 1: ++ case 2: ++ case 3: ++ case 4: ++ return "#"; ++ case 5: ++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) ++ return "ld.d\t%0, pc[%1 - .]"; ++ else ++ return "ld.d\t%0, %1"; ++ case 6: ++ return "st.d\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++;; Lets split all reg->reg or imm->reg transfers into two SImode transfers ++ "reload_completed && ++ (REG_P (operands[0]) && ++ (REG_P (operands[1]) ++ || GET_CODE (operands[1]) == CONST_INT ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ if ( REG_P(operands[1]) ){ ++ operands[3] = gen_highpart(SImode, operands[1]); ++ operands[1] = gen_lowpart(SImode, operands[1]); ++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE ++ || GET_CODE(operands[1]) == CONST_INT ){ ++ rtx split_const[2]; ++ avr32_split_const_expr (DImode, SImode, operands[1], split_const); ++ operands[3] = split_const[1]; ++ operands[1] = split_const[0]; ++ } else { ++ internal_error("Illegal operand[1] for movdi split!"); ++ } ++ } ++ ++ [(set_attr "length" "*,*,*,*,*,4,4") ++ (set_attr "type" "*,*,*,*,*,load2,store2") ++ (set_attr "cc" "*,*,*,*,*,none,none")]) ++ ++ ++;;== 128 bits ================================================== ++(define_expand "movti" ++ [(set (match_operand:TI 0 "nonimmediate_operand" "") ++ (match_operand:TI 1 "nonimmediate_operand" ""))] ++ "TARGET_ARCH_AP" ++ { ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (TImode, operands[1]); ++ ++ /* We must fix any pre_dec for loads and post_inc stores */ ++ if ( GET_CODE (operands[0]) == MEM ++ && GET_CODE (XEXP(operands[0],0)) == POST_INC ){ ++ emit_move_insn(gen_rtx_MEM(TImode, XEXP(XEXP(operands[0],0),0)), operands[1]); ++ emit_insn(gen_addsi3(XEXP(XEXP(operands[0],0),0), XEXP(XEXP(operands[0],0),0), GEN_INT(GET_MODE_SIZE(TImode)))); ++ DONE; ++ } ++ ++ if ( GET_CODE (operands[1]) == MEM ++ && GET_CODE (XEXP(operands[1],0)) == PRE_DEC ){ ++ emit_insn(gen_addsi3(XEXP(XEXP(operands[1],0),0), XEXP(XEXP(operands[1],0),0), GEN_INT(-GET_MODE_SIZE(TImode)))); ++ emit_move_insn(operands[0], gen_rtx_MEM(TImode, XEXP(XEXP(operands[1],0),0))); ++ DONE; ++ } ++ }) ++ ++ ++(define_insn_and_split "*movti_internal" ++ [(set (match_operand:TI 0 "avr32_movti_dst_operand" "=r,&r, r, <RKu00,r,r") ++ (match_operand:TI 1 "avr32_movti_src_operand" " r,RKu00>,RKu00,r, n,T"))] ++ "(register_operand (operands[0], TImode) ++ || register_operand (operands[1], TImode))" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 2: ++ case 4: ++ return "#"; ++ case 1: ++ return "ldm\t%p1, %0"; ++ case 3: ++ return "stm\t%p0, %1"; ++ case 5: ++ return "ld.d\t%U0, pc[%1 - .]\;ld.d\t%B0, pc[%1 - . + 8]"; ++ } ++ } ++ ++ "reload_completed && ++ (REG_P (operands[0]) && ++ (REG_P (operands[1]) ++ /* If this is a load from the constant pool we split it into ++ two double loads. */ ++ || (GET_CODE (operands[1]) == MEM ++ && GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF ++ && CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0))) ++ /* If this is a load where the pointer register is a part ++ of the register list, we must split it into two double ++ loads in order for it to be exception safe. */ ++ || (GET_CODE (operands[1]) == MEM ++ && register_operand (XEXP (operands[1], 0), SImode) ++ && reg_overlap_mentioned_p (operands[0], XEXP (operands[1], 0))) ++ || GET_CODE (operands[1]) == CONST_INT ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ { ++ operands[2] = simplify_gen_subreg ( DImode, operands[0], ++ TImode, 0 ); ++ operands[0] = simplify_gen_subreg ( DImode, operands[0], ++ TImode, 8 ); ++ if ( REG_P(operands[1]) ){ ++ operands[3] = simplify_gen_subreg ( DImode, operands[1], ++ TImode, 0 ); ++ operands[1] = simplify_gen_subreg ( DImode, operands[1], ++ TImode, 8 ); ++ } else if ( GET_CODE(operands[1]) == CONST_DOUBLE ++ || GET_CODE(operands[1]) == CONST_INT ){ ++ rtx split_const[2]; ++ avr32_split_const_expr (TImode, DImode, operands[1], split_const); ++ operands[3] = split_const[1]; ++ operands[1] = split_const[0]; ++ } else if (avr32_const_pool_ref_operand (operands[1], GET_MODE(operands[1]))){ ++ rtx split_const[2]; ++ rtx cop = avoid_constant_pool_reference (operands[1]); ++ if (operands[1] == cop) ++ cop = get_pool_constant (XEXP (operands[1], 0)); ++ avr32_split_const_expr (TImode, DImode, cop, split_const); ++ operands[3] = force_const_mem (DImode, split_const[1]); ++ operands[1] = force_const_mem (DImode, split_const[0]); ++ } else { ++ rtx ptr_reg = XEXP (operands[1], 0); ++ operands[1] = gen_rtx_MEM (DImode, ++ gen_rtx_PLUS ( SImode, ++ ptr_reg, ++ GEN_INT (8) )); ++ operands[3] = gen_rtx_MEM (DImode, ++ ptr_reg); ++ ++ /* Check if the first load will clobber the pointer. ++ If so, we must switch the order of the operations. */ ++ if ( reg_overlap_mentioned_p (operands[0], ptr_reg) ) ++ { ++ /* We need to switch the order of the operations ++ so that the pointer register does not get clobbered ++ after the first double word load. */ ++ rtx tmp; ++ tmp = operands[0]; ++ operands[0] = operands[2]; ++ operands[2] = tmp; ++ tmp = operands[1]; ++ operands[1] = operands[3]; ++ operands[3] = tmp; ++ } ++ ++ ++ } ++ } ++ [(set_attr "length" "*,*,4,4,*,8") ++ (set_attr "type" "*,*,load4,store4,*,load4")]) ++ ++ ++;;== float - 32 bits ========================================================== ++(define_expand "movsf" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "") ++ (match_operand:SF 1 "general_operand" ""))] ++ "" ++ { ++ ++ ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG) ++ operands[1] = force_reg (SFmode, operands[1]); ++ ++ }) ++ ++(define_insn "*movsf_internal" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,r,m") ++ (match_operand:SF 1 "general_operand" "r, G,F,m,r"))] ++ "(register_operand (operands[0], SFmode) ++ || register_operand (operands[1], SFmode))" ++ { ++ switch (which_alternative) { ++ case 0: ++ case 1: return "mov\t%0, %1"; ++ case 2: ++ { ++ HOST_WIDE_INT target_float[2]; ++ real_to_target (target_float, CONST_DOUBLE_REAL_VALUE (operands[1]), SFmode); ++ if ( TARGET_V2_INSNS ++ && avr32_hi16_immediate_operand (GEN_INT (target_float[0]), VOIDmode) ) ++ return "movh\t%0, hi(%1)"; ++ else ++ return "mov\t%0, lo(%1)\;orh\t%0, hi(%1)"; ++ } ++ case 3: ++ if ( (REG_P(XEXP(operands[1], 0)) ++ && REGNO(XEXP(operands[1], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[1], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[1], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[1], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[1], 0), 1)) <= 0x1FC) ) ++ return "lddsp\t%0, %1"; ++ else if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1])) ) ++ return "lddpc\t%0, %1"; ++ else ++ return "ld.w\t%0, %1"; ++ case 4: ++ if ( (REG_P(XEXP(operands[0], 0)) ++ && REGNO(XEXP(operands[0], 0)) == SP_REGNUM) ++ || (GET_CODE(XEXP(operands[0], 0)) == PLUS ++ && REGNO(XEXP(XEXP(operands[0], 0), 0)) == SP_REGNUM ++ && GET_CODE(XEXP(XEXP(operands[0], 0), 1)) == CONST_INT ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) % 4 == 0 ++ && INTVAL(XEXP(XEXP(operands[0], 0), 1)) <= 0x1FC) ) ++ return "stdsp\t%0, %1"; ++ else ++ return "st.w\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,8,4,4") ++ (set_attr "type" "alu,alu,alu2,load,store") ++ (set_attr "cc" "none,none,clobber,none,none")]) ++ ++ ++ ++;;== double - 64 bits ========================================================= ++(define_expand "movdf" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "") ++ (match_operand:DF 1 "general_operand" ""))] ++ "" ++ { ++ /* One of the ops has to be in a register. */ ++ if (GET_CODE (operands[0]) != REG){ ++ operands[1] = force_reg (DFmode, operands[1]); ++ } ++ }) ++ ++ ++(define_insn_and_split "*movdf_internal" ++ [(set (match_operand:DF 0 "nonimmediate_operand" "=r,r,r,r,m") ++ (match_operand:DF 1 "general_operand" " r,G,F,m,r"))] ++ "(register_operand (operands[0], DFmode) ++ || register_operand (operands[1], DFmode))" ++ { ++ switch (which_alternative ){ ++ case 0: ++ case 1: ++ case 2: ++ return "#"; ++ case 3: ++ if ( avr32_const_pool_ref_operand(operands[1], GET_MODE(operands[1]))) ++ return "ld.d\t%0, pc[%1 - .]"; ++ else ++ return "ld.d\t%0, %1"; ++ case 4: ++ return "st.d\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ "reload_completed ++ && (REG_P (operands[0]) ++ && (REG_P (operands[1]) ++ || GET_CODE (operands[1]) == CONST_DOUBLE))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 2) (match_dup 3))] ++ " ++ { ++ operands[2] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ operands[3] = gen_highpart(SImode, operands[1]); ++ operands[1] = gen_lowpart(SImode, operands[1]); ++ } ++ " ++ ++ [(set_attr "length" "*,*,*,4,4") ++ (set_attr "type" "*,*,*,load2,store2") ++ (set_attr "cc" "*,*,*,none,none")]) ++ ++ ++;;============================================================================= ++;; Conditional Moves ++;;============================================================================= ++(define_insn "ld<mode>_predicable" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r") ++ (match_operand:MOVCC 1 "avr32_non_rmw_memory_operand" "<MOVCC:pred_mem_constraint>"))] ++ "TARGET_V2_INSNS" ++ "ld<MOVCC:load_postfix>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++ ++(define_insn "st<mode>_predicable" ++ [(set (match_operand:MOVCC 0 "avr32_non_rmw_memory_operand" "=<MOVCC:pred_mem_constraint>") ++ (match_operand:MOVCC 1 "register_operand" "r"))] ++ "TARGET_V2_INSNS" ++ "st<MOVCC:store_postfix>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "store") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "mov<mode>_predicable" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r") ++ (match_operand:MOVCC 1 "avr32_cond_register_immediate_operand" "rKs08"))] ++ "" ++ "mov%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "alu") ++ (set_attr "predicable" "yes")] ++) ++ ++ ++;;============================================================================= ++;; Move chunks of memory ++;;============================================================================= ++ ++(define_expand "movmemsi" ++ [(match_operand:BLK 0 "general_operand" "") ++ (match_operand:BLK 1 "general_operand" "") ++ (match_operand:SI 2 "const_int_operand" "") ++ (match_operand:SI 3 "const_int_operand" "")] ++ "" ++ " ++ if (avr32_gen_movmemsi (operands)) ++ DONE; ++ FAIL; ++ " ++ ) ++ ++ ++ ++ ++;;============================================================================= ++;; Bit field instructions ++;;----------------------------------------------------------------------------- ++;; Instructions to insert or extract bit-fields ++;;============================================================================= ++ ++(define_insn "insv" ++ [ (set (zero_extract:SI (match_operand:SI 0 "register_operand" "+r") ++ (match_operand:SI 1 "immediate_operand" "Ku05") ++ (match_operand:SI 2 "immediate_operand" "Ku05")) ++ (match_operand 3 "register_operand" "r"))] ++ "" ++ "bfins\t%0, %3, %2, %1" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++ ++(define_expand "extv" ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (sign_extract:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "") ++ (match_operand:SI 3 "immediate_operand" "")))] ++ "" ++ { ++ if ( INTVAL(operands[2]) >= 32 ) ++ FAIL; ++ } ++) ++ ++(define_expand "extzv" ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "") ++ (match_operand:SI 3 "immediate_operand" "")))] ++ "" ++ { ++ if ( INTVAL(operands[2]) >= 32 ) ++ FAIL; ++ } ++) ++ ++(define_insn "extv_internal" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extract:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku05") ++ (match_operand:SI 3 "immediate_operand" "Ku05")))] ++ "INTVAL(operands[2]) < 32" ++ "bfexts\t%0, %1, %3, %2" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++(define_insn "extzv_internal" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku05") ++ (match_operand:SI 3 "immediate_operand" "Ku05")))] ++ "INTVAL(operands[2]) < 32" ++ "bfextu\t%0, %1, %3, %2" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++ ++;;============================================================================= ++;; Some peepholes for avoiding unnecessary cast instructions ++;; followed by bfins. ++;;----------------------------------------------------------------------------- ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) ++ (set (zero_extract:SI (match_operand 2 "register_operand" "") ++ (match_operand:SI 3 "immediate_operand" "") ++ (match_operand:SI 4 "immediate_operand" "")) ++ (match_dup 0))] ++ "((peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[3]) <= 8)))" ++ [(set (zero_extract:SI (match_dup 2) ++ (match_dup 3) ++ (match_dup 4)) ++ (match_dup 1))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:HI 1 "register_operand" ""))) ++ (set (zero_extract:SI (match_operand 2 "register_operand" "") ++ (match_operand:SI 3 "immediate_operand" "") ++ (match_operand:SI 4 "immediate_operand" "")) ++ (match_dup 0))] ++ "((peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[3]) <= 16)))" ++ [(set (zero_extract:SI (match_dup 2) ++ (match_dup 3) ++ (match_dup 4)) ++ (match_dup 1))] ++ ) ++ ++;;============================================================================= ++;; push bytes ++;;----------------------------------------------------------------------------- ++;; Implements the push instruction ++;;============================================================================= ++(define_insn "pushm" ++ [(set (mem:BLK (pre_dec:BLK (reg:SI SP_REGNUM))) ++ (unspec:BLK [(match_operand 0 "const_int_operand" "")] ++ UNSPEC_PUSHM))] ++ "" ++ { ++ if (INTVAL(operands[0])) { ++ return "pushm\t%r0"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "store") ++ (set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "stm" ++ [(unspec [(match_operand 0 "register_operand" "r") ++ (match_operand 1 "const_int_operand" "") ++ (match_operand 2 "const_int_operand" "")] ++ UNSPEC_STM)] ++ "" ++ { ++ if (INTVAL(operands[1])) { ++ if (INTVAL(operands[2]) != 0) ++ return "stm\t--%0, %s1"; ++ else ++ return "stm\t%0, %s1"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "store") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++(define_insn "popm" ++ [(unspec [(match_operand 0 "const_int_operand" "")] ++ UNSPEC_POPM)] ++ "" ++ { ++ if (INTVAL(operands[0])) { ++ return "popm %r0"; ++ } else { ++ return ""; ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "2")]) ++ ++ ++ ++;;============================================================================= ++;; add ++;;----------------------------------------------------------------------------- ++;; Adds reg1 with reg2 and puts the result in reg0. ++;;============================================================================= ++(define_insn "add<mode>3" ++ [(set (match_operand:INTM 0 "register_operand" "=r,r,r,r,r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "%0,r,0,r,0") ++ (match_operand:INTM 2 "avr32_add_operand" "r,r,Is08,Is16,Is21")))] ++ "" ++ "@ ++ add %0, %2 ++ add %0, %1, %2 ++ sub %0, %n2 ++ sub %0, %1, %n2 ++ sub %0, %n2" ++ ++ [(set_attr "length" "2,4,2,4,4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "add<mode>3_lsl" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (ashift:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02")) ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "" ++ "add %0, %2, %1 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "add<mode>3_lsl2" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:INTM 3 "avr32_add_shift_immediate_operand" "Ku02"))))] ++ "" ++ "add %0, %1, %2 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++ ++(define_insn "add<mode>3_mul" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (mult:INTM (match_operand:INTM 1 "register_operand" "r") ++ (match_operand:INTM 3 "immediate_operand" "Ku04" )) ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "add %0, %2, %1 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "add<mode>3_mul2" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (plus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (mult:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:INTM 3 "immediate_operand" "Ku04" ))))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "add %0, %1, %2 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (ashift:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" ++ [(set (match_dup 3) ++ (plus:SI (ashift:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 4)))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (ashift:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 0)))] ++ "(peep2_reg_dead_p(2, operands[0]) && ++ (INTVAL(operands[2]) < 4 && INTVAL(operands[2]) > 0))" ++ [(set (match_dup 3) ++ (plus:SI (ashift:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 4)))] ++ ) ++ ++(define_insn "adddi3" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (plus:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "@ ++ add %0, %2\;adc %m0, %m0, %m2 ++ add %0, %1, %2\;adc %m0, %m1, %m2" ++ [(set_attr "length" "6,8") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "set_vncz")]) ++ ++ ++(define_insn "add<mode>_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (plus:INTM (match_dup 0) ++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "%Is08")))] ++ "" ++ "sub%?\t%0, -%1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++) ++ ++;;============================================================================= ++;; subtract ++;;----------------------------------------------------------------------------- ++;; Subtract reg2 or immediate value from reg0 and puts the result in reg0. ++;;============================================================================= ++ ++(define_insn "sub<mode>3" ++ [(set (match_operand:INTM 0 "general_operand" "=r,r,r,r,r,r,r") ++ (minus:INTM (match_operand:INTM 1 "register_const_int_operand" "0,r,0,r,0,r,Ks08") ++ (match_operand:INTM 2 "register_const_int_operand" "r,r,Ks08,Ks16,Ks21,0,r")))] ++ "" ++ "@ ++ sub %0, %2 ++ sub %0, %1, %2 ++ sub %0, %2 ++ sub %0, %1, %2 ++ sub %0, %2 ++ rsub %0, %1 ++ rsub %0, %2, %1" ++ [(set_attr "length" "2,4,2,4,4,2,4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "*sub<mode>3_mul" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (minus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (mult:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:SI 3 "immediate_operand" "Ku04" ))))] ++ "(INTVAL(operands[3]) == 0) || (INTVAL(operands[3]) == 2) || ++ (INTVAL(operands[3]) == 4) || (INTVAL(operands[3]) == 8)" ++ "sub %0, %1, %2 << %p3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++(define_insn "*sub<mode>3_lsl" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (minus:INTM (match_operand:INTM 1 "register_operand" "r") ++ (ashift:INTM (match_operand:INTM 2 "register_operand" "r") ++ (match_operand:SI 3 "avr32_add_shift_immediate_operand" "Ku02"))))] ++ "" ++ "sub %0, %1, %2 << %3" ++ [(set_attr "length" "4") ++ (set_attr "cc" "<INTM:alu_cc_attr>")]) ++ ++ ++(define_insn "subdi3" ++ [(set (match_operand:DI 0 "register_operand" "=r,r") ++ (minus:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "@ ++ sub %0, %2\;sbc %m0, %m0, %m2 ++ sub %0, %1, %2\;sbc %m0, %m1, %m2" ++ [(set_attr "length" "6,8") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "set_vncz")]) ++ ++ ++(define_insn "sub<mode>_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (minus:INTM (match_dup 0) ++ (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08")))] ++ "" ++ "sub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "rsub<mode>_imm_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "+r") ++ (minus:INTM (match_operand:INTM 1 "avr32_cond_immediate_operand" "Ks08") ++ (match_dup 0)))] ++ "" ++ "rsub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++;;============================================================================= ++;; multiply ++;;----------------------------------------------------------------------------- ++;; Multiply op1 and op2 and put the value in op0. ++;;============================================================================= ++ ++ ++(define_insn "mulqi3" ++ [(set (match_operand:QI 0 "register_operand" "=r,r,r") ++ (mult:QI (match_operand:QI 1 "register_operand" "%0,r,r") ++ (match_operand:QI 2 "avr32_mul_operand" "r,r,Ks08")))] ++ "!TARGET_NO_MUL_INSNS" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mul %0, %2"; ++ case 1: ++ return "mul %0, %1, %2"; ++ case 2: ++ return "mul %0, %1, %2"; ++ default: ++ gcc_unreachable(); ++ } ++ } ++ [(set_attr "type" "mulww_w,mulww_w,mulwh") ++ (set_attr "length" "2,4,4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "mulsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (mult:SI (match_operand:SI 1 "register_operand" "%0,r,r") ++ (match_operand:SI 2 "avr32_mul_operand" "r,r,Ks08")))] ++ "!TARGET_NO_MUL_INSNS" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mul %0, %2"; ++ case 1: ++ return "mul %0, %1, %2"; ++ case 2: ++ return "mul %0, %1, %2"; ++ default: ++ gcc_unreachable(); ++ } ++ } ++ [(set_attr "type" "mulww_w,mulww_w,mulwh") ++ (set_attr "length" "2,4,4") ++ (set_attr "cc" "none")]) ++ ++ ++(define_insn "mulhisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulhh.w %0, %1:b, %2:b" ++ [(set_attr "type" "mulhh") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_peephole2 ++ [(match_scratch:DI 6 "r") ++ (set (match_operand:SI 0 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "")))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (ashiftrt:SI (match_dup 0) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP ++ && (peep2_reg_dead_p(1, operands[0]) || (REGNO(operands[0]) == REGNO(operands[3])))" ++ [(set (match_dup 4) (sign_extend:SI (match_dup 1))) ++ (set (match_dup 6) ++ (ashift:DI (mult:DI (sign_extend:DI (match_dup 4)) ++ (sign_extend:DI (match_dup 2))) ++ (const_int 16))) ++ (set (match_dup 3) (match_dup 5))] ++ ++ "{ ++ operands[4] = gen_rtx_REG(SImode, REGNO(operands[1])); ++ operands[5] = gen_highpart (SImode, operands[4]); ++ }" ++ ) ++ ++(define_insn "mulnhisi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_operand:HI 1 "register_operand" "r"))) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulnhh.w %0, %1:b, %2:b" ++ [(set_attr "type" "mulhh") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "machisi3" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (mult:SI ++ (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "machh.w %0, %1:b, %2:b" ++ [(set_attr "type" "machh_w") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++(define_insn "mulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS" ++ "muls.d %0, %1, %2" ++ [(set_attr "type" "mulww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "umulsidi3" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))))] ++ "!TARGET_NO_MUL_INSNS" ++ "mulu.d %0, %1, %2" ++ [(set_attr "type" "mulww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*mulaccsi3" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (mult:SI (match_operand:SI 1 "register_operand" "%r") ++ (match_operand:SI 2 "register_operand" "r")) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "mac %0, %1, %2" ++ [(set_attr "type" "macww_w") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*mulaccsidi3" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (mult:DI ++ (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "macs.d %0, %1, %2" ++ [(set_attr "type" "macww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++(define_insn "*umulaccsidi3" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (mult:DI ++ (zero_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (zero_extend:DI (match_operand:SI 2 "register_operand" "r"))) ++ (match_dup 0)))] ++ "!TARGET_NO_MUL_INSNS" ++ "macu.d %0, %1, %2" ++ [(set_attr "type" "macww_d") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;; Try to avoid Write-After-Write hazards for mul operations ++;; if it can be done ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand 1 "general_operand" "")) ++ (sign_extend:SI (match_operand 2 "general_operand" "")))) ++ (set (match_dup 0) ++ (match_operator:SI 3 "alu_operator" [(match_dup 0) ++ (match_operand 4 "general_operand" "")]))] ++ "peep2_reg_dead_p(1, operands[2])" ++ [(set (match_dup 5) ++ (mult:SI ++ (sign_extend:SI (match_dup 1)) ++ (sign_extend:SI (match_dup 2)))) ++ (set (match_dup 0) ++ (match_op_dup 3 [(match_dup 5) ++ (match_dup 4)]))] ++ "{operands[5] = gen_rtx_REG(SImode, REGNO(operands[2]));}" ++ ) ++ ++ ++ ++;;============================================================================= ++;; DSP instructions ++;;============================================================================= ++(define_insn "mulsathh_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_truncate:HI (ashiftrt:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsathh.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsatrndhh_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_truncate:HI (ashiftrt:SI ++ (plus:SI (mult:SI (sign_extend:SI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:SI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1073741824)) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatrndhh.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsathh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsathh.w\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++(define_insn "mulsatwh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatwh.w\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "mulsatrndwh_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_truncate:SI (ashiftrt:DI (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1073741824)) ++ (const_int 15))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulsatrndwh.w\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "macsathh_w" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (plus:SI (match_dup 0) ++ (ss_truncate:SI (ashift:DI (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 1)))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "macsathh.w\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulhh")]) ++ ++ ++(define_insn "mulwh_d" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++ ++(define_insn "mulnwh_d" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (ashift:DI (mult:DI (not:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "r"))) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16)))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "mulnwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "macwh_d" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (match_dup 0) ++ (ashift:DI (mult:DI (sign_extend:DI (match_operand:SI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r"))) ++ (const_int 16))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "macwh.d\t%0, %1, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "machh_d" ++ [(set (match_operand:DI 0 "register_operand" "+r") ++ (plus:DI (match_dup 0) ++ (mult:DI (sign_extend:DI (match_operand:HI 1 "register_operand" "%r")) ++ (sign_extend:DI (match_operand:HI 2 "register_operand" "r")))))] ++ "!TARGET_NO_MUL_INSNS && TARGET_DSP" ++ "machh.d\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "mulwh")]) ++ ++(define_insn "satadd_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_plus:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satadd.w\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satsub_w" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (ss_minus:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satsub.w\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satadd_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_plus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satadd.h\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++(define_insn "satsub_h" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (ss_minus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")))] ++ "TARGET_DSP" ++ "satsub.h\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none") ++ (set_attr "type" "alu_sat")]) ++ ++ ++;;============================================================================= ++;; smin ++;;----------------------------------------------------------------------------- ++;; Set reg0 to the smallest value of reg1 and reg2. It is used for signed ++;; values in the registers. ++;;============================================================================= ++(define_insn "sminsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (smin:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "min %0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++;;============================================================================= ++;; smax ++;;----------------------------------------------------------------------------- ++;; Set reg0 to the largest value of reg1 and reg2. It is used for signed ++;; values in the registers. ++;;============================================================================= ++(define_insn "smaxsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (smax:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")))] ++ "" ++ "max %0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;;============================================================================= ++;; Logical operations ++;;----------------------------------------------------------------------------- ++ ++ ++;; Split up simple DImode logical operations. Simply perform the logical ++;; operation on the upper and lower halves of the registers. ++(define_split ++ [(set (match_operand:DI 0 "register_operand" "") ++ (match_operator:DI 6 "logical_binary_operator" ++ [(match_operand:DI 1 "register_operand" "") ++ (match_operand:DI 2 "register_operand" "")]))] ++ "reload_completed" ++ [(set (match_dup 0) (match_op_dup:SI 6 [(match_dup 1) (match_dup 2)])) ++ (set (match_dup 3) (match_op_dup:SI 6 [(match_dup 4) (match_dup 5)]))] ++ " ++ { ++ operands[3] = gen_highpart (SImode, operands[0]); ++ operands[0] = gen_lowpart (SImode, operands[0]); ++ operands[4] = gen_highpart (SImode, operands[1]); ++ operands[1] = gen_lowpart (SImode, operands[1]); ++ operands[5] = gen_highpart (SImode, operands[2]); ++ operands[2] = gen_lowpart (SImode, operands[2]); ++ }" ++) ++ ++;;============================================================================= ++;; Logical operations with shifted operand ++;;============================================================================= ++(define_insn "<code>si_lshift" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (logical:SI (match_operator:SI 4 "logical_shift_operator" ++ [(match_operand:SI 2 "register_operand" "r") ++ (match_operand:SI 3 "immediate_operand" "Ku05")]) ++ (match_operand:SI 1 "register_operand" "r")))] ++ "" ++ { ++ if ( GET_CODE(operands[4]) == ASHIFT ) ++ return "<logical_insn>\t%0, %1, %2 << %3"; ++ else ++ return "<logical_insn>\t%0, %1, %2 >> %3"; ++ } ++ ++ [(set_attr "cc" "set_z")] ++) ++ ++ ++;;************************************************ ++;; Peepholes for detecting logical operantions ++;; with shifted operands ++;;************************************************ ++ ++(define_peephole ++ [(set (match_operand:SI 3 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 0 "register_operand" "") ++ (logical:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 3)))] ++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ { ++ if ( GET_CODE(operands[5]) == ASHIFT ) ++ return "<logical_insn>\t%0, %4, %1 << %2"; ++ else ++ return "<logical_insn>\t%0, %4, %1 >> %2"; ++ } ++ [(set_attr "cc" "set_z")] ++ ) ++ ++(define_peephole ++ [(set (match_operand:SI 3 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 0 "register_operand" "") ++ (logical:SI (match_dup 3) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(dead_or_set_p(insn, operands[3])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ { ++ if ( GET_CODE(operands[5]) == ASHIFT ) ++ return "<logical_insn>\t%0, %4, %1 << %2"; ++ else ++ return "<logical_insn>\t%0, %4, %1 >> %2"; ++ } ++ [(set_attr "cc" "set_z")] ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 3 "register_operand" "") ++ (logical:SI (match_operand:SI 4 "register_operand" "") ++ (match_dup 0)))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ ++ [(set (match_dup 3) ++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) ++ (match_dup 4)))] ++ ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operator:SI 5 "logical_shift_operator" ++ [(match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" "")])) ++ (set (match_operand:SI 3 "register_operand" "") ++ (logical:SI (match_dup 0) ++ (match_operand:SI 4 "register_operand" "")))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[3]) == REGNO(operands[0]))" ++ ++ [(set (match_dup 3) ++ (logical:SI (match_op_dup:SI 5 [(match_dup 1) (match_dup 2)]) ++ (match_dup 4)))] ++ ++ "" ++) ++ ++ ++;;============================================================================= ++;; and ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise logical-and between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "andnsi" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (and:SI (match_dup 0) ++ (not:SI (match_operand:SI 1 "register_operand" "r"))))] ++ "" ++ "andn %0, %1" ++ [(set_attr "cc" "set_z") ++ (set_attr "length" "2")] ++) ++ ++ ++(define_insn "andsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r,r, r, r,r,r,r,r") ++ (and:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,r,0,0, 0, 0,0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " N,M,N,Ku16,Ks17,J,L,r,i,r")))] ++ "" ++ "@ ++ memc\t%0, %z2 ++ bfextu\t%0, %1, 0, %z2 ++ cbr\t%0, %z2 ++ andl\t%0, %2, COH ++ andl\t%0, lo(%2) ++ andh\t%0, hi(%2), COH ++ andh\t%0, hi(%2) ++ and\t%0, %2 ++ andh\t%0, hi(%2)\;andl\t%0, lo(%2) ++ and\t%0, %1, %2" ++ ++ [(set_attr "length" "4,4,2,4,4,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z,set_z")]) ++ ++ ++ ++(define_insn "anddi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (and:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; or ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise inclusive-or between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "iorsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r,r, r,r,r,r") ++ (ior:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0,0, 0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " O,O,Ku16,J,r,i,r")))] ++ "" ++ "@ ++ mems\t%0, %p2 ++ sbr\t%0, %p2 ++ orl\t%0, %2 ++ orh\t%0, hi(%2) ++ or\t%0, %2 ++ orh\t%0, hi(%2)\;orl\t%0, lo(%2) ++ or\t%0, %1, %2" ++ ++ [(set_attr "length" "4,2,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z,set_z")]) ++ ++ ++(define_insn "iordi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (ior:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; xor bytes ++;;----------------------------------------------------------------------------- ++;; Store the result after a bitwise exclusive-or between reg0 and reg2 in reg0. ++;;============================================================================= ++ ++(define_insn "xorsi3" ++ [(set (match_operand:SI 0 "avr32_rmw_memory_or_register_operand" "=Y,r, r,r,r,r") ++ (xor:SI (match_operand:SI 1 "avr32_rmw_memory_or_register_operand" "%0,0, 0,0,0,r" ) ++ (match_operand:SI 2 "nonmemory_operand" " O,Ku16,J,r,i,r")))] ++ "" ++ "@ ++ memt\t%0, %p2 ++ eorl\t%0, %2 ++ eorh\t%0, hi(%2) ++ eor\t%0, %2 ++ eorh\t%0, hi(%2)\;eorl\t%0, lo(%2) ++ eor\t%0, %1, %2" ++ ++ [(set_attr "length" "4,4,4,2,8,4") ++ (set_attr "cc" "none,set_z,set_z,set_z,set_z,set_z")]) ++ ++(define_insn "xordi3" ++ [(set (match_operand:DI 0 "register_operand" "=&r,&r") ++ (xor:DI (match_operand:DI 1 "register_operand" "%0,r") ++ (match_operand:DI 2 "register_operand" "r,r")))] ++ "" ++ "#" ++ [(set_attr "length" "8") ++ (set_attr "cc" "clobber")] ++) ++ ++;;============================================================================= ++;; Three operand predicable insns ++;;============================================================================= ++ ++(define_insn "<predicable_insn3><mode>_predicable" ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r") ++ (match_operand:INTM 2 "register_operand" "r")))] ++ "TARGET_V2_INSNS" ++ "<predicable_insn3>%?\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn_and_split "<predicable_insn3><mode>_imm_clobber_predicable" ++ [(parallel ++ [(set (match_operand:INTM 0 "register_operand" "=r") ++ (predicable_op3:INTM (match_operand:INTM 1 "register_operand" "<predicable_commutative3>r") ++ (match_operand:INTM 2 "avr32_mov_immediate_operand" "JKs21"))) ++ (clobber (match_operand:INTM 3 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) ++ return "%! mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) ++ return "%! mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else ++ return "%! movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3"; ++ } ++ else ++ { ++ if ( !avr32_cond_imm_clobber_splittable (insn, operands) ) ++ { ++ if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks08") ) ++ return "mov%?\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else if ( avr32_const_ok_for_constraint_p (INTVAL (operands[2]), 'K', "Ks21") ) ++ return "mov\t%3, %2\;<predicable_insn3>%?\t%0, %1, %3"; ++ else ++ return "movh\t%3, hi(%2)\;<predicable_insn3>%?\t%0, %1, %3"; ++ } ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload ++ && avr32_cond_imm_clobber_splittable (insn, operands))" ++ [(set (match_dup 0) ++ (predicable_op3:INTM (match_dup 1) ++ (match_dup 2)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++ ++;;============================================================================= ++;; Zero extend predicable insns ++;;============================================================================= ++(define_insn_and_split "zero_extendhisi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:HI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xffff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:SI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++(define_insn_and_split "zero_extendqisi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:SI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++ ++(define_insn_and_split "zero_extendqihi_clobber_predicable" ++ [(parallel ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI (match_operand:QI 1 "register_operand" "r"))) ++ (clobber (match_operand:SI 2 "register_operand" "=&r"))])] ++ "TARGET_V2_INSNS" ++ { ++ if ( current_insn_predicate != NULL_RTX ) ++ { ++ return "%! mov\t%2, 0xff\;and%?\t%0, %1, %2"; ++ } ++ else ++ { ++ return "#"; ++ } ++ ++ } ++ ;; If we find out that we could not actually do if-conversion on the block ++ ;; containing this insn we convert it back to normal immediate format ++ ;; to avoid outputing a redundant move insn ++ ;; Do not split until after we have checked if we can make the insn ++ ;; conditional. ++ "(GET_CODE (PATTERN (insn)) != COND_EXEC ++ && cfun->machine->ifcvt_after_reload)" ++ [(set (match_dup 0) ++ (zero_extend:HI (match_dup 1)))] ++ "" ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")] ++ ) ++;;============================================================================= ++;; divmod ++;;----------------------------------------------------------------------------- ++;; Signed division that produces both a quotient and a remainder. ++;;============================================================================= ++ ++(define_expand "divmodsi4" ++ [(parallel [ ++ (parallel [ ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (div:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r"))) ++ (set (match_operand:SI 3 "register_operand" "=r") ++ (mod:SI (match_dup 1) ++ (match_dup 2)))]) ++ (use (match_dup 4))])] ++ "" ++ { ++ if (can_create_pseudo_p ()) { ++ operands[4] = gen_reg_rtx (DImode); ++ emit_insn(gen_divmodsi4_internal(operands[4],operands[1],operands[2])); ++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); ++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); ++ DONE; ++ } else { ++ FAIL; ++ } ++ }) ++ ++ ++(define_insn "divmodsi4_internal" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")] ++ UNSPEC_DIVMODSI4_INTERNAL))] ++ "" ++ "divs %0, %1, %2" ++ [(set_attr "type" "div") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; udivmod ++;;----------------------------------------------------------------------------- ++;; Unsigned division that produces both a quotient and a remainder. ++;;============================================================================= ++(define_expand "udivmodsi4" ++ [(parallel [ ++ (parallel [ ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (udiv:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r"))) ++ (set (match_operand:SI 3 "register_operand" "=r") ++ (umod:SI (match_dup 1) ++ (match_dup 2)))]) ++ (use (match_dup 4))])] ++ "" ++ { ++ if (can_create_pseudo_p ()) { ++ operands[4] = gen_reg_rtx (DImode); ++ ++ emit_insn(gen_udivmodsi4_internal(operands[4],operands[1],operands[2])); ++ emit_move_insn(operands[0], gen_rtx_SUBREG( SImode, operands[4], 4)); ++ emit_move_insn(operands[3], gen_rtx_SUBREG( SImode, operands[4], 0)); ++ ++ DONE; ++ } else { ++ FAIL; ++ } ++ }) ++ ++(define_insn "udivmodsi4_internal" ++ [(set (match_operand:DI 0 "register_operand" "=r") ++ (unspec:DI [(match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "register_operand" "r")] ++ UNSPEC_UDIVMODSI4_INTERNAL))] ++ "" ++ "divu %0, %1, %2" ++ [(set_attr "type" "div") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; Arithmetic-shift left ++;;----------------------------------------------------------------------------- ++;; Arithmetic-shift reg0 left by reg2 or immediate value. ++;;============================================================================= ++ ++(define_insn "ashlsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (ashift:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ lsl %0, %1, %2 ++ lsl %0, %2 ++ lsl %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++;;============================================================================= ++;; Arithmetic-shift right ++;;----------------------------------------------------------------------------- ++;; Arithmetic-shift reg0 right by an immediate value. ++;;============================================================================= ++ ++(define_insn "ashrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (ashiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ asr %0, %1, %2 ++ asr %0, %2 ++ asr %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++;;============================================================================= ++;; Logical shift right ++;;----------------------------------------------------------------------------- ++;; Logical shift reg0 right by an immediate value. ++;;============================================================================= ++ ++(define_insn "lshrsi3" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r") ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "r,0,r") ++ (match_operand:SI 2 "register_const_int_operand" "r,Ku05,Ku05")))] ++ "" ++ "@ ++ lsr %0, %1, %2 ++ lsr %0, %2 ++ lsr %0, %1, %2" ++ [(set_attr "length" "4,2,4") ++ (set_attr "cc" "set_ncz")]) ++ ++ ++;;============================================================================= ++;; neg ++;;----------------------------------------------------------------------------- ++;; Negate operand 1 and store the result in operand 0. ++;;============================================================================= ++(define_insn "negsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (neg:SI (match_operand:SI 1 "register_operand" "0,r")))] ++ "" ++ "@ ++ neg\t%0 ++ rsub\t%0, %1, 0" ++ [(set_attr "length" "2,4") ++ (set_attr "cc" "set_vncz")]) ++ ++(define_insn "negsi2_predicable" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (neg:SI (match_dup 0)))] ++ "TARGET_V2_INSNS" ++ "rsub%?\t%0, 0" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++;;============================================================================= ++;; abs ++;;----------------------------------------------------------------------------- ++;; Store the absolute value of operand 1 into operand 0. ++;;============================================================================= ++(define_insn "abssi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "0")))] ++ "" ++ "abs\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "set_z")]) ++ ++ ++;;============================================================================= ++;; one_cmpl ++;;----------------------------------------------------------------------------- ++;; Store the bitwise-complement of operand 1 into operand 0. ++;;============================================================================= ++ ++(define_insn "one_cmplsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r") ++ (not:SI (match_operand:SI 1 "register_operand" "0,r")))] ++ "" ++ "@ ++ com\t%0 ++ rsub\t%0, %1, -1" ++ [(set_attr "length" "2,4") ++ (set_attr "cc" "set_z")]) ++ ++ ++(define_insn "one_cmplsi2_predicable" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (not:SI (match_dup 0)))] ++ "TARGET_V2_INSNS" ++ "rsub%?\t%0, -1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "predicable" "yes")]) ++ ++ ++;;============================================================================= ++;; Bit load ++;;----------------------------------------------------------------------------- ++;; Load a bit into Z and C flags ++;;============================================================================= ++(define_insn "bldsi" ++ [(set (cc0) ++ (and:SI (match_operand:SI 0 "register_operand" "r") ++ (match_operand:SI 1 "one_bit_set_operand" "i")))] ++ "" ++ "bld\t%0, %p1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "bld")] ++ ) ++ ++ ++;;============================================================================= ++;; Compare ++;;----------------------------------------------------------------------------- ++;; Compare reg0 with reg1 or an immediate value. ++;;============================================================================= ++ ++(define_expand "cmp<mode>" ++ [(set (cc0) ++ (compare:CMP ++ (match_operand:CMP 0 "register_operand" "") ++ (match_operand:CMP 1 "<CMP:cmp_predicate>" "")))] ++ "" ++ "{ ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = operands[1]; ++ }" ++) ++ ++(define_insn "cmp<mode>_internal" ++ [(set (cc0) ++ (compare:CMP ++ (match_operand:CMP 0 "register_operand" "r") ++ (match_operand:CMP 1 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")))] ++ "" ++ { ++switch(GET_MODE(operands[0])) ++ { ++ case QImode: ++ avr32_branch_type = CMP_QI; ++ break; ++ case HImode: ++ avr32_branch_type = CMP_HI; ++ break; ++ case SImode: ++ avr32_branch_type = CMP_SI; ++ break; ++ case DImode: ++ avr32_branch_type = CMP_DI; ++ break; ++ default: ++ abort(); ++ } ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), GET_MODE (operands[0]), operands[0], operands[1])); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "cc" "compare")]) ++ ++(define_expand "cmpsf" ++ [(set (cc0) ++ (compare:SF ++ (match_operand:SF 0 "general_operand" "") ++ (match_operand:SF 1 "general_operand" "")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "{ ++ if ( !REG_P(operands[0]) ) ++ operands[0] = force_reg(SFmode, operands[0]); ++ ++ if ( !REG_P(operands[1]) ) ++ operands[1] = force_reg(SFmode, operands[1]); ++ ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = operands[1]; ++ emit_insn(gen_cmpsf_internal_uc3fp(operands[0], operands[1])); ++ DONE; ++ }" ++) ++ ++;;;============================================================================= ++;; Test if zero ++;;----------------------------------------------------------------------------- ++;; Compare reg against zero and set the condition codes. ++;;============================================================================= ++ ++ ++(define_expand "tstsi" ++ [(set (cc0) ++ (match_operand:SI 0 "register_operand" ""))] ++ "" ++ { ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = const0_rtx; ++ } ++) ++ ++(define_insn "tstsi_internal" ++ [(set (cc0) ++ (match_operand:SI 0 "register_operand" "r"))] ++ "" ++ { ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), SImode, operands[0], const0_rtx)); ++ ++ return ""; ++ } ++ [(set_attr "length" "2") ++ (set_attr "cc" "compare")]) ++ ++ ++(define_expand "tstdi" ++ [(set (cc0) ++ (match_operand:DI 0 "register_operand" ""))] ++ "" ++ { ++ avr32_compare_op0 = operands[0]; ++ avr32_compare_op1 = const0_rtx; ++ } ++) ++ ++(define_insn "tstdi_internal" ++ [(set (cc0) ++ (match_operand:DI 0 "register_operand" "r"))] ++ "" ++ { ++ /* Check if the next insn already will output a compare. */ ++ if (!next_insn_emits_cmp (insn)) ++ set_next_insn_cond(insn, ++ avr32_output_cmp(get_next_insn_cond(insn), DImode, operands[0], const0_rtx)); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "alu2") ++ (set_attr "cc" "compare")]) ++ ++ ++ ++;;============================================================================= ++;; Convert operands ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++(define_insn "truncdisi2" ++ [(set (match_operand:SI 0 "general_operand" "") ++ (truncate:SI (match_operand:DI 1 "general_operand" "")))] ++ "" ++ "truncdisi2") ++ ++;;============================================================================= ++;; Extend ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++ ++ ++(define_insn "extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.h\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 16"; ++ case 2: ++ case 3: ++ return "ld.sh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:SI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.b\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.sb\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") ++ (sign_extend:HI (match_operand:QI 1 "extendqi_operand" "0,r,RKu00,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "casts.b\t%0"; ++ case 1: ++ return "bfexts\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.sb\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++ ++;;============================================================================= ++;; Zero-extend ++;;----------------------------------------------------------------------------- ++;; ++;;============================================================================= ++ ++(define_insn "zero_extendhisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:SI (match_operand:HI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.h\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 16"; ++ case 2: ++ case 3: ++ return "ld.uh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz,set_ncz,none,none") ++ (set_attr "type" "alu,alu,load_rm,load_rm")]) ++ ++(define_insn "zero_extendqisi2" ++ [(set (match_operand:SI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:SI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.b\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.ub\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz, set_ncz, none, none") ++ (set_attr "type" "alu, alu, load_rm, load_rm")]) ++ ++(define_insn "zero_extendqihi2" ++ [(set (match_operand:HI 0 "register_operand" "=r,r,r,r") ++ (zero_extend:HI (match_operand:QI 1 "nonimmediate_operand" "0,r,<RKu00>,m")))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ return "castu.b\t%0"; ++ case 1: ++ return "bfextu\t%0, %1, 0, 8"; ++ case 2: ++ case 3: ++ return "ld.ub\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,2,4") ++ (set_attr "cc" "set_ncz, set_ncz, none, none") ++ (set_attr "type" "alu, alu, load_rm, load_rm")]) ++ ++ ++;;============================================================================= ++;; Conditional load and extend insns ++;;============================================================================= ++(define_insn "ldsi<mode>_predicable_se" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (sign_extend:SI ++ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))] ++ "TARGET_V2_INSNS" ++ "ld<INTM:load_postfix_s>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldsi<mode>_predicable_ze" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (zero_extend:SI ++ (match_operand:INTM 1 "memory_operand" "<INTM:pred_mem_constraint>")))] ++ "TARGET_V2_INSNS" ++ "ld<INTM:load_postfix_u>%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldhi_predicable_ze" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (zero_extend:HI ++ (match_operand:QI 1 "memory_operand" "RKs10")))] ++ "TARGET_V2_INSNS" ++ "ld.ub%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++(define_insn "ldhi_predicable_se" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (sign_extend:HI ++ (match_operand:QI 1 "memory_operand" "RKs10")))] ++ "TARGET_V2_INSNS" ++ "ld.sb%?\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "cmp_cond_insn") ++ (set_attr "type" "load") ++ (set_attr "predicable" "yes")] ++) ++ ++;;============================================================================= ++;; Conditional set register ++;; sr{cond4} rd ++;;----------------------------------------------------------------------------- ++ ++;;Because of the same issue as with conditional moves and adds we must ++;;not separate the compare instrcution from the scc instruction as ++;;they might be sheduled "badly". ++ ++(define_expand "s<code>" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_cond:SI (cc0) ++ (const_int 0)))] ++"" ++{ ++ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU) ++ FAIL; ++}) ++ ++(define_insn "*s<code>" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (any_cond:SI (cc0) ++ (const_int 0)))] ++ "" ++{ ++ return "sr<cond>\t%0"; ++} ++[(set_attr "length" "2") ++(set_attr "cc" "none")]) ++ ++(define_insn "seq" ++[(set (match_operand:SI 0 "register_operand" "=r") ++(eq:SI (cc0) ++ (const_int 0)))] ++ "" ++"sreq\t%0" ++[(set_attr "length" "2") ++(set_attr "cc" "none")]) ++ ++(define_insn "sne" ++[(set (match_operand:SI 0 "register_operand" "=r") ++(ne:SI (cc0) ++ (const_int 0)))] ++ "" ++"srne\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "smi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(cc0) ++ (const_int 0)] UNSPEC_COND_MI))] ++ "" ++ "srmi\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++(define_insn "spl" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unspec:SI [(cc0) ++ (const_int 0)] UNSPEC_COND_PL))] ++ "" ++ "srpl\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")]) ++ ++ ++;;============================================================================= ++;; Conditional branch ++;;----------------------------------------------------------------------------- ++;; Branch to label if the specified condition codes are set. ++;;============================================================================= ++; branch if negative ++(define_insn "bmi" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brmi %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bmi-reverse" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_MI) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brpl %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++; branch if positive ++(define_insn "bpl" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brpl %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bpl-reverse" ++ [(set (pc) ++ (if_then_else (unspec:CC [(cc0) (const_int 0)] UNSPEC_COND_PL) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brmi %0" ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++; branch if equal ++(define_insn "b<code>" ++ [(set (pc) ++ (if_then_else (any_cond_b:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return get_attr_length(insn) == 6 ? "brvs .+6\;br<cond> %0" : "brvs .+8\;br<cond> %0"; ++ else ++ return "br<cond> %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 6) ++ (const_int 8)) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2) ++ (const_int 4)))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "beq" ++ [(set (pc) ++ (if_then_else (eq:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "breq %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "bne" ++ [(set (pc) ++ (if_then_else (ne:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ "brne %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "b<code>" ++ [(set (pc) ++ (if_then_else (any_cond4:CC (cc0) ++ (const_int 0)) ++ (label_ref (match_operand 0 "" "")) ++ (pc)))] ++ "" ++ { ++ if(TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs .+8\;br<cond> %l0"; ++ else ++ return "br<cond> %l0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (const_int 8)] ++ (const_int 4))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "*b<code>-reverse" ++ [(set (pc) ++ (if_then_else (any_cond_b:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs %0\;br<invcond> %0"; ++ else ++ return "br<invcond> %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (if_then_else (eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 6) ++ (const_int 8)) ++ (if_then_else ++ (and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2) ++ (const_int 4)))) ++ (set_attr "cc" "none")]) ++ ++(define_insn "*beq-reverse" ++ [(set (pc) ++ (if_then_else (eq:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "brne %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*bne-reverse" ++ [(set (pc) ++ (if_then_else (ne:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ "breq %0"; ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 254)) ++ (le (minus (pc) (match_dup 0)) (const_int 256))) ++ (const_int 2)] ; use compact branch ++ (const_int 4))) ; use extended branch ++ (set_attr "cc" "none")]) ++ ++(define_insn "*b<code>-reverse" ++ [(set (pc) ++ (if_then_else (any_cond4:CC (cc0) ++ (const_int 0)) ++ (pc) ++ (label_ref (match_operand 0 "" ""))))] ++ "" ++ { ++ if (TARGET_HARD_FLOAT && TARGET_ARCH_FPU && (avr32_branch_type == CMP_SF)) ++ return "brvs %l0\;br<invcond> %l0"; ++ else ++ return "br<invcond> %0"; ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(eq (const_int 1)(symbol_ref "TARGET_HARD_FLOAT && TARGET_ARCH_FPU")) ++ (const_int 8)] ++ (const_int 4))) ++ (set_attr "cc" "none")]) ++ ++;============================================================================= ++; Conditional Add/Subtract ++;----------------------------------------------------------------------------- ++; sub{cond4} Rd, imm ++;============================================================================= ++ ++ ++(define_expand "add<mode>cc" ++ [(set (match_operand:ADDCC 0 "register_operand" "") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_dup 4) ++ (match_dup 5)]) ++ (match_operand:ADDCC 2 "register_operand" "") ++ (plus:ADDCC ++ (match_dup 2) ++ (match_operand:ADDCC 3 "" ""))))] ++ "" ++ { ++ if ( !(GET_CODE (operands[3]) == CONST_INT ++ || (TARGET_V2_INSNS && REG_P(operands[3]))) ){ ++ FAIL; ++ } ++ ++ /* Delete compare instruction as it is merged into this instruction */ ++ remove_insn (get_last_insn_anywhere ()); ++ ++ operands[4] = avr32_compare_op0; ++ operands[5] = avr32_compare_op1; ++ ++ if ( TARGET_V2_INSNS ++ && REG_P(operands[3]) ++ && REGNO(operands[0]) != REGNO(operands[2]) ){ ++ emit_move_insn (operands[0], operands[2]); ++ operands[2] = operands[0]; ++ } ++ } ++ ) ++ ++(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>_reg" ++ [(set (match_operand:ADDCC 0 "register_operand" "=r") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r") ++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")]) ++ (match_dup 0) ++ (plus:ADDCC ++ (match_operand:ADDCC 2 "register_operand" "r") ++ (match_operand:ADDCC 3 "register_operand" "r"))))] ++ "TARGET_V2_INSNS" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ return "add%i1\t%0, %2, %3"; ++ } ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++(define_insn "add<ADDCC:mode>cc_cmp<CMP:mode>" ++ [(set (match_operand:ADDCC 0 "register_operand" "=r") ++ (if_then_else:ADDCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r") ++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>")]) ++ (match_operand:ADDCC 2 "register_operand" "0") ++ (plus:ADDCC ++ (match_dup 2) ++ (match_operand:ADDCC 3 "avr32_cond_immediate_operand" "Is08"))))] ++ "" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ return "sub%i1\t%0, -%3"; ++ } ++ [(set_attr "length" "8") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++;============================================================================= ++; Conditional Move ++;----------------------------------------------------------------------------- ++; mov{cond4} Rd, (Rs/imm) ++;============================================================================= ++(define_expand "mov<mode>cc" ++ [(set (match_operand:MOVCC 0 "register_operand" "") ++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" ++ [(match_dup 4) ++ (match_dup 5)]) ++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "") ++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "")))] ++ "" ++ { ++ /* Delete compare instruction as it is merged into this instruction */ ++ remove_insn (get_last_insn_anywhere ()); ++ ++ operands[4] = avr32_compare_op0; ++ operands[5] = avr32_compare_op1; ++ } ++ ) ++ ++ ++(define_insn "mov<MOVCC:mode>cc_cmp<CMP:mode>" ++ [(set (match_operand:MOVCC 0 "register_operand" "=r,r,r") ++ (if_then_else:MOVCC (match_operator 1 "avr32_comparison_operator" ++ [(match_operand:CMP 4 "register_operand" "r,r,r") ++ (match_operand:CMP 5 "<CMP:cmp_predicate>" "<CMP:cmp_constraint>,<CMP:cmp_constraint>,<CMP:cmp_constraint>")]) ++ (match_operand:MOVCC 2 "avr32_cond_register_immediate_operand" "0, rKs08,rKs08") ++ (match_operand:MOVCC 3 "avr32_cond_register_immediate_operand" "rKs08,0,rKs08")))] ++ "" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ ++ switch( which_alternative ){ ++ case 0: ++ return "mov%i1 %0, %3"; ++ case 1: ++ return "mov%1 %0, %2"; ++ case 2: ++ return "mov%1 %0, %2\;mov%i1 %0, %3"; ++ default: ++ abort(); ++ } ++ ++ } ++ [(set_attr "length" "8,8,12") ++ (set_attr "cc" "cmp_cond_insn")]) ++ ++ ++ ++ ++;;============================================================================= ++;; jump ++;;----------------------------------------------------------------------------- ++;; Jump inside a function; an unconditional branch to a label. ++;;============================================================================= ++(define_insn "jump" ++ [(set (pc) ++ (label_ref (match_operand 0 "" "")))] ++ "" ++ { ++ if (get_attr_length(insn) > 4) ++ return "Can't jump this far"; ++ return (get_attr_length(insn) == 2 ? ++ "rjmp %0" : "bral %0"); ++ } ++ [(set_attr "type" "branch") ++ (set (attr "length") ++ (cond [(and (le (minus (match_dup 0) (pc)) (const_int 1022)) ++ (le (minus (pc) (match_dup 0)) (const_int 1024))) ++ (const_int 2) ; use rjmp ++ (le (match_dup 0) (const_int 1048575)) ++ (const_int 4)] ; use bral ++ (const_int 8))) ; do something else ++ (set_attr "cc" "none")]) ++ ++;;============================================================================= ++;; call ++;;----------------------------------------------------------------------------- ++;; Subroutine call instruction returning no value. ++;;============================================================================= ++(define_insn "call_internal" ++ [(parallel [(call (mem:SI (match_operand:SI 0 "avr32_call_operand" "r,U,T,W")) ++ (match_operand 1 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ ++ /* Check for a flashvault call. */ ++ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[0]))) ++ { ++ /* Assembly is already emitted. */ ++ return ""; ++ } ++ ++ switch (which_alternative) { ++ case 0: ++ return "icall\t%0"; ++ case 1: ++ return "rcall\t%0"; ++ case 2: ++ return "mcall\t%0"; ++ case 3: ++ if (TARGET_HAS_ASM_ADDR_PSEUDOS) ++ return "call\t%0"; ++ else ++ return "mcall\tr6[%0@got]"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "2,4,4,10") ++ (set_attr "cc" "clobber")]) ++ ++ ++(define_expand "call" ++ [(parallel [(call (match_operand:SI 0 "" "") ++ (match_operand 1 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ rtx call_address; ++ if ( GET_CODE(operands[0]) != MEM ) ++ FAIL; ++ ++ call_address = XEXP(operands[0], 0); ++ ++ /* If assembler supports call pseudo insn and the call address is a symbol then nothing special needs to be done. */ ++ if (TARGET_HAS_ASM_ADDR_PSEUDOS && (GET_CODE(call_address) == SYMBOL_REF) ) ++ { ++ /* We must however mark the function as using the GOT if flag_pic is set, since the call insn might turn into a mcall using the GOT ptr register. */ ++ if (flag_pic) ++ { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ } ++ } ++ else ++ { ++ if (flag_pic && GET_CODE(call_address) == SYMBOL_REF ) ++ { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ } ++ ++ if (!SYMBOL_REF_RCALL_FUNCTION_P(operands[0]) ) ++ { ++ if (optimize_size && GET_CODE(call_address) == SYMBOL_REF ) ++ { ++ call_address = force_const_mem(SImode, call_address); ++ } ++ else ++ { ++ call_address = force_reg(SImode, call_address); ++ } ++ } ++ } ++ emit_call_insn(gen_call_internal(call_address, operands[1])); ++ DONE; ++ ++ } ++) ++ ++;;============================================================================= ++;; call_value ++;;----------------------------------------------------------------------------- ++;; Subroutine call instruction returning a value. ++;;============================================================================= ++(define_expand "call_value" ++ [(parallel [(set (match_operand:SI 0 "" "") ++ (call (match_operand:SI 1 "" "") ++ (match_operand 2 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++ { ++ rtx call_address; ++ if ( GET_CODE(operands[1]) != MEM ) ++ FAIL; ++ ++ call_address = XEXP(operands[1], 0); ++ ++ /* Check for a flashvault call. ++ if (GET_CODE (call_address) == SYMBOL_REF ++ && avr32_flashvault_call (SYMBOL_REF_DECL (call_address))) ++ DONE; ++ ++ */ ++ ++ /* If assembler supports call pseudo insn and the call ++ address is a symbol then nothing special needs to be done. */ ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ++ && (GET_CODE(call_address) == SYMBOL_REF) ){ ++ /* We must however mark the function as using the GOT if ++ flag_pic is set, since the call insn might turn into ++ a mcall using the GOT ptr register. */ ++ if ( flag_pic ) { ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); ++ DONE; ++ } ++ } else { ++ if ( flag_pic && ++ GET_CODE(call_address) == SYMBOL_REF ){ ++ crtl->uses_pic_offset_table = 1; ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, operands[2])); ++ DONE; ++ } ++ ++ if ( !SYMBOL_REF_RCALL_FUNCTION_P(operands[1]) ){ ++ if ( optimize_size && ++ GET_CODE(call_address) == SYMBOL_REF){ ++ call_address = force_const_mem(SImode, call_address); ++ } else { ++ call_address = force_reg(SImode, call_address); ++ } ++ } ++ } ++ emit_call_insn(gen_call_value_internal(operands[0], call_address, ++ operands[2])); ++ DONE; ++ ++ }) ++ ++(define_insn "call_value_internal" ++ [(parallel [(set (match_operand 0 "register_operand" "=r,r,r,r") ++ (call (mem:SI (match_operand:SI 1 "avr32_call_operand" "r,U,T,W")) ++ (match_operand 2 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ ;; Operand 2 not used on the AVR32. ++ "" ++ { ++ /* Check for a flashvault call. */ ++ if (avr32_flashvault_call (SYMBOL_REF_DECL (operands[1]))) ++ { ++ /* Assembly is already emitted. */ ++ return ""; ++ } ++ ++ ++ switch (which_alternative) { ++ case 0: ++ return "icall\t%1"; ++ case 1: ++ return "rcall\t%1"; ++ case 2: ++ return "mcall\t%1"; ++ case 3: ++ if ( TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ return "call\t%1"; ++ else ++ return "mcall\tr6[%1@got]"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "2,4,4,10") ++ (set_attr "cc" "call_set")]) ++ ++ ++;;============================================================================= ++;; untyped_call ++;;----------------------------------------------------------------------------- ++;; Subrutine call instruction returning a value of any type. ++;; The code is copied from m68k.md (except gen_blockage is removed) ++;; Fixme! ++;;============================================================================= ++(define_expand "untyped_call" ++ [(parallel [(call (match_operand 0 "avr32_call_operand" "") ++ (const_int 0)) ++ (match_operand 1 "" "") ++ (match_operand 2 "" "")])] ++ "" ++ { ++ int i; ++ ++ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, const0_rtx)); ++ ++ for (i = 0; i < XVECLEN (operands[2], 0); i++) { ++ rtx set = XVECEXP (operands[2], 0, i); ++ emit_move_insn (SET_DEST (set), SET_SRC (set)); ++ } ++ ++ /* The optimizer does not know that the call sets the function value ++ registers we stored in the result block. We avoid problems by ++ claiming that all hard registers are used and clobbered at this ++ point. */ ++ emit_insn (gen_blockage ()); ++ ++ DONE; ++ }) ++ ++ ++;;============================================================================= ++;; return ++;;============================================================================= ++ ++(define_insn "return" ++ [(return)] ++ "USE_RETURN_INSN (FALSE)" ++ { ++ avr32_output_return_instruction(TRUE, FALSE, NULL, NULL); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "call")] ++ ) ++ ++ ++(define_insn "return_cond" ++ [(set (pc) ++ (if_then_else (match_operand 0 "avr32_comparison_operand" "") ++ (return) ++ (pc)))] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%0\tr12"; ++ [(set_attr "type" "call")]) ++ ++(define_insn "return_cond_predicable" ++ [(return)] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%?\tr12"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++ ++(define_insn "return_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (return)])] ++ "USE_RETURN_INSN (FALSE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction(TRUE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "type" "call")] ++ ) ++ ++(define_insn "return_imm_cond" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (set (pc) ++ (if_then_else (match_operand 1 "avr32_comparison_operand" "") ++ (return) ++ (pc)))])] ++ "USE_RETURN_INSN (TRUE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ "ret%1\t%0"; ++ [(set_attr "type" "call")] ++ ) ++ ++(define_insn "return_imm_predicable" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (return)])] ++ "USE_RETURN_INSN (TRUE) && ++ ((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ "ret%?\t%0"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "return_<mode>reg" ++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) ++ (use (reg RETVAL_REGNUM)) ++ (return)] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%?\t%0"; ++ [(set_attr "type" "call") ++ (set_attr "predicable" "yes")]) ++ ++(define_insn "return_<mode>reg_cond" ++ [(set (reg RETVAL_REGNUM) (match_operand:MOVM 0 "register_operand" "r")) ++ (use (reg RETVAL_REGNUM)) ++ (set (pc) ++ (if_then_else (match_operator 1 "avr32_comparison_operator" ++ [(cc0) (const_int 0)]) ++ (return) ++ (pc)))] ++ "USE_RETURN_INSN (TRUE)" ++ "ret%1\t%0"; ++ [(set_attr "type" "call")]) ++ ++;;============================================================================= ++;; nonlocal_goto_receiver ++;;----------------------------------------------------------------------------- ++;; For targets with a return stack we must make sure to flush the return stack ++;; since it will be corrupt after a nonlocal goto. ++;;============================================================================= ++(define_expand "nonlocal_goto_receiver" ++ [(const_int 0)] ++ "TARGET_RETURN_STACK" ++ " ++ { ++ emit_insn ( gen_frs() ); ++ DONE; ++ } ++ " ++ ) ++ ++ ++;;============================================================================= ++;; builtin_setjmp_receiver ++;;----------------------------------------------------------------------------- ++;; For pic code we need to reload the pic register. ++;; For targets with a return stack we must make sure to flush the return stack ++;; since it will probably be corrupted. ++;;============================================================================= ++(define_expand "builtin_setjmp_receiver" ++ [(label_ref (match_operand 0 "" ""))] ++ "flag_pic" ++ " ++ { ++ if ( TARGET_RETURN_STACK ) ++ emit_insn ( gen_frs() ); ++ ++ avr32_load_pic_register (); ++ DONE; ++ } ++ " ++) ++ ++ ++;;============================================================================= ++;; indirect_jump ++;;----------------------------------------------------------------------------- ++;; Jump to an address in reg or memory. ++;;============================================================================= ++(define_expand "indirect_jump" ++ [(set (pc) ++ (match_operand:SI 0 "general_operand" ""))] ++ "" ++ { ++ /* One of the ops has to be in a register. */ ++ if ( (flag_pic || TARGET_HAS_ASM_ADDR_PSEUDOS ) ++ && !avr32_legitimate_pic_operand_p(operands[0]) ) ++ operands[0] = legitimize_pic_address (operands[0], SImode, 0); ++ else if ( flag_pic && avr32_address_operand(operands[0], GET_MODE(operands[0])) ) ++ /* If we have an address operand then this function uses the pic register. */ ++ crtl->uses_pic_offset_table = 1; ++ }) ++ ++ ++(define_insn "indirect_jump_internal" ++ [(set (pc) ++ (match_operand:SI 0 "avr32_non_rmw_general_operand" "r,m,W"))] ++ "" ++ { ++ switch( which_alternative ){ ++ case 0: ++ return "mov\tpc, %0"; ++ case 1: ++ if ( avr32_const_pool_ref_operand(operands[0], GET_MODE(operands[0])) ) ++ return "lddpc\tpc, %0"; ++ else ++ return "ld.w\tpc, %0"; ++ case 2: ++ if ( flag_pic ) ++ return "ld.w\tpc, r6[%0@got]"; ++ else ++ return "lda.w\tpc, %0"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "2,4,8") ++ (set_attr "type" "call,call,call") ++ (set_attr "cc" "none,none,clobber")]) ++ ++ ++ ++;;============================================================================= ++;; casesi and tablejump ++;;============================================================================= ++(define_insn "tablejump_add" ++ [(set (pc) ++ (plus:SI (match_operand:SI 0 "register_operand" "r") ++ (mult:SI (match_operand:SI 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04" )))) ++ (use (label_ref (match_operand 3 "" "")))] ++ "flag_pic && ++ ((INTVAL(operands[2]) == 0) || (INTVAL(operands[2]) == 2) || ++ (INTVAL(operands[2]) == 4) || (INTVAL(operands[2]) == 8))" ++ "add\tpc, %0, %1 << %p2" ++ [(set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "tablejump_insn" ++ [(set (pc) (match_operand:SI 0 "memory_operand" "m")) ++ (use (label_ref (match_operand 1 "" "")))] ++ "!flag_pic" ++ "ld.w\tpc, %0" ++ [(set_attr "length" "4") ++ (set_attr "type" "call") ++ (set_attr "cc" "none")]) ++ ++(define_expand "casesi" ++ [(match_operand:SI 0 "register_operand" "") ; index to jump on ++ (match_operand:SI 1 "const_int_operand" "") ; lower bound ++ (match_operand:SI 2 "const_int_operand" "") ; total range ++ (match_operand:SI 3 "" "") ; table label ++ (match_operand:SI 4 "" "")] ; Out of range label ++ "" ++ " ++ { ++ rtx reg; ++ rtx index = operands[0]; ++ rtx low_bound = operands[1]; ++ rtx range = operands[2]; ++ rtx table_label = operands[3]; ++ rtx oor_label = operands[4]; ++ ++ index = force_reg ( SImode, index ); ++ if (low_bound != const0_rtx) ++ { ++ if (!avr32_const_ok_for_constraint_p(INTVAL (low_bound), 'I', \"Is21\")){ ++ reg = force_reg(SImode, GEN_INT (INTVAL (low_bound))); ++ emit_insn (gen_subsi3 (reg, index, ++ reg)); ++ } else { ++ reg = gen_reg_rtx (SImode); ++ emit_insn (gen_addsi3 (reg, index, ++ GEN_INT (-INTVAL (low_bound)))); ++ } ++ index = reg; ++ } ++ ++ if (!avr32_const_ok_for_constraint_p (INTVAL (range), 'K', \"Ks21\")) ++ range = force_reg (SImode, range); ++ ++ emit_cmp_and_jump_insns ( index, range, GTU, NULL_RTX, SImode, 1, oor_label ); ++ reg = gen_reg_rtx (SImode); ++ emit_move_insn ( reg, gen_rtx_LABEL_REF (VOIDmode, table_label)); ++ ++ if ( flag_pic ) ++ emit_jump_insn ( gen_tablejump_add ( reg, index, GEN_INT(4), table_label)); ++ else ++ emit_jump_insn ( ++ gen_tablejump_insn ( gen_rtx_MEM ( SImode, ++ gen_rtx_PLUS ( SImode, ++ reg, ++ gen_rtx_MULT ( SImode, ++ index, ++ GEN_INT(4)))), ++ table_label)); ++ DONE; ++ }" ++) ++ ++ ++ ++(define_insn "prefetch" ++ [(prefetch (match_operand:SI 0 "avr32_ks16_address_operand" "p") ++ (match_operand 1 "const_int_operand" "") ++ (match_operand 2 "const_int_operand" ""))] ++ "" ++ { ++ return "pref\t%0"; ++ } ++ ++ [(set_attr "length" "4") ++ (set_attr "type" "load") ++ (set_attr "cc" "none")]) ++ ++ ++ ++;;============================================================================= ++;; prologue ++;;----------------------------------------------------------------------------- ++;; This pattern, if defined, emits RTL for entry to a function. The function ++;; entry i responsible for setting up the stack frame, initializing the frame ++;; pointer register, saving callee saved registers, etc. ++;;============================================================================= ++(define_expand "prologue" ++ [(clobber (const_int 0))] ++ "" ++ " ++ avr32_expand_prologue(); ++ DONE; ++ " ++ ) ++ ++;;============================================================================= ++;; eh_return ++;;----------------------------------------------------------------------------- ++;; This pattern, if defined, affects the way __builtin_eh_return, and ++;; thence the call frame exception handling library routines, are ++;; built. It is intended to handle non-trivial actions needed along ++;; the abnormal return path. ++;; ++;; The address of the exception handler to which the function should ++;; return is passed as operand to this pattern. It will normally need ++;; to copied by the pattern to some special register or memory ++;; location. If the pattern needs to determine the location of the ++;; target call frame in order to do so, it may use ++;; EH_RETURN_STACKADJ_RTX, if defined; it will have already been ++;; assigned. ++;; ++;; If this pattern is not defined, the default action will be to ++;; simply copy the return address to EH_RETURN_HANDLER_RTX. Either ++;; that macro or this pattern needs to be defined if call frame ++;; exception handling is to be used. ++ ++;; We can't expand this before we know where the link register is stored. ++(define_insn_and_split "eh_return" ++ [(unspec_volatile [(match_operand:SI 0 "register_operand" "r")] ++ VUNSPEC_EH_RETURN) ++ (clobber (match_scratch:SI 1 "=&r"))] ++ "" ++ "#" ++ "reload_completed" ++ [(const_int 0)] ++ " ++ { ++ avr32_set_return_address (operands[0], operands[1]); ++ DONE; ++ }" ++ ) ++ ++ ++;;============================================================================= ++;; ffssi2 ++;;----------------------------------------------------------------------------- ++(define_insn "ffssi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (ffs:SI (match_operand:SI 1 "register_operand" "r"))) ] ++ "" ++ "mov %0, %1 ++ brev %0 ++ clz %0, %0 ++ sub %0, -1 ++ cp %0, 33 ++ moveq %0, 0" ++ [(set_attr "length" "18") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++ ++;;============================================================================= ++;; swap_h ++;;----------------------------------------------------------------------------- ++(define_insn "*swap_h" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (ior:SI (ashift:SI (match_dup 0) (const_int 16)) ++ (lshiftrt:SI (match_dup 0) (const_int 16))))] ++ "" ++ "swap.h %0" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn_and_split "bswap_16" ++ [ (set (match_operand:HI 0 "avr32_bswap_operand" "=r,RKs13,r") ++ (ior:HI (and:HI (lshiftrt:HI (match_operand:HI 1 "avr32_bswap_operand" "r,r,RKs13") ++ (const_int 8)) ++ (const_int 255)) ++ (ashift:HI (and:HI (match_dup 1) ++ (const_int 255)) ++ (const_int 8))))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ if ( REGNO(operands[0]) == REGNO(operands[1])) ++ return "swap.bh\t%0"; ++ else ++ return "mov\t%0, %1\;swap.bh\t%0"; ++ case 1: ++ return "stswp.h\t%0, %1"; ++ case 2: ++ return "ldswp.sh\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ ++ "(reload_completed && ++ REG_P(operands[0]) && REG_P(operands[1]) ++ && (REGNO(operands[0]) != REGNO(operands[1])))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 0) ++ (ior:HI (and:HI (lshiftrt:HI (match_dup 0) ++ (const_int 8)) ++ (const_int 255)) ++ (ashift:HI (and:HI (match_dup 0) ++ (const_int 255)) ++ (const_int 8))))] ++ "" ++ ++ [(set_attr "length" "4,4,4") ++ (set_attr "type" "alu,store,load_rm")] ++ ) ++ ++(define_insn_and_split "bswap_32" ++ [ (set (match_operand:SI 0 "avr32_bswap_operand" "=r,RKs14,r") ++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_operand:SI 1 "avr32_bswap_operand" "r,r,RKs14") ++ (const_int -16777216)) ++ (const_int 24)) ++ (lshiftrt:SI (and:SI (match_dup 1) ++ (const_int 16711680)) ++ (const_int 8))) ++ (ior:SI (ashift:SI (and:SI (match_dup 1) ++ (const_int 65280)) ++ (const_int 8)) ++ (ashift:SI (and:SI (match_dup 1) ++ (const_int 255)) ++ (const_int 24)))))] ++ "" ++ { ++ switch ( which_alternative ){ ++ case 0: ++ if ( REGNO(operands[0]) == REGNO(operands[1])) ++ return "swap.b\t%0"; ++ else ++ return "#"; ++ case 1: ++ return "stswp.w\t%0, %1"; ++ case 2: ++ return "ldswp.w\t%0, %1"; ++ default: ++ abort(); ++ } ++ } ++ "(reload_completed && ++ REG_P(operands[0]) && REG_P(operands[1]) ++ && (REGNO(operands[0]) != REGNO(operands[1])))" ++ [(set (match_dup 0) (match_dup 1)) ++ (set (match_dup 0) ++ (ior:SI (ior:SI (lshiftrt:SI (and:SI (match_dup 0) ++ (const_int -16777216)) ++ (const_int 24)) ++ (lshiftrt:SI (and:SI (match_dup 0) ++ (const_int 16711680)) ++ (const_int 8))) ++ (ior:SI (ashift:SI (and:SI (match_dup 0) ++ (const_int 65280)) ++ (const_int 8)) ++ (ashift:SI (and:SI (match_dup 0) ++ (const_int 255)) ++ (const_int 24)))))] ++ "" ++ ++ [(set_attr "length" "4,4,4") ++ (set_attr "type" "alu,store,load_rm")] ++ ) ++ ++ ++;;============================================================================= ++;; blockage ++;;----------------------------------------------------------------------------- ++;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ++;; all of memory. This blocks insns from being moved across this point. ++ ++(define_insn "blockage" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_BLOCKAGE)] ++ "" ++ "" ++ [(set_attr "length" "0")] ++) ++ ++;;============================================================================= ++;; clzsi2 ++;;----------------------------------------------------------------------------- ++(define_insn "clzsi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (clz:SI (match_operand:SI 1 "register_operand" "r"))) ] ++ "" ++ "clz %0, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")] ++ ) ++ ++;;============================================================================= ++;; ctzsi2 ++;;----------------------------------------------------------------------------- ++(define_insn "ctzsi2" ++ [ (set (match_operand:SI 0 "register_operand" "=r,r") ++ (ctz:SI (match_operand:SI 1 "register_operand" "0,r"))) ] ++ "" ++ "@ ++ brev\t%0\;clz\t%0, %0 ++ mov\t%0, %1\;brev\t%0\;clz\t%0, %0" ++ [(set_attr "length" "8") ++ (set_attr "cc" "set_z")] ++ ) ++ ++;;============================================================================= ++;; cache instructions ++;;----------------------------------------------------------------------------- ++(define_insn "cache" ++ [ (unspec_volatile [(match_operand:SI 0 "avr32_ks11_address_operand" "p") ++ (match_operand:SI 1 "immediate_operand" "Ku05")] VUNSPEC_CACHE)] ++ "" ++ "cache %0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "sync" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku08")] VUNSPEC_SYNC)] ++ "" ++ "sync %0" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; TLB instructions ++;;----------------------------------------------------------------------------- ++(define_insn "tlbr" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBR)] ++ "" ++ "tlbr" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "tlbw" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBW)] ++ "" ++ "tlbw" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "tlbs" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_TLBS)] ++ "" ++ "tlbs" ++ [(set_attr "length" "2")] ++ ) ++ ++;;============================================================================= ++;; Breakpoint instruction ++;;----------------------------------------------------------------------------- ++(define_insn "breakpoint" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_BREAKPOINT)] ++ "" ++ "breakpoint" ++ [(set_attr "length" "2")] ++ ) ++ ++ ++;;============================================================================= ++;; mtsr/mfsr instruction ++;;----------------------------------------------------------------------------- ++(define_insn "mtsr" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") ++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTSR)] ++ "" ++ "mtsr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mfsr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFSR)) ] ++ "" ++ "mfsr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; mtdr/mfdr instruction ++;;----------------------------------------------------------------------------- ++(define_insn "mtdr" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "i") ++ (match_operand:SI 1 "register_operand" "r")] VUNSPEC_MTDR)] ++ "" ++ "mtdr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mfdr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "i")] VUNSPEC_MFDR)) ] ++ "" ++ "mfdr\t%0, %1" ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; musfr ++;;----------------------------------------------------------------------------- ++(define_insn "musfr" ++ [ (unspec_volatile [(match_operand:SI 0 "register_operand" "r")] VUNSPEC_MUSFR)] ++ "" ++ "musfr\t%0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "mustr" ++ [ (set (match_operand:SI 0 "register_operand" "=r") ++ (unspec_volatile:SI [(const_int 0)] VUNSPEC_MUSTR)) ] ++ "" ++ "mustr\t%0" ++ [(set_attr "length" "2")] ++ ) ++ ++(define_insn "ssrf" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_SSRF)] ++ "" ++ "ssrf %0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "csrf" ++ [ (unspec_volatile [(match_operand:SI 0 "immediate_operand" "Ku05")] VUNSPEC_CSRF)] ++ "" ++ "csrf %0" ++ [(set_attr "length" "2") ++ (set_attr "cc" "clobber")] ++ ) ++ ++;;============================================================================= ++;; Flush Return Stack instruction ++;;----------------------------------------------------------------------------- ++(define_insn "frs" ++ [ (unspec_volatile [(const_int 0)] VUNSPEC_FRS)] ++ "" ++ "frs" ++ [(set_attr "length" "2") ++ (set_attr "cc" "none")] ++ ) ++ ++ ++;;============================================================================= ++;; Saturation Round Scale instruction ++;;----------------------------------------------------------------------------- ++(define_insn "sats" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATS)) ] ++ "TARGET_DSP" ++ "sats\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satu" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATU)) ] ++ "TARGET_DSP" ++ "satu\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satrnds" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATRNDS)) ] ++ "TARGET_DSP" ++ "satrnds\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "satrndu" ++ [ (set (match_operand:SI 0 "register_operand" "+r") ++ (unspec:SI [(match_dup 0) ++ (match_operand 1 "immediate_operand" "Ku05") ++ (match_operand 2 "immediate_operand" "Ku05")] ++ UNSPEC_SATRNDU)) ] ++ "TARGET_DSP" ++ "sats\t%0 >> %1, %2" ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ) ++ ++(define_insn "sleep" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_SLEEP) ++ (match_operand:SI 0 "const_int_operand" "")] ++ "" ++ "sleep %0" ++ [(set_attr "length" "1") ++ (set_attr "cc" "none") ++ ]) ++ ++(define_expand "delay_cycles" ++ [(unspec_volatile [(match_operand:SI 0 "const_int_operand" "i")] ++ VUNSPEC_DELAY_CYCLES)] ++ "" ++ " ++ unsigned int cycles = UINTVAL (operands[0]); ++ if (IN_RANGE(cycles,0x10000 ,0xFFFFFFFF)) ++ { ++ unsigned int msb = (cycles & 0xFFFF0000); ++ unsigned int shift = 16; ++ msb = (msb >> shift); ++ unsigned int cycles_used = (msb*0x10000); ++ emit_insn (gen_delay_cycles_2 (gen_int_mode (msb, SImode))); ++ cycles -= cycles_used; ++ } ++ if (IN_RANGE(cycles, 4, 0xFFFF)) ++ { ++ unsigned int loop_count = (cycles/ 4); ++ unsigned int cycles_used = (loop_count*4); ++ emit_insn (gen_delay_cycles_1 (gen_int_mode (loop_count, SImode))); ++ cycles -= cycles_used; ++ } ++ while (cycles >= 3) ++ { ++ emit_insn (gen_nop3 ()); ++ cycles -= 3; ++ } ++ if (cycles == 1 || cycles == 2) ++ { ++ while (cycles--) ++ emit_insn (gen_nop ()); ++ } ++ DONE; ++ ") ++ ++(define_insn "delay_cycles_1" ++[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_1) ++ (match_operand:SI 0 "immediate_operand" "") ++ (clobber (match_scratch:SI 1 "=&r"))] ++ "" ++ "mov\t%1, %0 ++ 1: sub\t%1, 1 ++ brne\t1b ++ nop" ++) ++ ++(define_insn "delay_cycles_2" ++[(unspec_volatile [(const_int 0)] VUNSPEC_DELAY_CYCLES_2) ++ (match_operand:SI 0 "immediate_operand" "") ++ (clobber (match_scratch:SI 1 "=&r")) ++ (clobber (match_scratch:SI 2 "=&r"))] ++ "" ++ "mov\t%1, %0 ++ 1: mov\t%2, 16383 ++ 2: sub\t%2, 1 ++ brne\t2b ++ nop ++ sub\t%1, 1 ++ brne\t1b ++ nop" ++) ++ ++;; CPU instructions ++ ++;;============================================================================= ++;; nop ++;;----------------------------------------------------------------------------- ++;; No-op instruction. ++;;============================================================================= ++(define_insn "nop" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP)] ++ "" ++ "nop" ++ [(set_attr "length" "1") ++ (set_attr "type" "alu") ++ (set_attr "cc" "none")]) ++ ++;; NOP3 ++(define_insn "nop3" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_NOP3)] ++ "" ++ "rjmp\t2" ++ [(set_attr "length" "3") ++ (set_attr "type" "alu") ++ (set_attr "cc" "none")]) ++ ++;; Special patterns for dealing with the constant pool ++ ++(define_insn "align_4" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_ALIGN)] ++ "" ++ { ++ assemble_align (32); ++ return ""; ++ } ++ [(set_attr "length" "2")] ++) ++ ++ ++(define_insn "consttable_start" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_START)] ++ "" ++ { ++ return ".cpool"; ++ } ++ [(set_attr "length" "0")] ++ ) ++ ++(define_insn "consttable_end" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_POOL_END)] ++ "" ++ { ++ making_const_table = FALSE; ++ return ""; ++ } ++ [(set_attr "length" "0")] ++) ++ ++ ++(define_insn "consttable_4" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_4)] ++ "" ++ { ++ making_const_table = TRUE; ++ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) ++ { ++ case MODE_FLOAT: ++ { ++ REAL_VALUE_TYPE r; ++ char real_string[1024]; ++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); ++ real_to_decimal(real_string, &r, 1024, 0, 1); ++ asm_fprintf (asm_out_file, "\t.float\t%s\n", real_string); ++ break; ++ } ++ default: ++ assemble_integer (operands[0], 4, 0, 1); ++ break; ++ } ++ return ""; ++ } ++ [(set_attr "length" "4")] ++) ++ ++(define_insn "consttable_8" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_8)] ++ "" ++ { ++ making_const_table = TRUE; ++ switch (GET_MODE_CLASS (GET_MODE (operands[0]))) ++ { ++ case MODE_FLOAT: ++ { ++ REAL_VALUE_TYPE r; ++ char real_string[1024]; ++ REAL_VALUE_FROM_CONST_DOUBLE (r, operands[0]); ++ real_to_decimal(real_string, &r, 1024, 0, 1); ++ asm_fprintf (asm_out_file, "\t.double\t%s\n", real_string); ++ break; ++ } ++ default: ++ assemble_integer(operands[0], 8, 0, 1); ++ break; ++ } ++ return ""; ++ } ++ [(set_attr "length" "8")] ++) ++ ++(define_insn "consttable_16" ++ [(unspec_volatile [(match_operand 0 "" "")] VUNSPEC_POOL_16)] ++ "" ++ { ++ making_const_table = TRUE; ++ assemble_integer(operands[0], 16, 0, 1); ++ return ""; ++ } ++ [(set_attr "length" "16")] ++) ++ ++;;============================================================================= ++;; coprocessor instructions ++;;----------------------------------------------------------------------------- ++(define_insn "cop" ++ [ (unspec_volatile [(match_operand 0 "immediate_operand" "Ku03") ++ (match_operand 1 "immediate_operand" "Ku04") ++ (match_operand 2 "immediate_operand" "Ku04") ++ (match_operand 3 "immediate_operand" "Ku04") ++ (match_operand 4 "immediate_operand" "Ku07")] VUNSPEC_COP)] ++ "" ++ "cop\tcp%0, cr%1, cr%2, cr%3, %4" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvcrsi" ++ [ (set (match_operand:SI 0 "avr32_cop_move_operand" "=r,<,Z") ++ (unspec_volatile:SI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] ++ VUNSPEC_MVCR)) ] ++ "" ++ "@ ++ mvcr.w\tcp%1, %0, cr%2 ++ stcm.w\tcp%1, %0, cr%2 ++ stc.w\tcp%1, %0, cr%2" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvcrdi" ++ [ (set (match_operand:DI 0 "avr32_cop_move_operand" "=r,<,Z") ++ (unspec_volatile:DI [(match_operand 1 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 2 "immediate_operand" "Ku04,Ku04,Ku04")] ++ VUNSPEC_MVCR)) ] ++ "" ++ "@ ++ mvcr.d\tcp%1, %0, cr%2 ++ stcm.d\tcp%1, %0, cr%2-cr%i2 ++ stc.d\tcp%1, %0, cr%2" ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvrcsi" ++ [ (unspec_volatile:SI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") ++ (match_operand:SI 2 "avr32_cop_move_operand" "r,>,Z")] ++ VUNSPEC_MVRC)] ++ "" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mvrc.w\tcp%0, cr%1, %2"; ++ case 1: ++ return "ldcm.w\tcp%0, %2, cr%1"; ++ case 2: ++ return "ldc.w\tcp%0, cr%1, %2"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "4")] ++ ) ++ ++(define_insn "mvrcdi" ++ [ (unspec_volatile:DI [(match_operand 0 "immediate_operand" "Ku03,Ku03,Ku03") ++ (match_operand 1 "immediate_operand" "Ku04,Ku04,Ku04") ++ (match_operand:DI 2 "avr32_cop_move_operand" "r,>,Z")] ++ VUNSPEC_MVRC)] ++ "" ++ { ++ switch (which_alternative){ ++ case 0: ++ return "mvrc.d\tcp%0, cr%1, %2"; ++ case 1: ++ return "ldcm.d\tcp%0, %2, cr%1-cr%i1"; ++ case 2: ++ return "ldc.d\tcp%0, cr%1, %2"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "length" "4")] ++ ) ++ ++;;============================================================================= ++;; epilogue ++;;----------------------------------------------------------------------------- ++;; This pattern emits RTL for exit from a function. The function exit is ++;; responsible for deallocating the stack frame, restoring callee saved ++;; registers and emitting the return instruction. ++;; ToDo: using TARGET_ASM_FUNCTION_PROLOGUE instead. ++;;============================================================================= ++(define_expand "epilogue" ++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "" ++ " ++ if (USE_RETURN_INSN (FALSE)){ ++ emit_jump_insn (gen_return ()); ++ DONE; ++ } ++ emit_jump_insn (gen_rtx_UNSPEC_VOLATILE (VOIDmode, ++ gen_rtvec (1, ++ gen_rtx_RETURN (VOIDmode)), ++ VUNSPEC_EPILOGUE)); ++ DONE; ++ " ++ ) ++ ++(define_insn "*epilogue_insns" ++ [(unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "*epilogue_insns_ret_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)])] ++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "sibcall_epilogue" ++ [(unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)] ++ "" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, NULL); ++ return ""; ++ } ++;; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "*sibcall_epilogue_insns_ret_imm" ++ [(parallel [(set (reg RETVAL_REGNUM) (match_operand 0 "immediate_operand" "i")) ++ (use (reg RETVAL_REGNUM)) ++ (unspec_volatile [(const_int 0)] VUNSPEC_EPILOGUE)])] ++ "((INTVAL(operands[0]) == -1) || (INTVAL(operands[0]) == 0) || (INTVAL(operands[0]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[0]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_insn "ldxi" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (mem:SI (plus:SI ++ (match_operand:SI 1 "register_operand" "r") ++ (mult:SI (zero_extract:SI (match_operand:SI 2 "register_operand" "r") ++ (const_int 8) ++ (match_operand:SI 3 "immediate_operand" "Ku05")) ++ (const_int 4)))))] ++ "(INTVAL(operands[3]) == 24 || INTVAL(operands[3]) == 16 || INTVAL(operands[3]) == 8 ++ || INTVAL(operands[3]) == 0)" ++ { ++ switch ( INTVAL(operands[3]) ){ ++ case 0: ++ return "ld.w %0, %1[%2:b << 2]"; ++ case 8: ++ return "ld.w %0, %1[%2:l << 2]"; ++ case 16: ++ return "ld.w %0, %1[%2:u << 2]"; ++ case 24: ++ return "ld.w %0, %1[%2:t << 2]"; ++ default: ++ internal_error("illegal operand for ldxi"); ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "none")]) ++ ++ ++ ++ ++ ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; sub r8, r7, 8 ++;; st.w r8[0x0], r12 ++;; to ++;; sub r8, r7, 8 ++;; st.w r7[-0x8], r12 ++;;============================================================================= ++; (set (reg:SI 9 r8) ++; (plus:SI (reg/f:SI 6 r7) ++; (const_int ...))) ++; (set (mem:SI (reg:SI 9 r8)) ++; (reg:SI 12 r12)) ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (mem:SI (match_dup 0)) ++ (match_operand:SI 3 "register_operand" ""))] ++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" ++ [(set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (set (mem:SI (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (match_dup 3))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; sub r6, r7, 4 ++;; ld.w r6, r6[0x0] ++;; to ++;; sub r6, r7, 4 ++;; ld.w r6, r7[-0x4] ++;;============================================================================= ++; (set (reg:SI 7 r6) ++; (plus:SI (reg/f:SI 6 r7) ++; (const_int -4 [0xfffffffc]))) ++; (set (reg:SI 7 r6) ++; (mem:SI (reg:SI 7 r6))) ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (match_dup 0)))] ++ "REGNO(operands[0]) != REGNO(operands[1]) && avr32_const_ok_for_constraint_p(INTVAL(operands[2]), 'K', \"Ks16\")" ++ [(set (match_dup 0) ++ (plus:SI (match_dup 1) ++ (match_dup 2))) ++ (set (match_dup 3) ++ (mem:SI (plus:SI (match_dup 1) ++ (match_dup 2))))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.sb r0, r7[-0x6] ++;; cashs.b r0 ++;; to ++;; ld.sb r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:QI 0 "register_operand" "") ++ (match_operand:QI 1 "load_sb_memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (sign_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2]) || peep2_reg_dead_p(2, operands[0]))" ++ [(set (match_dup 2) ++ (sign_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.ub r0, r7[-0x6] ++;; cashu.b r0 ++;; to ++;; ld.ub r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:QI 0 "register_operand" "") ++ (match_operand:QI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (zero_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.sh r0, r7[-0x6] ++;; casts.h r0 ++;; to ++;; ld.sh r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (match_operand:HI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (sign_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (sign_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; ld.uh r0, r7[-0x6] ++;; castu.h r0 ++;; to ++;; ld.uh r0, r7[-0x6] ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (match_operand:HI 1 "memory_operand" "")) ++ (set (match_operand:SI 2 "register_operand" "") ++ (zero_extend:SI (match_dup 0)))] ++ "(REGNO(operands[0]) == REGNO(operands[2])) || peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 2) ++ (zero_extend:SI (match_dup 1)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; mul rd, rx, ry ++;; add rd2, rd ++;; or ++;; add rd2, rd, rd2 ++;; to ++;; mac rd2, rx, ry ++;;============================================================================= ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "register_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 3) ++ (match_dup 0)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 3) ++ (plus:SI (mult:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "") ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (mult:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "register_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_dup 3)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (match_dup 3) ++ (plus:SI (mult:SI (match_dup 1) ++ (match_dup 2)) ++ (match_dup 3)))] ++ "") ++ ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Changing ++;; bfextu rd, rs, k5, 1 or and(h/l) rd, one_bit_set_mask ++;; to ++;; bld rs, k5 ++;; ++;; If rd is dead after the operation. ++;;============================================================================= ++(define_peephole2 ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 1) ++ (match_operand:SI 2 "immediate_operand" ""))) ++ (set (cc0) ++ (match_dup 0))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (cc0) ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "operands[2] = GEN_INT(1 << INTVAL(operands[2]));") ++ ++(define_peephole2 ++ [ (set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") ++ (match_operand:SI 2 "one_bit_set_operand" ""))) ++ (set (cc0) ++ (match_dup 0))] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(set (cc0) ++ (and:SI (match_dup 1) ++ (match_dup 2)))] ++ "") ++ ++;;============================================================================= ++;; Peephole optimizing ++;;----------------------------------------------------------------------------- ++;; Load with extracted index: ld.w Rd, Rb[Ri:{t/u/b/l} << 2] ++;; ++;;============================================================================= ++ ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 8) ++ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 4 "register_operand" ""))))] ++ ++ "(dead_or_set_p(insn, operands[0]))" ++ { ++ switch ( INTVAL(operands[2]) ){ ++ case 0: ++ return "ld.w %3, %4[%1:b << 2]"; ++ case 8: ++ return "ld.w %3, %4[%1:l << 2]"; ++ case 16: ++ return "ld.w %3, %4[%1:u << 2]"; ++ case 24: ++ return "ld.w %3, %4[%1:t << 2]"; ++ default: ++ internal_error("illegal operand for ldxi"); ++ } ++ } ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") (const_int 255))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(dead_or_set_p(insn, operands[0]))" ++ ++ "ld.w %2, %3[%1:b << 2]" ++ [(set_attr "type" "load") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extract:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 8) ++ (match_operand:SI 2 "avr32_extract_shift_operand" ""))) ++ (set (match_operand:SI 3 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 4 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[3]))" ++ [(set (match_dup 3) ++ (mem:SI (plus:SI ++ (match_dup 4) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (match_dup 2)) ++ (const_int 4)))))] ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (zero_extend:SI (match_operand:QI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 0)) ++ (const_int 4)))))] ++ "operands[1] = gen_rtx_REG(SImode, REGNO(operands[1]));" ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (and:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 255))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 0)) ++ (const_int 4)))))] ++ "" ++ ) ++ ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (lshiftrt:SI (match_operand:SI 1 "register_operand" "") ++ (const_int 24))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mem:SI (plus:SI (mult:SI (match_dup 0) (const_int 4)) ++ (match_operand:SI 3 "register_operand" ""))))] ++ ++ "(peep2_reg_dead_p(2, operands[0])) ++ || (REGNO(operands[0]) == REGNO(operands[2]))" ++ [(set (match_dup 2) ++ (mem:SI (plus:SI ++ (match_dup 3) ++ (mult:SI (zero_extract:SI (match_dup 1) ++ (const_int 8) ++ (const_int 24)) ++ (const_int 4)))))] ++ "" ++ ) ++ ++ ++;;************************************************ ++;; ANDN ++;; ++;;************************************************ ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (not:SI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (and:SI (match_dup 2) ++ (match_dup 0)))] ++ "peep2_reg_dead_p(2, operands[0])" ++ ++ [(set (match_dup 2) ++ (and:SI (match_dup 2) ++ (not:SI (match_dup 1)) ++ ))] ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (not:SI (match_operand:SI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (and:SI (match_dup 0) ++ (match_dup 2) ++ ))] ++ "peep2_reg_dead_p(2, operands[0])" ++ ++ [(set (match_dup 2) ++ (and:SI (match_dup 2) ++ (not:SI (match_dup 1)) ++ ))] ++ ++ "" ++) ++ ++ ++;;================================================================= ++;; Addabs peephole ++;;================================================================= ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "r"))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_operand:SI 3 "register_operand" "r") ++ (match_dup 2)))] ++ "dead_or_set_p(insn, operands[2])" ++ "addabs %0, %3, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")]) ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "=r") ++ (abs:SI (match_operand:SI 1 "register_operand" "r"))) ++ (set (match_operand:SI 0 "register_operand" "=r") ++ (plus:SI (match_dup 2) ++ (match_operand:SI 3 "register_operand" "r")))] ++ "dead_or_set_p(insn, operands[2])" ++ "addabs %0, %3, %1" ++ [(set_attr "length" "4") ++ (set_attr "cc" "set_z")]) ++ ++ ++;;================================================================= ++;; Detect roundings ++;;================================================================= ++ ++(define_insn "*round" ++ [(set (match_operand:SI 0 "register_operand" "+r") ++ (ashiftrt:SI (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i")) ++ (match_operand:SI 2 "immediate_operand" "i")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ "satrnds %0 >> %2, 31" ++ ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4")] ++ ++ ) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" ""))) ++ (set (match_dup 0) ++ (ashiftrt:SI (match_dup 0) ++ (match_operand:SI 2 "immediate_operand" "")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ [(set (match_dup 0) ++ (ashiftrt:SI (plus:SI (match_dup 0) ++ (match_dup 1)) ++ (match_dup 2)))] ++ ) ++ ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "r") ++ (plus:SI (match_dup 0) ++ (match_operand:SI 1 "immediate_operand" "i"))) ++ (set (match_dup 0) ++ (ashiftrt:SI (match_dup 0) ++ (match_operand:SI 2 "immediate_operand" "i")))] ++ "avr32_rnd_operands(operands[1], operands[2])" ++ ++ "satrnds %0 >> %2, 31" ++ ++ [(set_attr "type" "alu_sat") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++ ++ ) ++ ++ ++;;================================================================= ++;; mcall ++;;================================================================= ++(define_peephole ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(call (mem:SI (match_dup 0)) ++ (match_operand 2 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "dead_or_set_p(insn, operands[0])" ++ "mcall %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")] ++) ++ ++(define_peephole ++ [(set (match_operand:SI 2 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(set (match_operand 0 "register_operand" "") ++ (call (mem:SI (match_dup 2)) ++ (match_operand 3 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "dead_or_set_p(insn, operands[2])" ++ "mcall %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "4") ++ (set_attr "cc" "call_set")] ++) ++ ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(call (mem:SI (match_dup 0)) ++ (match_operand 2 "" "")) ++ (clobber (reg:SI LR_REGNUM))])] ++ "peep2_reg_dead_p(2, operands[0])" ++ [(parallel [(call (mem:SI (match_dup 1)) ++ (match_dup 2)) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++) ++ ++(define_peephole2 ++ [(set (match_operand:SI 0 "register_operand" "") ++ (match_operand 1 "avr32_const_pool_ref_operand" "")) ++ (parallel [(set (match_operand 2 "register_operand" "") ++ (call (mem:SI (match_dup 0)) ++ (match_operand 3 "" ""))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "(peep2_reg_dead_p(2, operands[0]) || (REGNO(operands[2]) == REGNO(operands[0])))" ++ [(parallel [(set (match_dup 2) ++ (call (mem:SI (match_dup 1)) ++ (match_dup 3))) ++ (clobber (reg:SI LR_REGNUM))])] ++ "" ++) ++ ++;;================================================================= ++;; Returning a value ++;;================================================================= ++ ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "") ++ (match_operand 1 "register_operand" "")) ++ (return)] ++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM) ++ && (REGNO(operands[1]) != LR_REGNUM) ++ && (REGNO_REG_CLASS(REGNO(operands[1])) == GENERAL_REGS)" ++ "retal %1" ++ [(set_attr "type" "call") ++ (set_attr "length" "2")] ++ ) ++ ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "r") ++ (match_operand 1 "immediate_operand" "i")) ++ (return)] ++ "(USE_RETURN_INSN (FALSE) && (REGNO(operands[0]) == RETVAL_REGNUM) && ++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1)))" ++ { ++ avr32_output_return_instruction (TRUE, FALSE, NULL, operands[1]); ++ return ""; ++ } ++ [(set_attr "type" "call") ++ (set_attr "length" "4")] ++ ) ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "r") ++ (match_operand 1 "immediate_operand" "i")) ++ (unspec_volatile [(return)] VUNSPEC_EPILOGUE)] ++ "(REGNO(operands[0]) == RETVAL_REGNUM) && ++ ((INTVAL(operands[1]) == -1) || (INTVAL(operands[1]) == 0) || (INTVAL(operands[1]) == 1))" ++ { ++ avr32_output_return_instruction (FALSE, FALSE, NULL, operands[1]); ++ return ""; ++ } ++ ; Length is absolute worst case ++ [(set_attr "type" "branch") ++ (set_attr "length" "12")] ++ ) ++ ++(define_peephole ++ [(set (match_operand 0 "register_operand" "=r") ++ (if_then_else (match_operator 1 "avr32_comparison_operator" ++ [(match_operand 4 "register_operand" "r") ++ (match_operand 5 "register_immediate_operand" "rKs21")]) ++ (match_operand 2 "avr32_cond_register_immediate_operand" "rKs08") ++ (match_operand 3 "avr32_cond_register_immediate_operand" "rKs08"))) ++ (return)] ++ "USE_RETURN_INSN (TRUE) && (REGNO(operands[0]) == RETVAL_REGNUM)" ++ { ++ operands[1] = avr32_output_cmp(operands[1], GET_MODE(operands[4]), operands[4], operands[5]); ++ ++ if ( GET_CODE(operands[2]) == REG ++ && GET_CODE(operands[3]) == REG ++ && REGNO(operands[2]) != LR_REGNUM ++ && REGNO(operands[3]) != LR_REGNUM ){ ++ return "ret%1 %2\;ret%i1 %3"; ++ } else if ( GET_CODE(operands[2]) == REG ++ && GET_CODE(operands[3]) == CONST_INT ){ ++ if ( INTVAL(operands[3]) == -1 ++ || INTVAL(operands[3]) == 0 ++ || INTVAL(operands[3]) == 1 ){ ++ return "ret%1 %2\;ret%i1 %d3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } else if ( GET_CODE(operands[2]) == CONST_INT ++ && GET_CODE(operands[3]) == REG ){ ++ if ( INTVAL(operands[2]) == -1 ++ || INTVAL(operands[2]) == 0 ++ || INTVAL(operands[2]) == 1 ){ ++ return "ret%1 %d2\;ret%i1 %3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } else { ++ if ( (INTVAL(operands[2]) == -1 ++ || INTVAL(operands[2]) == 0 ++ || INTVAL(operands[2]) == 1 ) ++ && (INTVAL(operands[3]) == -1 ++ || INTVAL(operands[3]) == 0 ++ || INTVAL(operands[3]) == 1 )){ ++ return "ret%1 %d2\;ret%i1 %d3"; ++ } else { ++ return "mov%1 r12, %2\;mov%i1 r12, %3\;retal r12"; ++ } ++ } ++ } ++ ++ [(set_attr "length" "10") ++ (set_attr "cc" "none") ++ (set_attr "type" "call")]) ++ ++ ++ ++;;================================================================= ++;; mulnhh.w ++;;================================================================= ++ ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (neg:HI (match_operand:HI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_dup 0)) ++ (sign_extend:SI (match_operand:HI 3 "register_operand" ""))))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" ++ [ (set (match_dup 2) ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_dup 1))) ++ (sign_extend:SI (match_dup 3))))] ++ "" ++ ) ++ ++(define_peephole2 ++ [(set (match_operand:HI 0 "register_operand" "") ++ (neg:HI (match_operand:HI 1 "register_operand" ""))) ++ (set (match_operand:SI 2 "register_operand" "") ++ (mult:SI ++ (sign_extend:SI (match_operand:HI 3 "register_operand" "")) ++ (sign_extend:SI (match_dup 0))))] ++ "(peep2_reg_dead_p(2, operands[0])) || (REGNO(operands[2]) == REGNO(operands[0]))" ++ [ (set (match_dup 2) ++ (mult:SI ++ (sign_extend:SI (neg:HI (match_dup 1))) ++ (sign_extend:SI (match_dup 3))))] ++ "" ++ ) ++ ++ ++ ++;;================================================================= ++;; Vector set and extract operations ++;;================================================================= ++(define_insn "vec_setv2hi_hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "r")) ++ (const_int 1)))] ++ "" ++ "bfins\t%0, %1, 16, 16" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "vec_setv2hi_lo" ++ [(set (match_operand:V2HI 0 "register_operand" "+r") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "r")) ++ (const_int 2)))] ++ "" ++ "bfins\t%0, %1, 0, 16" ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_expand "vec_setv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "") ++ (vec_merge:V2HI ++ (match_dup 0) ++ (vec_duplicate:V2HI ++ (match_operand:HI 1 "register_operand" "")) ++ (match_operand 2 "immediate_operand" "")))] ++ "" ++ { operands[2] = GEN_INT(INTVAL(operands[2]) + 1); } ++ ) ++ ++(define_insn "vec_extractv2hi" ++ [(set (match_operand:HI 0 "register_operand" "=r") ++ (vec_select:HI ++ (match_operand:V2HI 1 "register_operand" "r") ++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] ++ "" ++ { ++ if ( INTVAL(operands[2]) == 0 ) ++ return "bfextu\t%0, %1, 16, 16"; ++ else ++ return "bfextu\t%0, %1, 0, 16"; ++ } ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++(define_insn "vec_extractv4qi" ++ [(set (match_operand:QI 0 "register_operand" "=r") ++ (vec_select:QI ++ (match_operand:V4QI 1 "register_operand" "r") ++ (parallel [(match_operand:SI 2 "immediate_operand" "i")])))] ++ "" ++ { ++ switch ( INTVAL(operands[2]) ){ ++ case 0: ++ return "bfextu\t%0, %1, 24, 8"; ++ case 1: ++ return "bfextu\t%0, %1, 16, 8"; ++ case 2: ++ return "bfextu\t%0, %1, 8, 8"; ++ case 3: ++ return "bfextu\t%0, %1, 0, 8"; ++ default: ++ abort(); ++ } ++ } ++ [(set_attr "type" "alu") ++ (set_attr "length" "4") ++ (set_attr "cc" "clobber")]) ++ ++ ++(define_insn "concatv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r, r, r") ++ (vec_concat:V2HI ++ (match_operand:HI 1 "register_operand" "r, r, 0") ++ (match_operand:HI 2 "register_operand" "r, 0, r")))] ++ "" ++ "@ ++ mov\t%0, %1\;bfins\t%0, %2, 0, 16 ++ bfins\t%0, %2, 0, 16 ++ bfins\t%0, %1, 16, 16" ++ [(set_attr "length" "6, 4, 4") ++ (set_attr "type" "alu")]) ++ ++ ++;; Load the atomic operation description ++(include "sync.md") ++ ++;; Load the SIMD description ++(include "simd.md") ++ ++;; Include the FPU for uc3 ++(include "uc3fpu.md") +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/avr32-modes.def gcc-4.4.6/gcc/config/avr32/avr32-modes.def +--- gcc-4.4.6.orig/gcc/config/avr32/avr32-modes.def 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/avr32-modes.def 2011-08-27 19:45:42.837990082 +0200 +@@ -0,0 +1 @@ ++VECTOR_MODES (INT, 4); /* V4QI V2HI */ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/avr32.opt gcc-4.4.6/gcc/config/avr32/avr32.opt +--- gcc-4.4.6.orig/gcc/config/avr32/avr32.opt 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/avr32.opt 2011-08-27 19:45:42.877990476 +0200 +@@ -0,0 +1,93 @@ ++; Options for the ATMEL AVR32 port of the compiler. ++ ++; Copyright 2007 Atmel Corporation. ++; ++; This file is part of GCC. ++; ++; GCC is free software; you can redistribute it and/or modify it under ++; the terms of the GNU General Public License as published by the Free ++; Software Foundation; either version 2, or (at your option) any later ++; version. ++; ++; GCC is distributed in the hope that it will be useful, but WITHOUT ANY ++; WARRANTY; without even the implied warranty of MERCHANTABILITY or ++; FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++; for more details. ++; ++; You should have received a copy of the GNU General Public License ++; along with GCC; see the file COPYING. If not, write to the Free ++; Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA ++; 02110-1301, USA. ++ ++muse-rodata-section ++Target Report Mask(USE_RODATA_SECTION) ++Use section .rodata for read-only data instead of .text. ++ ++mhard-float ++Target Report Mask(HARD_FLOAT) ++Use FPU instructions instead of floating point emulation. ++ ++msoft-float ++Target Report InverseMask(HARD_FLOAT, SOFT_FLOAT) ++Use floating point emulation for floating point operations. ++ ++mforce-double-align ++Target Report RejectNegative Mask(FORCE_DOUBLE_ALIGN) ++Force double-word alignment for double-word memory accesses. ++ ++mno-init-got ++Target Report RejectNegative Mask(NO_INIT_GOT) ++Do not initialize GOT register before using it when compiling PIC code. ++ ++mrelax ++Target Report Mask(RELAX) ++Let invoked assembler and linker do relaxing (Enabled by default when optimization level is >1). ++ ++mmd-reorg-opt ++Target Report Undocumented Mask(MD_REORG_OPTIMIZATION) ++Perform machine dependent optimizations in reorg stage. ++ ++masm-addr-pseudos ++Target Report Mask(HAS_ASM_ADDR_PSEUDOS) ++Use assembler pseudo-instructions lda.w and call for handling direct addresses. (Enabled by default) ++ ++mpart= ++Target Report RejectNegative Joined Var(avr32_part_name) ++Specify the AVR32 part name ++ ++mcpu= ++Target Report RejectNegative Joined Undocumented Var(avr32_part_name) ++Specify the AVR32 part name (deprecated) ++ ++march= ++Target Report RejectNegative Joined Var(avr32_arch_name) ++Specify the AVR32 architecture name ++ ++mfast-float ++Target Report Mask(FAST_FLOAT) ++Enable fast floating-point library. Enabled by default if the -funsafe-math-optimizations switch is specified. ++ ++mimm-in-const-pool ++Target Report Var(avr32_imm_in_const_pool) Init(-1) ++Put large immediates in constant pool. This is enabled by default for archs with insn-cache. ++ ++mno-pic ++Target Report RejectNegative Mask(NO_PIC) ++Do not generate position-independent code. (deprecated, use -fno-pic instead) ++ ++mcond-exec-before-reload ++Target Report Undocumented Mask(COND_EXEC_BEFORE_RELOAD) ++Enable experimental conditional execution preparation before the reload stage. ++ ++mrmw-addressable-data ++Target Report Mask(RMW_ADDRESSABLE_DATA) ++Signal that all data is in range for the Atomic Read-Modify-Write memory instructions, and that ++gcc can safely generate these whenever possible. ++ ++mflashvault ++Target Var(TARGET_FLASHVAULT) ++Generate code for flashvault ++ ++mlist-devices ++Target RejectNegative Var(avr32_list_supported_parts) ++Print the list of parts supported while printing --target-help. +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/avr32-protos.h gcc-4.4.6/gcc/config/avr32/avr32-protos.h +--- gcc-4.4.6.orig/gcc/config/avr32/avr32-protos.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/avr32-protos.h 2011-08-27 19:45:42.937990414 +0200 +@@ -0,0 +1,196 @@ ++/* ++ Prototypes for exported functions defined in avr32.c ++ Copyright 2003,2004,2005,2006,2007,2008,2009 Atmel Corporation. ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++#ifndef AVR32_PROTOS_H ++#define AVR32_PROTOS_H ++ ++extern const int swap_reg[]; ++ ++extern int avr32_valid_macmac_bypass (rtx, rtx); ++extern int avr32_valid_mulmac_bypass (rtx, rtx); ++ ++extern int avr32_decode_lcomm_symbol_offset (rtx, int *); ++extern void avr32_encode_lcomm_symbol_offset (tree, char *, int); ++ ++extern const char *avr32_strip_name_encoding (const char *); ++ ++extern rtx avr32_get_note_reg_equiv (rtx insn); ++ ++extern int avr32_use_return_insn (int iscond); ++ ++extern void avr32_make_reglist16 (int reglist16_vect, char *reglist16_string); ++ ++extern void avr32_make_reglist8 (int reglist8_vect, char *reglist8_string); ++extern void avr32_make_fp_reglist_w (int reglist_mask, char *reglist_string); ++extern void avr32_make_fp_reglist_d (int reglist_mask, char *reglist_string); ++ ++extern void avr32_output_return_instruction (int single_ret_inst, ++ int iscond, rtx cond, ++ rtx r12_imm); ++extern void avr32_expand_prologue (void); ++extern void avr32_set_return_address (rtx source, rtx scratch); ++ ++extern int avr32_hard_regno_mode_ok (int regno, enum machine_mode mode); ++extern int avr32_extra_constraint_s (rtx value, const int strict); ++extern int avr32_eh_return_data_regno (const int n); ++extern int avr32_initial_elimination_offset (const int from, const int to); ++extern rtx avr32_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, ++ tree type, int named); ++extern void avr32_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype, ++ rtx libname, tree fndecl); ++extern void avr32_function_arg_advance (CUMULATIVE_ARGS * cum, ++ enum machine_mode mode, ++ tree type, int named); ++#ifdef ARGS_SIZE_RTX ++/* expr.h defines ARGS_SIZE_RTX and `enum direction'. */ ++extern enum direction avr32_function_arg_padding (enum machine_mode mode, ++ tree type); ++#endif /* ARGS_SIZE_RTX */ ++extern rtx avr32_function_value (tree valtype, tree func, bool outgoing); ++extern rtx avr32_libcall_value (enum machine_mode mode); ++extern int avr32_sched_use_dfa_pipeline_interface (void); ++extern bool avr32_return_in_memory (tree type, tree fntype); ++extern void avr32_regs_to_save (char *operand); ++extern void avr32_target_asm_function_prologue (FILE * file, ++ HOST_WIDE_INT size); ++extern void avr32_target_asm_function_epilogue (FILE * file, ++ HOST_WIDE_INT size); ++extern void avr32_trampoline_template (FILE * file); ++extern void avr32_initialize_trampoline (rtx addr, rtx fnaddr, ++ rtx static_chain); ++extern int avr32_legitimate_address (enum machine_mode mode, rtx x, ++ int strict); ++extern int avr32_legitimate_constant_p (rtx x); ++ ++extern int avr32_legitimate_pic_operand_p (rtx x); ++ ++extern rtx avr32_find_symbol (rtx x); ++extern void avr32_select_section (rtx exp, int reloc, int align); ++extern void avr32_encode_section_info (tree decl, rtx rtl, int first); ++extern void avr32_asm_file_end (FILE * stream); ++extern void avr32_asm_output_ascii (FILE * stream, char *ptr, int len); ++extern void avr32_asm_output_common (FILE * stream, const char *name, ++ int size, int rounded); ++extern void avr32_asm_output_label (FILE * stream, const char *name); ++extern void avr32_asm_declare_object_name (FILE * stream, char *name, ++ tree decl); ++extern void avr32_asm_globalize_label (FILE * stream, const char *name); ++extern void avr32_asm_weaken_label (FILE * stream, const char *name); ++extern void avr32_asm_output_external (FILE * stream, tree decl, ++ const char *name); ++extern void avr32_asm_output_external_libcall (FILE * stream, rtx symref); ++extern void avr32_asm_output_labelref (FILE * stream, const char *name); ++extern void avr32_notice_update_cc (rtx exp, rtx insn); ++extern void avr32_print_operand (FILE * stream, rtx x, int code); ++extern void avr32_print_operand_address (FILE * stream, rtx x); ++ ++extern int avr32_symbol (rtx x); ++ ++extern void avr32_select_rtx_section (enum machine_mode mode, rtx x, ++ unsigned HOST_WIDE_INT align); ++ ++extern int avr32_load_multiple_operation (rtx op, enum machine_mode mode); ++extern int avr32_store_multiple_operation (rtx op, enum machine_mode mode); ++ ++extern int avr32_const_ok_for_constraint_p (HOST_WIDE_INT value, char c, ++ const char *str); ++ ++extern bool avr32_cannot_force_const_mem (rtx x); ++ ++extern void avr32_init_builtins (void); ++ ++extern rtx avr32_expand_builtin (tree exp, rtx target, rtx subtarget, ++ enum machine_mode mode, int ignore); ++ ++extern bool avr32_must_pass_in_stack (enum machine_mode mode, tree type); ++ ++extern bool avr32_strict_argument_naming (CUMULATIVE_ARGS * ca); ++ ++extern bool avr32_pass_by_reference (CUMULATIVE_ARGS * cum, ++ enum machine_mode mode, ++ tree type, bool named); ++ ++extern rtx avr32_gen_load_multiple (rtx * regs, int count, rtx from, ++ int write_back, int in_struct_p, ++ int scalar_p); ++extern rtx avr32_gen_store_multiple (rtx * regs, int count, rtx to, ++ int in_struct_p, int scalar_p); ++extern int avr32_gen_movmemsi (rtx * operands); ++ ++extern int avr32_rnd_operands (rtx add, rtx shift); ++extern int avr32_adjust_insn_length (rtx insn, int length); ++ ++extern int symbol_mentioned_p (rtx x); ++extern int label_mentioned_p (rtx x); ++extern rtx legitimize_pic_address (rtx orig, enum machine_mode mode, rtx reg); ++extern int avr32_address_register_rtx_p (rtx x, int strict_p); ++extern int avr32_legitimate_index_p (enum machine_mode mode, rtx index, ++ int strict_p); ++ ++extern int avr32_const_double_immediate (rtx value); ++extern void avr32_init_expanders (void); ++extern rtx avr32_return_addr (int count, rtx frame); ++extern bool avr32_got_mentioned_p (rtx addr); ++ ++extern void avr32_final_prescan_insn (rtx insn, rtx * opvec, int noperands); ++ ++extern int avr32_expand_movcc (enum machine_mode mode, rtx operands[]); ++extern int avr32_expand_addcc (enum machine_mode mode, rtx operands[]); ++#ifdef RTX_CODE ++extern int avr32_expand_scc (RTX_CODE cond, rtx * operands); ++#endif ++ ++extern int avr32_store_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_mul_waw_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_valid_load_double_bypass (rtx insn_out, rtx insn_in); ++extern int avr32_valid_load_quad_bypass (rtx insn_out, rtx insn_in); ++extern rtx avr32_output_cmp (rtx cond, enum machine_mode mode, ++ rtx op0, rtx op1); ++ ++rtx get_next_insn_cond (rtx cur_insn); ++int set_next_insn_cond (rtx cur_insn, rtx cond); ++rtx next_insn_emits_cmp (rtx cur_insn); ++void avr32_override_options (void); ++void avr32_load_pic_register (void); ++#ifdef GCC_BASIC_BLOCK_H ++rtx avr32_ifcvt_modify_insn (ce_if_block_t *ce_info, rtx pattern, rtx insn, ++ int *num_true_changes); ++rtx avr32_ifcvt_modify_test (ce_if_block_t *ce_info, rtx test ); ++void avr32_ifcvt_modify_cancel ( ce_if_block_t *ce_info, int *num_true_changes); ++#endif ++void avr32_optimization_options (int level, int size); ++int avr32_const_ok_for_move (HOST_WIDE_INT c); ++ ++void avr32_split_const_expr (enum machine_mode mode, ++ enum machine_mode new_mode, ++ rtx expr, ++ rtx *split_expr); ++void avr32_get_intval (enum machine_mode mode, ++ rtx const_expr, ++ HOST_WIDE_INT *val); ++ ++int avr32_cond_imm_clobber_splittable (rtx insn, ++ rtx operands[]); ++ ++bool avr32_flashvault_call(tree decl); ++extern void avr32_emit_swdivsf (rtx, rtx, rtx); ++ ++#endif /* AVR32_PROTOS_H */ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/crti.asm gcc-4.4.6/gcc/config/avr32/crti.asm +--- gcc-4.4.6.orig/gcc/config/avr32/crti.asm 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/crti.asm 2011-08-27 19:45:42.977989352 +0200 +@@ -0,0 +1,64 @@ ++/* ++ Init/fini stuff for AVR32. ++ Copyright 2003-2006 Atmel Corporation. ++ ++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++/* The code in sections .init and .fini is supposed to be a single ++ regular function. The function in .init is called directly from ++ start in crt1.asm. The function in .fini is atexit()ed in crt1.asm ++ too. ++ ++ crti.asm contributes the prologue of a function to these sections, ++ and crtn.asm comes up the epilogue. STARTFILE_SPEC should list ++ crti.o before any other object files that might add code to .init ++ or .fini sections, and ENDFILE_SPEC should list crtn.o after any ++ such object files. */ ++ ++ .file "crti.asm" ++ ++ .section ".init" ++/* Just load the GOT */ ++ .align 2 ++ .global _init ++_init: ++ stm --sp, r6, lr ++ lddpc r6, 1f ++0: ++ rsub r6, pc ++ rjmp 2f ++ .align 2 ++1: .long 0b - _GLOBAL_OFFSET_TABLE_ ++2: ++ ++ .section ".fini" ++/* Just load the GOT */ ++ .align 2 ++ .global _fini ++_fini: ++ stm --sp, r6, lr ++ lddpc r6, 1f ++0: ++ rsub r6, pc ++ rjmp 2f ++ .align 2 ++1: .long 0b - _GLOBAL_OFFSET_TABLE_ ++2: ++ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/crtn.asm gcc-4.4.6/gcc/config/avr32/crtn.asm +--- gcc-4.4.6.orig/gcc/config/avr32/crtn.asm 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/crtn.asm 2011-08-27 19:45:43.020480077 +0200 +@@ -0,0 +1,44 @@ ++/* Copyright (C) 2001 Free Software Foundation, Inc. ++ Written By Nick Clifton ++ ++ This file is free software; you can redistribute it and/or modify it ++ under the terms of the GNU General Public License as published by the ++ Free Software Foundation; either version 2, or (at your option) any ++ later version. ++ ++ In addition to the permissions in the GNU General Public License, the ++ Free Software Foundation gives you unlimited permission to link the ++ compiled version of this file with other programs, and to distribute ++ those programs without any restriction coming from the use of this ++ file. (The General Public License restrictions do apply in other ++ respects; for example, they cover modification of the file, and ++ distribution when not linked into another program.) ++ ++ This file is distributed in the hope that it will be useful, but ++ WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ++ General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; see the file COPYING. If not, write to ++ the Free Software Foundation, 59 Temple Place - Suite 330, ++ Boston, MA 02111-1307, USA. ++ ++ As a special exception, if you link this library with files ++ compiled with GCC to produce an executable, this does not cause ++ the resulting executable to be covered by the GNU General Public License. ++ This exception does not however invalidate any other reasons why ++ the executable file might be covered by the GNU General Public License. ++*/ ++ ++ ++ ++ ++ .file "crtn.asm" ++ ++ .section ".init" ++ ldm sp++, r6, pc ++ ++ .section ".fini" ++ ldm sp++, r6, pc ++ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/lib1funcs.S gcc-4.4.6/gcc/config/avr32/lib1funcs.S +--- gcc-4.4.6.orig/gcc/config/avr32/lib1funcs.S 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/lib1funcs.S 2011-08-27 19:46:04.347990802 +0200 +@@ -0,0 +1,2902 @@ ++/* Macro for moving immediate value to register. */ ++.macro mov_imm reg, imm ++.if (((\imm & 0xfffff) == \imm) || ((\imm | 0xfff00000) == \imm)) ++ mov \reg, \imm ++#if __AVR32_UC__ >= 2 ++.elseif ((\imm & 0xffff) == 0) ++ movh \reg, hi(\imm) ++ ++#endif ++.else ++ mov \reg, lo(\imm) ++ orh \reg, hi(\imm) ++.endif ++.endm ++ ++ ++ ++/* Adjust the unpacked double number if it is a subnormal number. ++ The exponent and mantissa pair are stored ++ in [mant_hi,mant_lo] and [exp]. A register with the correct sign bit in ++ the MSB is passed in [sign]. Needs two scratch ++ registers [scratch1] and [scratch2]. An adjusted and packed double float ++ is present in [mant_hi,mant_lo] after macro has executed */ ++.macro adjust_subnormal_df exp, mant_lo, mant_hi, sign, scratch1, scratch2 ++ /* We have an exponent which is <=0 indicating a subnormal number ++ As it should be stored as if the exponent was 1 (although the ++ exponent field is all zeros to indicate a subnormal number) ++ we have to shift down the mantissa to its correct position. */ ++ neg \exp ++ sub \exp,-1 /* amount to shift down */ ++ cp.w \exp,54 ++ brlo 50f /* if more than 53 shift steps, the ++ entire mantissa will disappear ++ without any rounding to occur */ ++ mov \mant_hi, 0 ++ mov \mant_lo, 0 ++ rjmp 52f ++50: ++ sub \exp,-10 /* do the shift to position the ++ mantissa at the same time ++ note! this does not include the ++ final 1 step shift to add the sign */ ++ ++ /* when shifting, save all shifted out bits in [scratch2]. we may need to ++ look at them to make correct rounding. */ ++ ++ rsub \scratch1,\exp,32 /* get inverted shift count */ ++ cp.w \exp,32 /* handle shifts >= 32 separately */ ++ brhs 51f ++ ++ /* small (<32) shift amount, both words are part of the shift */ ++ lsl \scratch2,\mant_lo,\scratch1 /* save bits to shift out from lsw*/ ++ lsl \scratch1,\mant_hi,\scratch1 /* get bits from msw destined for lsw*/ ++ lsr \mant_lo,\mant_lo,\exp /* shift down lsw */ ++ lsr \mant_hi,\mant_hi,\exp /* shift down msw */ ++ or \mant_hi,\scratch1 /* add bits from msw with prepared lsw */ ++ rjmp 50f ++ ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++51: ++ lsl \scratch2,\mant_hi,\scratch1 /* save bits to shift out from msw */ ++ or \scratch2,\mant_lo /* also save all bits from lsw */ ++ mov \mant_lo,\mant_hi /* msw -> lsw (i.e. "shift 32 first") */ ++ mov \mant_hi,0 /* clear msw */ ++ lsr \mant_lo,\mant_lo,\exp /* make rest of shift inside lsw */ ++ ++50: ++ /* result is almost ready to return, except that least significant bit ++ and the part we already shifted out may cause the result to be ++ rounded */ ++ bld \mant_lo,0 /* get bit to be shifted out */ ++ brcc 51f /* if bit was 0, no rounding */ ++ ++ /* msb of part to remove is 1, so rounding depends on rest of bits */ ++ tst \scratch2,\scratch2 /* get shifted out tail */ ++ brne 50f /* if rest > 0, do round */ ++ bld \mant_lo,1 /* we have to look at lsb in result */ ++ brcc 51f /* if lsb is 0, don't round */ ++ ++50: ++ /* subnormal result requires rounding ++ rounding may cause subnormal to become smallest normal number ++ luckily, smallest normal number has exactly the representation ++ we got by rippling a one bit up from mantissa into exponent field. */ ++ sub \mant_lo,-1 ++ subcc \mant_hi,-1 ++ ++51: ++ /* shift and return packed double with correct sign */ ++ rol \sign ++ ror \mant_hi ++ ror \mant_lo ++52: ++.endm ++ ++ ++/* Adjust subnormal single float number with exponent [exp] ++ and mantissa [mant] and round. */ ++.macro adjust_subnormal_sf sf, exp, mant, sign, scratch ++ /* subnormal number */ ++ rsub \exp,\exp, 1 /* shift amount */ ++ cp.w \exp, 25 ++ movhs \mant, 0 ++ brhs 90f /* Return zero */ ++ rsub \scratch, \exp, 32 ++ lsl \scratch, \mant,\scratch/* Check if there are any bits set ++ in the bits discarded in the mantissa */ ++ srne \scratch /* If so set the lsb of the shifted mantissa */ ++ lsr \mant,\mant,\exp /* Shift the mantissa */ ++ or \mant, \scratch /* Round lsb if any bits were shifted out */ ++ /* Rounding : For explaination, see round_sf. */ ++ mov \scratch, 0x7f /* Set rounding constant */ ++ bld \mant, 8 ++ subeq \scratch, -1 /* For odd numbers use rounding constant 0x80 */ ++ add \mant, \scratch /* Add rounding constant to mantissa */ ++ /* We can't overflow because mantissa is at least shifted one position ++ to the right so the implicit bit is zero. We can however get the implicit ++ bit set after rounding which means that we have the lowest normal number ++ but this is ok since this bit has the same position as the LSB of the ++ exponent */ ++ lsr \sf, \mant, 7 ++ /* Rotate in sign */ ++ lsl \sign, 1 ++ ror \sf ++90: ++.endm ++ ++ ++/* Round the unpacked df number with exponent [exp] and ++ mantissa [mant_hi, mant_lo]. Uses scratch register ++ [scratch] */ ++.macro round_df exp, mant_lo, mant_hi, scratch ++ mov \scratch, 0x3ff /* Rounding constant */ ++ bld \mant_lo,11 /* Check if lsb in the final result is ++ set */ ++ subeq \scratch, -1 /* Adjust rounding constant to 0x400 ++ if rounding 0.5 upwards */ ++ add \mant_lo, \scratch /* Round */ ++ acr \mant_hi /* If overflowing we know that ++ we have all zeros in the bits not ++ scaled out so we can leave them ++ but we must increase the exponent with ++ two since we had an implicit bit ++ which is lost + the extra overflow bit */ ++ subcs \exp, -2 /* Update exponent */ ++.endm ++ ++/* Round single float number stored in [mant] and [exp] */ ++.macro round_sf exp, mant, scratch ++ /* Round: ++ For 0.5 we round to nearest even integer ++ for all other cases we round to nearest integer. ++ This means that if the digit left of the "point" (.) ++ is 1 we can add 0x80 to the mantissa since the ++ corner case 0x180 will round up to 0x200. If the ++ digit left of the "point" is 0 we will have to ++ add 0x7f since this will give 0xff and hence a ++ truncation/rounding downwards for the corner ++ case when the 9 lowest bits are 0x080 */ ++ mov \scratch, 0x7f /* Set rounding constant */ ++ /* Check if the mantissa is even or odd */ ++ bld \mant, 8 ++ subeq \scratch, -1 /* Rounding constant should be 0x80 */ ++ add \mant, \scratch ++ subcs \exp, -2 /* Adjust exponent if we overflowed */ ++.endm ++ ++ ++ ++/* Pack a single float number stored in [mant] and [exp] ++ into a single float number in [sf] */ ++.macro pack_sf sf, exp, mant ++ bld \mant,31 /* implicit bit to z */ ++ subne \exp,1 /* if subnormal (implicit bit 0) ++ adjust exponent to storage format */ ++ ++ lsr \sf, \mant, 7 ++ bfins \sf, \exp, 24, 8 ++.endm ++ ++/* Pack exponent [exp] and mantissa [mant_hi, mant_lo] ++ into [df_hi, df_lo]. [df_hi] is shifted ++ one bit up so the sign bit can be shifted into it */ ++ ++.macro pack_df exp, mant_lo, mant_hi, df_lo, df_hi ++ bld \mant_hi,31 /* implicit bit to z */ ++ subne \exp,1 /* if subnormal (implicit bit 0) ++ adjust exponent to storage format */ ++ ++ lsr \mant_lo,11 /* shift back lsw */ ++ or \df_lo,\mant_lo,\mant_hi<<21 /* combine with low bits from msw */ ++ lsl \mant_hi,1 /* get rid of implicit bit */ ++ lsr \mant_hi,11 /* shift back msw except for one step*/ ++ or \df_hi,\mant_hi,\exp<<21 /* combine msw with exponent */ ++.endm ++ ++/* Normalize single float number stored in [mant] and [exp] ++ using scratch register [scratch] */ ++.macro normalize_sf exp, mant, scratch ++ /* Adjust exponent and mantissa */ ++ clz \scratch, \mant ++ sub \exp, \scratch ++ lsl \mant, \mant, \scratch ++.endm ++ ++/* Normalize the exponent and mantissa pair stored ++ in [mant_hi,mant_lo] and [exp]. Needs two scratch ++ registers [scratch1] and [scratch2]. */ ++.macro normalize_df exp, mant_lo, mant_hi, scratch1, scratch2 ++ clz \scratch1,\mant_hi /* Check if we have zeros in high bits */ ++ breq 80f /* No need for scaling if no zeros in high bits */ ++ brcs 81f /* Check for all zeros */ ++ ++ /* shift amount is smaller than 32, and involves both msw and lsw*/ ++ rsub \scratch2,\scratch1,32 /* shift mantissa */ ++ lsl \mant_hi,\mant_hi,\scratch1 ++ lsr \scratch2,\mant_lo,\scratch2 ++ or \mant_hi,\scratch2 ++ lsl \mant_lo,\mant_lo,\scratch1 ++ sub \exp,\scratch1 /* adjust exponent */ ++ rjmp 80f /* Finished */ ++81: ++ /* shift amount is greater than 32 */ ++ clz \scratch1,\mant_lo /* shift mantissa */ ++ movcs \scratch1, 0 ++ subcc \scratch1,-32 ++ lsl \mant_hi,\mant_lo,\scratch1 ++ mov \mant_lo,0 ++ sub \exp,\scratch1 /* adjust exponent */ ++80: ++.endm ++ ++ ++/* Fast but approximate multiply of two 64-bit numbers to give a 64 bit result. ++ The multiplication of [al]x[bl] is discarded. ++ Operands in [ah], [al], [bh], [bl]. ++ Scratch registers in [sh], [sl]. ++ Returns results in registers [rh], [rl].*/ ++.macro mul_approx_df ah, al, bh, bl, rh, rl, sh, sl ++ mulu.d \sl, \ah, \bl ++ macu.d \sl, \al, \bh ++ mulu.d \rl, \ah, \bh ++ add \rl, \sh ++ acr \rh ++.endm ++ ++ ++ ++#if defined(L_avr32_f64_mul) || defined(L_avr32_f64_mul_fast) ++ .align 2 ++#if defined(L_avr32_f64_mul) ++ .global __avr32_f64_mul ++ .type __avr32_f64_mul,@function ++__avr32_f64_mul: ++#else ++ .global __avr32_f64_mul_fast ++ .type __avr32_f64_mul_fast,@function ++__avr32_f64_mul_fast: ++#endif ++ or r12, r10, r11 << 1 ++ breq __avr32_f64_mul_op1_zero ++ ++#if defined(L_avr32_f64_mul) ++ pushm r4-r7, lr ++#else ++ stm --sp, r5,r6,r7,lr ++#endif ++ ++#define AVR32_F64_MUL_OP1_INT_BITS 1 ++#define AVR32_F64_MUL_OP2_INT_BITS 10 ++#define AVR32_F64_MUL_RES_INT_BITS 11 ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ ++ ++ /* Unpack op1 to 1.63 format*/ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ bfextu r7, r11, 20, 11 /* Extract exponent */ ++ ++ mov r5, 1 ++ ++ /* Check if normalization is needed */ ++ breq __avr32_f64_mul_op1_subnormal /*If number is subnormal, normalize it */ ++ ++ lsl r11, (12-AVR32_F64_MUL_OP1_INT_BITS-1) /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>(32-(12-AVR32_F64_MUL_OP1_INT_BITS-1)) ++ lsl r10, (12-AVR32_F64_MUL_OP1_INT_BITS-1) ++ bfins r11, r5, 32 - (1 + AVR32_F64_MUL_OP1_INT_BITS), 1 + AVR32_F64_MUL_OP1_INT_BITS /* Insert implicit bit */ ++ ++ ++22: ++ /* Unpack op2 to 10.54 format */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ bfextu r6, r9, 20, 11 /* Extract exponent */ ++ ++ /* Check if normalization is needed */ ++ breq __avr32_f64_mul_op2_subnormal /*If number is subnormal, normalize it */ ++ ++ lsl r8, 1 /* Extract mantissa, leave room for implicit bit */ ++ rol r9 ++ bfins r9, r5, 32 - (1 + AVR32_F64_MUL_OP2_INT_BITS), 1 + AVR32_F64_MUL_OP2_INT_BITS /* Insert implicit bit */ ++ ++23: ++ ++ /* Check if any operands are NaN or INF */ ++ cp r7, 0x7ff ++ breq __avr32_f64_mul_op_nan_or_inf /* Check op1 for NaN or Inf */ ++ cp r6, 0x7ff ++ breq __avr32_f64_mul_op_nan_or_inf /* Check op2 for NaN or Inf */ ++ ++ ++ /* Calculate new exponent in r12*/ ++ add r12, r7, r6 ++ sub r12, (1023-1) ++ ++#if defined(L_avr32_f64_mul) ++ /* Do the multiplication. ++ Place result in [r11, r10, r7, r6]. The result is in 11.117 format. */ ++ mulu.d r4, r11, r8 ++ macu.d r4, r10, r9 ++ mulu.d r6, r10, r8 ++ mulu.d r10, r11, r9 ++ add r7, r4 ++ adc r10, r10, r5 ++ acr r11 ++#else ++ /* Do the multiplication using approximate calculation. discard the al x bl ++ calculation. ++ Place result in [r11, r10, r7]. The result is in 11.85 format. */ ++ ++ /* Do the multiplication using approximate calculation. ++ Place result in r11, r10. Use r7, r6 as scratch registers */ ++ mulu.d r6, r11, r8 ++ macu.d r6, r10, r9 ++ mulu.d r10, r11, r9 ++ add r10, r7 ++ acr r11 ++#endif ++ /* Adjust exponent and mantissa */ ++ /* [r12]:exp, [r11, r10]:mant [r7, r6]:sticky bits */ ++ /* Mantissa may be of the format 00000000000.0xxx or 00000000000.1xxx. */ ++ /* In the first case, shift one pos to left.*/ ++ bld r11, 32-AVR32_F64_MUL_RES_INT_BITS-1 ++ breq 0f ++ lsl r7, 1 ++ rol r10 ++ rol r11 ++ sub r12, 1 ++0: ++ cp r12, 0 ++ brle __avr32_f64_mul_res_subnormal /*Result was subnormal.*/ ++ ++ /* Check for Inf. */ ++ cp.w r12, 0x7ff ++ brge __avr32_f64_mul_res_inf ++ ++ /* Insert exponent. */ ++ bfins r11, r12, 20, 11 ++ ++ /* Result was not subnormal. Perform rounding. */ ++ /* For the fast version we discard the sticky bits and always round ++ the halfwaycase up. */ ++24: ++#if defined(L_avr32_f64_mul) ++ or r6, r6, r10 << 31 /* Or in parity bit into stickybits */ ++ or r7, r7, r6 >> 1 /* Or together sticky and still make the msb ++ of r7 represent the halfway bit. */ ++ eorh r7, 0x8000 /* Toggle halfway bit. */ ++ /* We should now round up by adding one for the following cases: ++ ++ halfway sticky|parity round-up ++ 0 x no ++ 1 0 no ++ 1 1 yes ++ ++ Since we have inverted the halfway bit we can use the satu instruction ++ by saturating to 1 bit to implement this. ++ */ ++ satu r7 >> 0, 1 ++#else ++ lsr r7, 31 ++#endif ++ add r10, r7 ++ acr r11 ++ ++ /* Insert sign bit*/ ++ bld lr, 31 ++ bst r11, 31 ++ ++ /* Return result in [r11,r10] */ ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++ ++__avr32_f64_mul_op1_subnormal: ++ andh r11, 0x000f /* Remove sign bit and exponent */ ++ clz r12, r10 /* Count leading zeros in lsw */ ++ clz r6, r11 /* Count leading zeros in msw */ ++ subcs r12, -32 + AVR32_F64_MUL_OP1_INT_BITS ++ movcs r6, r12 ++ subcc r6, AVR32_F64_MUL_OP1_INT_BITS ++ cp.w r6, 32 ++ brge 0f ++ ++ /* shifting involves both msw and lsw*/ ++ rsub r12, r6, 32 /* shift mantissa */ ++ lsl r11, r11, r6 ++ lsr r12, r10, r12 ++ or r11, r12 ++ lsl r10, r10, r6 ++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS ++ sub r7, r6 /* adjust exponent */ ++ rjmp 22b /* Finished */ ++0: ++ /* msw is zero so only need to consider lsw */ ++ lsl r11, r10, r6 ++ breq __avr32_f64_mul_res_zero ++ mov r10, 0 ++ sub r6, 12-AVR32_F64_MUL_OP1_INT_BITS ++ sub r7, r6 /* adjust exponent */ ++ rjmp 22b ++ ++ ++__avr32_f64_mul_op2_subnormal: ++ andh r9, 0x000f /* Remove sign bit and exponent */ ++ clz r12, r8 /* Count leading zeros in lsw */ ++ clz r5, r9 /* Count leading zeros in msw */ ++ subcs r12, -32 + AVR32_F64_MUL_OP2_INT_BITS ++ movcs r5, r12 ++ subcc r5, AVR32_F64_MUL_OP2_INT_BITS ++ cp.w r5, 32 ++ brge 0f ++ ++ /* shifting involves both msw and lsw*/ ++ rsub r12, r5, 32 /* shift mantissa */ ++ lsl r9, r9, r5 ++ lsr r12, r8, r12 ++ or r9, r12 ++ lsl r8, r8, r5 ++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS ++ sub r6, r5 /* adjust exponent */ ++ rjmp 23b /* Finished */ ++0: ++ /* msw is zero so only need to consider lsw */ ++ lsl r9, r8, r5 ++ breq __avr32_f64_mul_res_zero ++ mov r8, 0 ++ sub r5, 12 - AVR32_F64_MUL_OP2_INT_BITS ++ sub r6, r5 /* adjust exponent */ ++ rjmp 23b ++ ++ ++__avr32_f64_mul_op_nan_or_inf: ++ /* Same code for OP1 and OP2*/ ++ /* Since we are here, at least one of the OPs were NaN or INF*/ ++ andh r9, 0x000f /* Remove sign bit and exponent */ ++ andh r11, 0x000f /* Remove sign bit and exponent */ ++ /* Merge the regs in each operand to check for zero*/ ++ or r11, r10 /* op1 */ ++ or r9, r8 /* op2 */ ++ /* Check if op1 is NaN or INF */ ++ cp r7, 0x7ff ++ brne __avr32_f64_mul_op1_not_naninf ++ /* op1 was NaN or INF.*/ ++ cp r11, 0 ++ brne __avr32_f64_mul_res_nan /* op1 was NaN. Result will be NaN*/ ++ /*op1 was INF. check if op2 is NaN or INF*/ ++ cp r6, 0x7ff ++ brne __avr32_f64_mul_res_inf /*op1 was INF, op2 was neither NaN nor INF*/ ++ /* op1 is INF, op2 is either NaN or INF*/ ++ cp r9, 0 ++ breq __avr32_f64_mul_res_inf /*op2 was also INF*/ ++ rjmp __avr32_f64_mul_res_nan /*op2 was NaN*/ ++ ++__avr32_f64_mul_op1_not_naninf: ++ /* op1 was not NaN nor INF. Then op2 must be NaN or INF*/ ++ cp r9, 0 ++ breq __avr32_f64_mul_res_inf /*op2 was INF, return INF*/ ++ rjmp __avr32_f64_mul_res_nan /*else return NaN*/ ++ ++__avr32_f64_mul_res_subnormal:/* Multiply result was subnormal. */ ++#if defined(L_avr32_f64_mul) ++ /* Check how much we must scale down the mantissa. */ ++ neg r12 ++ sub r12, -1 /* We do no longer have an implicit bit. */ ++ satu r12 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r12, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ rsub r8, r12, 32 ++ or r6, r7 ++ lsr r7, r7, r12 ++ lsl r9, r10, r8 ++ or r7, r9 ++ lsr r10, r10, r12 ++ lsl r9, r11, r8 ++ or r10, r9 ++ lsr r11, r11, r12 ++ rjmp 24b ++0: ++ /* Shift amount >=32 */ ++ rsub r8, r12, 32 ++ moveq r9, 0 ++ breq 0f ++ lsl r9, r11, r8 ++0: ++ or r6, r7 ++ or r6, r6, r10 << 1 ++ lsr r10, r10, r12 ++ or r7, r9, r10 ++ lsr r10, r11, r12 ++ mov r11, 0 ++ rjmp 24b ++#else ++ /* Flush to zero for the fast version. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_zero:/* Multiply result is zero. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_nan: /* Return NaN. */ ++ mov r11, -1 ++ mov r10, -1 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_res_inf: /* Return INF. */ ++ mov r11, 0xfff00000 ++ bld lr, 31 ++ bst r11, 31 ++ mov r10, 0 ++#if defined(L_avr32_f64_mul) ++ popm r4-r7, pc ++#else ++ ldm sp++, r5, r6, r7,pc ++#endif ++ ++__avr32_f64_mul_op1_zero: ++ /* Get sign */ ++ eor r11, r11, r9 ++ andh r11, 0x8000, COH ++ /* Check if op2 is Inf or NaN. */ ++ bfextu r12, r9, 20, 11 ++ cp.w r12, 0x7ff ++ retne r12 /* Return 0.0 */ ++ /* Return NaN */ ++ mov r10, -1 ++ mov r11, -1 ++ ret r12 ++ ++ ++ ++#endif ++ ++ ++#if defined(L_avr32_f64_addsub) || defined(L_avr32_f64_addsub_fast) ++ .align 2 ++ ++__avr32_f64_sub_from_add: ++ /* Switch sign on op2 */ ++ eorh r9, 0x8000 ++ ++#if defined(L_avr32_f64_addsub_fast) ++ .global __avr32_f64_sub_fast ++ .type __avr32_f64_sub_fast,@function ++__avr32_f64_sub_fast: ++#else ++ .global __avr32_f64_sub ++ .type __avr32_f64_sub,@function ++__avr32_f64_sub: ++#endif ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ ++#if defined(L_avr32_f64_addsub_fast) ++ /* If op2 is zero just return op1 */ ++ or r12, r8, r9 << 1 ++ reteq r12 ++#endif ++ ++ /* Check signs */ ++ eor r12, r11, r9 ++ /* Different signs, use addition. */ ++ brmi __avr32_f64_add_from_sub ++ ++ stm --sp, r5, r6, r7, lr ++ ++ /* Get sign of op1 into r12 */ ++ mov r12, r11 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++ cbr r9, 31 ++ ++ /* Put the largest number in [r11, r10] ++ and the smallest number in [r9, r8] */ ++ cp r10, r8 ++ cpc r11, r9 ++ brhs 1f /* Skip swap if operands already correctly ordered*/ ++ /* Operands were not correctly ordered, swap them*/ ++ mov r7, r11 ++ mov r11, r9 ++ mov r9, r7 ++ mov r7, r10 ++ mov r10, r8 ++ mov r8, r7 ++ eorh r12, 0x8000 /* Invert sign in r12*/ ++1: ++ /* Unpack largest operand - opH */ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ lsr r7, r11, 20 /* Extract exponent */ ++ lsl r11, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>21 ++ lsl r10, 11 ++ sbr r11, 31 /* Insert implicit bit */ ++ ++ ++ /* Unpack smallest operand - opL */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ breq __avr32_f64_sub_opL_subnormal /* If either zero or subnormal */ ++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>21 ++ lsl r8, 11 ++ sbr r9, 31 /* Insert implicit bit */ ++ ++ ++__avr32_f64_sub_opL_subnormal_done: ++ /* opH is NaN or Inf. */ ++ cp.w r7, 0x7ff ++ breq __avr32_f64_sub_opH_nan_or_inf ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r6, r7 ++ breq __avr32_f64_sub_shift_done /* No need to shift, exponents are equal*/ ++ ++ /* Scale mantissa [r9, r8] with amount [r6]. ++ Uses scratch registers [r5] and [lr]. ++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ ++ ++ rsub r5,r6,32 /* get (32 - shift count) ++ (if shift count > 32 we get a ++ negative value, but that will ++ work as well in the code below.) */ ++ ++ cp.w r6,32 /* handle shifts >= 32 separately */ ++ brhs __avr32_f64_sub_longshift ++ ++ /* small (<32) shift amount, both words are part of the shift ++ first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r8,r5 /* shift away bits that are part of ++ final mantissa. only part that goes ++ to lr are bits that will be lost */ ++ ++ /* ... and now to the actual shift */ ++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ ++ lsr r8,r8,r6 /* shift down lsw of mantissa */ ++ lsr r9,r9,r6 /* shift down msw of mantissa */ ++ or r8,r5 /* combine these bits with prepared lsw*/ ++#if defined(L_avr32_f64_addsub) ++ cp.w lr,0 /* if any '1' bit in part we lost ...*/ ++ srne lr ++ or r8, lr /* ... we need to set sticky bit*/ ++#endif ++ ++__avr32_f64_sub_shift_done: ++ /* Now subtract the mantissas. */ ++ sub r10, r8 ++ sbc r11, r11, r9 ++ ++ /* Normalize the exponent and mantissa pair stored in ++ [r11,r10] and exponent in [r7]. Needs two scratch registers [r6] and [lr]. */ ++ clz r6,r11 /* Check if we have zeros in high bits */ ++ breq __avr32_f64_sub_longnormalize_done /* No need for scaling if no zeros in high bits */ ++ brcs __avr32_f64_sub_longnormalize ++ ++ ++ /* shift amount is smaller than 32, and involves both msw and lsw*/ ++ rsub lr,r6,32 /* shift mantissa */ ++ lsl r11,r11,r6 ++ lsr lr,r10,lr ++ or r11,lr ++ lsl r10,r10,r6 ++ ++ sub r7,r6 /* adjust exponent */ ++ brle __avr32_f64_sub_subnormal_result ++__avr32_f64_sub_longnormalize_done: ++ ++#if defined(L_avr32_f64_addsub) ++ /* Insert the bits we will remove from the mantissa r9[31:21] */ ++ lsl r9, r10, (32 - 11) ++#else ++ /* Keep the last bit shifted out. */ ++ bfextu r9, r10, 10, 1 ++#endif ++ ++ /* Pack final result*/ ++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ ++ /* Result in [r11,r10] */ ++ /* Insert mantissa */ ++ lsr r10, 11 ++ or r10, r10, r11<<21 ++ lsr r11, 11 ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ or r11, r12 ++ ++ /* Round */ ++__avr32_f64_sub_round: ++#if defined(L_avr32_f64_addsub) ++ mov_imm r7, 0x80000000 ++ bld r10, 0 ++ subne r7, -1 ++ ++ cp.w r9, r7 ++ srhs r9 ++#endif ++ add r10, r9 ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++ ++__avr32_f64_sub_opL_subnormal: ++ /* Extract the of mantissa */ ++ lsl r9, 11 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>21 ++ lsl r8, 11 ++ ++ /* Set exponent to 1 if we do not have a zero. */ ++ or lr, r9, r8 ++ movne r6,1 ++ ++ /* Check if opH is also subnormal. If so, clear implicit bit in r11*/ ++ rsub lr, r7, 0 ++ moveq r7,1 ++ bst r11, 31 ++ ++ /* Check if op1 is zero, if so set exponent to 0. */ ++ or lr, r11, r10 ++ moveq r7,0 ++ ++ rjmp __avr32_f64_sub_opL_subnormal_done ++ ++__avr32_f64_sub_opH_nan_or_inf: ++ /* Check if opH is NaN, if so return NaN */ ++ cbr r11, 31 ++ or lr, r11, r10 ++ brne __avr32_f64_sub_return_nan ++ ++ /* opH is Inf. */ ++ /* Check if opL is Inf. or NaN */ ++ cp.w r6, 0x7ff ++ breq __avr32_f64_sub_return_nan ++ /* Return infinity with correct sign. */ ++ or r11, r12, r7 << 20 ++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ ++__avr32_f64_sub_return_nan: ++ mov r10, -1 /* Generate NaN in r11, r10 */ ++ mov r11, -1 ++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ ++ ++ ++__avr32_f64_sub_subnormal_result: ++#if defined(L_avr32_f64_addsub) ++ /* Check how much we must scale down the mantissa. */ ++ neg r7 ++ sub r7, -1 /* We do no longer have an implicit bit. */ ++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r7, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ rsub r8, r7, 32 ++ lsl r9, r10, r8 ++ srne r6 ++ lsr r10, r10, r7 ++ or r10, r6 /* Sticky bit from the ++ part that was shifted out. */ ++ lsl r9, r11, r8 ++ or r10, r10, r9 ++ lsr r11, r10, r7 ++ /* Set exponent */ ++ mov r7, 0 ++ rjmp __avr32_f64_sub_longnormalize_done ++0: ++ /* Shift amount >=32 */ ++ rsub r8, r7, 64 ++ lsl r9, r11, r8 ++ or r9, r10 ++ srne r6 ++ lsr r10, r11, r7 ++ or r10, r6 /* Sticky bit from the ++ part that was shifted out. */ ++ mov r11, 0 ++ /* Set exponent */ ++ mov r7, 0 ++ rjmp __avr32_f64_sub_longnormalize_done ++#else ++ /* Just flush subnormals to zero. */ ++ mov r10, 0 ++ mov r11, 0 ++#endif ++ ldm sp++, r5, r6, r7, pc ++ ++__avr32_f64_sub_longshift: ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count=r6) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++ /* Saturate the shift amount to 63. If the amount ++ is any larger op2 is insignificant. */ ++ satu r6 >> 0, 6 ++ ++#if defined(L_avr32_f64_addsub) ++ /* first remember whether part that is lost contains any 1 bits ... */ ++ moveq lr, r8 /* If shift amount is 32, no bits from msw are lost. */ ++ breq 0f ++ lsl lr,r9,r5 /* save all lost bits from msw */ ++ or lr,r8 /* also save lost bits (all) from lsw ++ now lr != 0 if we lose any bits */ ++#endif ++0: ++ /* ... and now to the actual shift */ ++ lsr r8,r9,r6 /* Move msw to lsw and shift. */ ++ mov r9,0 /* clear msw */ ++#if defined(L_avr32_f64_addsub) ++ cp.w lr,0 /* if any '1' bit in part we lost ...*/ ++ srne lr ++ or r8, lr /* ... we need to set sticky bit*/ ++#endif ++ rjmp __avr32_f64_sub_shift_done ++ ++__avr32_f64_sub_longnormalize: ++ /* shift amount is greater than 32 */ ++ clz r6,r10 /* shift mantissa */ ++ /* If the resulting mantissa is zero the result is ++ zero so force exponent to zero. */ ++ movcs r7, 0 ++ movcs r6, 0 ++ movcs r12, 0 /* Also clear sign bit. A zero result from subtraction ++ always is +0.0 */ ++ subcc r6,-32 ++ lsl r11,r10,r6 ++ mov r10,0 ++ sub r7,r6 /* adjust exponent */ ++ brle __avr32_f64_sub_subnormal_result ++ rjmp __avr32_f64_sub_longnormalize_done ++ ++ ++ ++ .align 2 ++__avr32_f64_add_from_sub: ++ /* Switch sign on op2 */ ++ eorh r9, 0x8000 ++ ++#if defined(L_avr32_f64_addsub_fast) ++ .global __avr32_f64_add_fast ++ .type __avr32_f64_add_fast,@function ++__avr32_f64_add_fast: ++#else ++ .global __avr32_f64_add ++ .type __avr32_f64_add,@function ++__avr32_f64_add: ++#endif ++ ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ ++#if defined(L_avr32_f64_addsub_fast) ++ /* If op2 is zero just return op1 */ ++ or r12, r8, r9 << 1 ++ reteq r12 ++#endif ++ ++ /* Check signs */ ++ eor r12, r11, r9 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f64_sub_from_add ++ ++ stm --sp, r5, r6, r7, lr ++ ++ /* Get sign of op1 into r12 */ ++ mov r12, r11 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++ cbr r9, 31 ++ ++ /* Put the number with the largest exponent in [r11, r10] ++ and the number with the smallest exponent in [r9, r8] */ ++ cp r11, r9 ++ brhs 1f /* Skip swap if operands already correctly ordered */ ++ /* Operands were not correctly ordered, swap them */ ++ mov r7, r11 ++ mov r11, r9 ++ mov r9, r7 ++ mov r7, r10 ++ mov r10, r8 ++ mov r8, r7 ++1: ++ mov lr, 0 /* Set sticky bits to zero */ ++ /* Unpack largest operand - opH */ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ bfextu R7, R11, 20, 11 /* Extract exponent */ ++ bfextu r11, r11, 0, 20 /* Extract mantissa */ ++ sbr r11, 20 /* Insert implicit bit */ ++ ++ /* Unpack smallest operand - opL */ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ bfextu R6, R9, 20, 11 /* Extract exponent */ ++ breq __avr32_f64_add_op2_subnormal ++ bfextu r9, r9, 0, 20 /* Extract mantissa */ ++ sbr r9, 20 /* Insert implicit bit */ ++ ++2: ++ /* opH is NaN or Inf. */ ++ cp.w r7, 0x7ff ++ breq __avr32_f64_add_opH_nan_or_inf ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r6, r7 ++ breq __avr32_f64_add_shift_done /* No need to shift, exponents are equal*/ ++ ++ /* Scale mantissa [r9, r8] with amount [r6]. ++ Uses scratch registers [r5] and [lr]. ++ In IEEE mode:Must not forget the sticky bits we intend to shift out. */ ++ rsub r5,r6,32 /* get (32 - shift count) ++ (if shift count > 32 we get a ++ negative value, but that will ++ work as well in the code below.) */ ++ ++ cp.w r6,32 /* handle shifts >= 32 separately */ ++ brhs __avr32_f64_add_longshift ++ ++ /* small (<32) shift amount, both words are part of the shift ++ first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r8,r5 /* shift away bits that are part of ++ final mantissa. only part that goes ++ to lr are bits that will be lost */ ++ ++ /* ... and now to the actual shift */ ++ lsl r5,r9,r5 /* get bits from msw destined for lsw*/ ++ lsr r8,r8,r6 /* shift down lsw of mantissa */ ++ lsr r9,r9,r6 /* shift down msw of mantissa */ ++ or r8,r5 /* combine these bits with prepared lsw*/ ++ ++__avr32_f64_add_shift_done: ++ /* Now add the mantissas. */ ++ add r10, r8 ++ adc r11, r11, r9 ++ ++ /* Check if we overflowed. */ ++ bld r11, 21 ++ breq __avr32_f64_add_res_of: ++ ++__avr32_f64_add_res_of_done: ++ ++ /* Pack final result*/ ++ /* Input: [r7]:exp, [r11, r10]:mant, [r12]:sign in MSB */ ++ /* Result in [r11,r10] */ ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ or r11, r12 ++ ++ /* Round */ ++__avr32_f64_add_round: ++#if defined(L_avr32_f64_addsub) ++ bfextu r12, r10, 0, 1 /* Extract parity bit.*/ ++ or lr, r12 /* or it together with the sticky bits. */ ++ eorh lr, 0x8000 /* Toggle round bit. */ ++ /* We should now round up by adding one for the following cases: ++ ++ halfway sticky|parity round-up ++ 0 x no ++ 1 0 no ++ 1 1 yes ++ ++ Since we have inverted the halfway bit we can use the satu instruction ++ by saturating to 1 bit to implement this. ++ */ ++ satu lr >> 0, 1 ++#else ++ lsr lr, 31 ++#endif ++ add r10, lr ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++__avr32_f64_add_opH_nan_or_inf: ++ /* Check if opH is NaN, if so return NaN */ ++ cbr r11, 20 ++ or lr, r11, r10 ++ brne __avr32_f64_add_return_nan ++ ++ /* opH is Inf. */ ++ /* Check if opL is Inf. or NaN */ ++ cp.w r6, 0x7ff ++ breq __avr32_f64_add_opL_nan_or_inf ++ ldm sp++, r5, r6, r7, pc/* opL not Inf or NaN, return opH */ ++__avr32_f64_add_opL_nan_or_inf: ++ cbr r9, 20 ++ or lr, r9, r8 ++ brne __avr32_f64_add_return_nan ++ mov r10, 0 /* Generate Inf in r11, r10 */ ++ mov_imm r11, 0x7ff00000 ++ or r11, r12 /* Put sign bit back */ ++ ldm sp++, r5, r6, r7, pc/* opL Inf, return Inf */ ++__avr32_f64_add_return_nan: ++ mov r10, -1 /* Generate NaN in r11, r10 */ ++ mov r11, -1 ++ ldm sp++, r5, r6, r7, pc/* opL Inf or NaN, return NaN */ ++ ++ ++__avr32_f64_add_longshift: ++ /* large (>=32) shift amount, only lsw will have bits left after shift. ++ note that shift operations will use ((shift count=r6) mod 32) so ++ we do not need to subtract 32 from shift count. */ ++ /* Saturate the shift amount to 63. If the amount ++ is any larger op2 is insignificant. */ ++ satu r6 >> 0, 6 ++ /* If shift amount is 32 there are no bits from the msw that are lost. */ ++ moveq lr, r8 ++ breq 0f ++ /* first remember whether part that is lost contains any 1 bits ... */ ++ lsl lr,r9,r5 /* save all lost bits from msw */ ++#if defined(L_avr32_f64_addsub) ++ cp.w r8, 0 ++ srne r8 ++ or lr,r8 /* also save lost bits (all) from lsw ++ now lr != 0 if we lose any bits */ ++#endif ++0: ++ /* ... and now to the actual shift */ ++ lsr r8,r9,r6 /* msw -> lsw and make rest of shift inside lsw*/ ++ mov r9,0 /* clear msw */ ++ rjmp __avr32_f64_add_shift_done ++ ++__avr32_f64_add_res_of: ++ /* We overflowed. Scale down mantissa by shifting right one position. */ ++ or lr, lr, lr << 1 /* Remember stickybits*/ ++ lsr r11, 1 ++ ror r10 ++ ror lr ++ sub r7, -1 /* Increment exponent */ ++ ++ /* Clear mantissa to set result to Inf if the exponent is 255. */ ++ cp.w r7, 0x7ff ++ moveq r10, 0 ++ moveq r11, 0 ++ moveq lr, 0 ++ rjmp __avr32_f64_add_res_of_done ++ ++__avr32_f64_add_op2_subnormal: ++ /* Set epxponent to 1 */ ++ mov r6, 1 ++ ++ /* Check if op2 is also subnormal. */ ++ cp.w r7, 0 ++ brne 2b ++ ++ cbr r11, 20 ++ /* Both operands are subnormal. Just addd the mantissas ++ and the exponent will automatically be set to 1 if ++ we overflow into a normal number. */ ++ add r10, r8 ++ adc r11, r11, r9 ++ ++ /* Add sign bit */ ++ or r11, r12 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r5, r6, r7,pc ++ ++ ++ ++#endif ++ ++#ifdef L_avr32_f64_to_u32 ++ /* This goes into L_fixdfsi */ ++#endif ++ ++ ++#ifdef L_avr32_f64_to_s32 ++ .global __avr32_f64_to_u32 ++ .type __avr32_f64_to_u32,@function ++__avr32_f64_to_u32: ++ cp.w r11, 0 ++ retmi 0 /* Negative returns 0 */ ++ ++ /* Fallthrough to df to signed si conversion */ ++ .global __avr32_f64_to_s32 ++ .type __avr32_f64_to_s32,@function ++__avr32_f64_to_s32: ++ lsl r12,r11,1 ++ lsr r12,21 /* extract exponent*/ ++ sub r12,1023 /* convert to unbiased exponent.*/ ++ retlo 0 /* too small exponent implies zero. */ ++ ++1: ++ rsub r12,r12,31 /* shift count = 31 - exponent */ ++ mov r9,r11 /* save sign for later...*/ ++ lsl r11,11 /* remove exponent and sign*/ ++ sbr r11,31 /* add implicit bit*/ ++ or r11,r11,r10>>21 /* get rest of bits from lsw of double */ ++ lsr r11,r11,r12 /* shift down mantissa to final place */ ++ lsl r9,1 /* sign -> carry */ ++ retcc r11 /* if positive, we are done */ ++ neg r11 /* if negative float, negate result */ ++ ret r11 ++ ++#endif /* L_fixdfsi*/ ++ ++#ifdef L_avr32_f64_to_u64 ++ /* Actual function is in L_fixdfdi */ ++#endif ++ ++#ifdef L_avr32_f64_to_s64 ++ .global __avr32_f64_to_u64 ++ .type __avr32_f64_to_u64,@function ++__avr32_f64_to_u64: ++ cp.w r11,0 ++ /* Negative numbers return zero */ ++ movmi r10, 0 ++ movmi r11, 0 ++ retmi r11 ++ ++ ++ ++ /* Fallthrough */ ++ .global __avr32_f64_to_s64 ++ .type __avr32_f64_to_s64,@function ++__avr32_f64_to_s64: ++ lsl r9,r11,1 ++ lsr r9,21 /* get exponent*/ ++ sub r9,1023 /* convert to correct range*/ ++ /* Return zero if exponent to small */ ++ movlo r10, 0 ++ movlo r11, 0 ++ retlo r11 ++ ++ mov r8,r11 /* save sign for later...*/ ++1: ++ lsl r11,11 /* remove exponent */ ++ sbr r11,31 /* add implicit bit*/ ++ or r11,r11,r10>>21 /* get rest of bits from lsw of double*/ ++ lsl r10,11 /* align lsw correctly as well */ ++ rsub r9,r9,63 /* shift count = 63 - exponent */ ++ breq 1f ++ ++ cp.w r9,32 /* is shift count more than one reg? */ ++ brhs 0f ++ ++ mov r12,r11 /* save msw */ ++ lsr r10,r10,r9 /* small shift count, shift down lsw */ ++ lsr r11,r11,r9 /* small shift count, shift down msw */ ++ rsub r9,r9,32 /* get 32-size of shifted out tail */ ++ lsl r12,r12,r9 /* align part to move from msw to lsw */ ++ or r10,r12 /* combine to get new lsw */ ++ rjmp 1f ++ ++0: ++ lsr r10,r11,r9 /* large shift count,only lsw get bits ++ note that shift count is modulo 32*/ ++ mov r11,0 /* msw will be 0 */ ++ ++1: ++ lsl r8,1 /* sign -> carry */ ++ retcc r11 /* if positive, we are done */ ++ ++ neg r11 /* if negative float, negate result */ ++ neg r10 ++ scr r11 ++ ret r11 ++ ++#endif ++ ++#ifdef L_avr32_u32_to_f64 ++ /* Code located in L_floatsidf */ ++#endif ++ ++#ifdef L_avr32_s32_to_f64 ++ .global __avr32_u32_to_f64 ++ .type __avr32_u32_to_f64,@function ++__avr32_u32_to_f64: ++ sub r11, r12, 0 /* Move to r11 and force Z flag to be updated */ ++ mov r12, 0 /* always positive */ ++ rjmp 0f /* Jump to common code for floatsidf */ ++ ++ .global __avr32_s32_to_f64 ++ .type __avr32_s32_to_f64,@function ++__avr32_s32_to_f64: ++ mov r11, r12 /* Keep original value in r12 for sign */ ++ abs r11 /* Absolute value if r12 */ ++0: ++ mov r10,0 /* let remaining bits be zero */ ++ reteq r11 /* zero long will return zero float */ ++ ++ pushm lr ++ mov r9,31+1023 /* set exponent */ ++ ++ normalize_df r9 /*exp*/, r10, r11 /* mantissa */, r8, lr /* scratch */ ++ ++ /* Check if a subnormal result was created */ ++ cp.w r9, 0 ++ brgt 0f ++ ++ adjust_subnormal_df r9 /* exp */, r10, r11 /* Mantissa */, r12 /*sign*/, r8, lr /* scratch */ ++ popm pc ++0: ++ ++ /* Round result */ ++ round_df r9 /*exp*/, r10, r11 /* Mantissa */, r8 /*scratch*/ ++ cp.w r9,0x7ff ++ brlt 0f ++ /*Return infinity */ ++ mov r10, 0 ++ mov_imm r11, 0xffe00000 ++ rjmp __floatsidf_return_op1 ++ ++0: ++ ++ /* Pack */ ++ pack_df r9 /*exp*/, r10, r11 /* mantissa */, r10, r11 /* Output df number*/ ++__floatsidf_return_op1: ++ lsl r12,1 /* shift in sign bit */ ++ ror r11 ++ ++ popm pc ++#endif ++ ++ ++#ifdef L_avr32_f32_cmp_eq ++ .global __avr32_f32_cmp_eq ++ .type __avr32_f32_cmp_eq,@function ++__avr32_f32_cmp_eq: ++ cp.w r12, r11 ++ breq 0f ++ /* If not equal check for +/-0 */ ++ /* Or together the two values and shift out the sign bit. ++ If the result is zero, then the two values are both zero. */ ++ or r12, r11 ++ lsl r12, 1 ++ reteq 1 ++ ret 0 ++0: ++ /* Numbers were equal. Check for NaN or Inf */ ++ mov_imm r11, 0xff000000 ++ lsl r12, 1 ++ cp.w r12, r11 ++ retls 1 /* 0 if NaN, 1 otherwise */ ++ ret 0 ++#endif ++ ++#if defined(L_avr32_f32_cmp_ge) || defined(L_avr32_f32_cmp_lt) ++#ifdef L_avr32_f32_cmp_ge ++ .global __avr32_f32_cmp_ge ++ .type __avr32_f32_cmp_ge,@function ++__avr32_f32_cmp_ge: ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ .global __avr32_f32_cmp_lt ++ .type __avr32_f32_cmp_lt,@function ++__avr32_f32_cmp_lt: ++#endif ++ lsl r10, r12, 1 /* Remove sign bits */ ++ lsl r9, r11, 1 ++ subfeq r10, 0 ++#ifdef L_avr32_f32_cmp_ge ++ reteq 1 /* Both number are zero. Return true. */ ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reteq 0 /* Both number are zero. Return false. */ ++#endif ++ mov_imm r8, 0xff000000 ++ cp.w r10, r8 ++ rethi 0 /* Op0 is NaN */ ++ cp.w r9, r8 ++ rethi 0 /* Op1 is Nan */ ++ ++ eor r8, r11, r12 ++ bld r12, 31 ++#ifdef L_avr32_f32_cmp_ge ++ srcc r8 /* Set result to true if op0 is positive*/ ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ srcs r8 /* Set result to true if op0 is negative*/ ++#endif ++ retmi r8 /* Return if signs are different */ ++ brcs 0f /* Both signs negative? */ ++ ++ /* Both signs positive */ ++ cp.w r12, r11 ++#ifdef L_avr32_f32_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++0: ++ /* Both signs negative */ ++ cp.w r11, r12 ++#ifdef L_avr32_f32_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f32_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++#endif ++ ++ ++#ifdef L_avr32_f64_cmp_eq ++ .global __avr32_f64_cmp_eq ++ .type __avr32_f64_cmp_eq,@function ++__avr32_f64_cmp_eq: ++ cp.w r10,r8 ++ cpc r11,r9 ++ breq 0f ++ ++ /* Args were not equal*/ ++ /* Both args could be zero with different sign bits */ ++ lsl r11,1 /* get rid of sign bits */ ++ lsl r9,1 ++ or r11,r10 /* Check if all bits are zero */ ++ or r11,r9 ++ or r11,r8 ++ reteq 1 /* If all zeros the arguments are equal ++ so return 1 else return 0 */ ++ ret 0 ++0: ++ /* check for NaN */ ++ lsl r11,1 ++ mov_imm r12, 0xffe00000 ++ cp.w r10,0 ++ cpc r11,r12 /* check if nan or inf */ ++ retls 1 /* If Arg is NaN return 0 else 1*/ ++ ret 0 /* Return */ ++ ++#endif ++ ++ ++#if defined(L_avr32_f64_cmp_ge) || defined(L_avr32_f64_cmp_lt) ++ ++#ifdef L_avr32_f64_cmp_ge ++ .global __avr32_f64_cmp_ge ++ .type __avr32_f64_cmp_ge,@function ++__avr32_f64_cmp_ge: ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ .global __avr32_f64_cmp_lt ++ .type __avr32_f64_cmp_lt,@function ++__avr32_f64_cmp_lt: ++#endif ++ ++ /* compare magnitude of op1 and op2 */ ++ st.w --sp, lr ++ st.w --sp, r7 ++ lsl r11,1 /* Remove sign bit of op1 */ ++ srcs r12 /* Sign op1 to lsb of r12*/ ++ lsl r9,1 /* Remove sign bit of op2 */ ++ srcs r7 ++ rol r12 /* Sign op2 to lsb of lr, sign bit op1 bit 1 of r12*/ ++ ++ ++ /* Check for Nan */ ++ mov_imm lr, 0xffe00000 ++ cp.w r10,0 ++ cpc r11,lr ++ brhi 0f /* We have NaN */ ++ cp.w r8,0 ++ cpc r9,lr ++ brhi 0f /* We have NaN */ ++ ++ cp.w r11, 0 ++ subfeq r10, 0 ++ breq 3f /* op1 zero */ ++ ld.w r7, sp++ ++ ld.w lr, sp++ ++ ++ cp.w r12,3 /* both operands negative ?*/ ++ breq 1f ++ ++ cp.w r12,1 /* both operands positive? */ ++ brlo 2f ++ ++ /* Different signs. If sign of op1 is negative the difference ++ between op1 and op2 will always be negative, and if op1 is ++ positive the difference will always be positive */ ++#ifdef L_avr32_f64_cmp_ge ++ reteq 1 ++ retne 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reteq 0 ++ retne 1 ++#endif ++ ++2: ++ /* Both operands positive. Just compute the difference */ ++ cp.w r10,r8 ++ cpc r11,r9 ++#ifdef L_avr32_f64_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++ ++1: ++ /* Both operands negative. Compute the difference with operands switched */ ++ cp r8,r10 ++ cpc r9,r11 ++#ifdef L_avr32_f64_cmp_ge ++ reths 1 ++ retlo 0 ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reths 0 ++ retlo 1 ++#endif ++ ++0: ++ ld.w r7, sp++ ++ popm pc, r12=0 ++ ++3: ++ cp.w r7, 1 /* Check sign bit from r9 */ ++#ifdef L_avr32_f64_cmp_ge ++ sreq r12 /* If op2 is negative then op1 >= op2. */ ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ srne r12 /* If op2 is positve then op1 <= op2. */ ++#endif ++ cp.w r9, 0 ++ subfeq r8, 0 ++ ld.w r7, sp++ ++ ld.w lr, sp++ ++#ifdef L_avr32_f64_cmp_ge ++ reteq 1 /* Both operands are zero. Return true. */ ++#endif ++#ifdef L_avr32_f64_cmp_lt ++ reteq 0 /* Both operands are zero. Return false. */ ++#endif ++ ret r12 ++#endif ++ ++#if defined(L_avr32_f64_div) || defined(L_avr32_f64_div_fast) ++ .align 2 ++ ++#if defined(L_avr32_f64_div_fast) ++ .global __avr32_f64_div_fast ++ .type __avr32_f64_div_fast,@function ++__avr32_f64_div_fast: ++#else ++ .global __avr32_f64_div ++ .type __avr32_f64_div,@function ++__avr32_f64_div: ++#endif ++ stm --sp, r0, r1, r2, r3, r4, r5, r6, r7,lr ++ /* op1 in {r11,r10}*/ ++ /* op2 in {r9,r8}*/ ++ eor lr, r11, r9 /* MSB(lr) = Sign(op1) ^ Sign(op2) */ ++ ++ ++ /* Unpack op1 to 2.62 format*/ ++ /* exp: r7 */ ++ /* sf: r11, r10 */ ++ lsr r7, r11, 20 /* Extract exponent */ ++ ++ lsl r11, 9 /* Extract mantissa, leave room for implicit bit */ ++ or r11, r11, r10>>23 ++ lsl r10, 9 ++ sbr r11, 29 /* Insert implicit bit */ ++ andh r11, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ ++ ++ cbr r7, 11 /* Clear sign bit */ ++ /* Check if normalization is needed */ ++ breq 11f /*If number is subnormal, normalize it */ ++22: ++ cp r7, 0x7ff ++ brge 2f /* Check op1 for NaN or Inf */ ++ ++ /* Unpack op2 to 2.62 format*/ ++ /* exp: r6 */ ++ /* sf: r9, r8 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ ++ lsl r9, 9 /* Extract mantissa, leave room for implicit bit */ ++ or r9, r9, r8>>23 ++ lsl r8, 9 ++ sbr r9, 29 /* Insert implicit bit */ ++ andh r9, 0x3fff /*Mask last part of exponent since we use 2.62 format*/ ++ ++ cbr r6, 11 /* Clear sign bit */ ++ /* Check if normalization is needed */ ++ breq 13f /*If number is subnormal, normalize it */ ++23: ++ cp r6, 0x7ff ++ brge 3f /* Check op2 for NaN or Inf */ ++ ++ /* Calculate new exponent */ ++ sub r7, r6 ++ sub r7,-1023 ++ ++ /* Divide */ ++ /* Approximating 1/d with the following recurrence: */ ++ /* R[j+1] = R[j]*(2-R[j]*d) */ ++ /* Using 2.62 format */ ++ /* TWO: r12 */ ++ /* d = op2 = divisor (2.62 format): r9,r8 */ ++ /* Multiply result : r5, r4 */ ++ /* Initial guess : r3, r2 */ ++ /* New approximations : r3, r2 */ ++ /* op1 = Dividend (2.62 format) : r11, r10 */ ++ ++ mov_imm r12, 0x80000000 ++ ++ /* Load initial guess, using look-up table */ ++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ ++ /* Let d be of following format: 00.1xy....., then XY=~xy */ ++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ ++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ ++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ ++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ ++ /* r2 is also part of the reg pair forming initial guess, but it*/ ++ /* is kept uninitialized to save one cycle since it has so low significance*/ ++ ++ lsr r3, r12, 1 ++ bfextu r4, r9, 27, 2 ++ com r4 ++ bfins r3, r4, 28, 2 ++ ++ /* First approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Second approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Third approximation */ ++ /* Approximating to 32 bits */ ++ /* r5 = R[j]*d */ ++ mulu.d r4, r3, r9 ++ /* r5 = 2-R[j]*d */ ++ sub r5, r12, r5<<2 ++ /* r3 = R[j]*(2-R[j]*d) */ ++ mulu.d r4, r3, r5 ++ lsl r3, r5, 2 ++ ++ /* Fourth approximation */ ++ /* Approximating to 64 bits */ ++ /* r5,r4 = R[j]*d */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r5, 2 ++ or r5, r5, r4>>30 ++ lsl r4, 2 ++ /* r5,r4 = 2-R[j]*d */ ++ neg r4 ++ sbc r5, r12, r5 ++ /* r3,r2 = R[j]*(2-R[j]*d) */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r3, r5, 2 ++ or r3, r3, r4>>30 ++ lsl r2, r4, 2 ++ ++ ++ /* Fifth approximation */ ++ /* Approximating to 64 bits */ ++ /* r5,r4 = R[j]*d */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r9 /*bh*/, r8 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r5, 2 ++ or r5, r5, r4>>30 ++ lsl r4, 2 ++ /* r5,r4 = 2-R[j]*d */ ++ neg r4 ++ sbc r5, r12, r5 ++ /* r3,r2 = R[j]*(2-R[j]*d) */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r5 /*bh*/, r4 /*bl*/, r5 /*rh*/, r4 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ lsl r3, r5, 2 ++ or r3, r3, r4>>30 ++ lsl r2, r4, 2 ++ ++ ++ /* Multiply with dividend to get quotient */ ++ mul_approx_df r3 /*ah*/, r2 /*al*/, r11 /*bh*/, r10 /*bl*/, r3 /*rh*/, r2 /*rl*/, r1 /*sh*/, r0 /*sl*/ ++ ++ ++ /* To increase speed, this result is not corrected before final rounding.*/ ++ /* This may give a difference to IEEE compliant code of 1 ULP.*/ ++ ++ ++ /* Adjust exponent and mantissa */ ++ /* r7:exp, [r3, r2]:mant, [r5, r4]:scratch*/ ++ /* Mantissa may be of the format 0.xxxx or 1.xxxx. */ ++ /* In the first case, shift one pos to left.*/ ++ bld r3, 31-3 ++ breq 0f ++ lsl r2, 1 ++ rol r3 ++ sub r7, 1 ++#if defined(L_avr32_f64_div) ++ /* We must scale down the dividend to 5.59 format. */ ++ lsr r10, 3 ++ or r10, r10, r11 << 29 ++ lsr r11, 3 ++ rjmp 1f ++#endif ++0: ++#if defined(L_avr32_f64_div) ++ /* We must scale down the dividend to 6.58 format. */ ++ lsr r10, 4 ++ or r10, r10, r11 << 28 ++ lsr r11, 4 ++1: ++#endif ++ cp r7, 0 ++ brle __avr32_f64_div_res_subnormal /* Result was subnormal. */ ++ ++ ++#if defined(L_avr32_f64_div) ++ /* In order to round correctly we calculate the remainder: ++ Remainder = dividend[11:r10] - divisor[r9:r8]*quotient[r3:r2] ++ for the case when the quotient is halfway between the round-up ++ value and the round down value. If the remainder then is negative ++ it means that the quotient was to big and that it should not be ++ rounded up, if the remainder is positive the quotient was to small ++ and we need to round up. If the remainder is zero it means that the ++ quotient is exact but since we need to remove the guard bit we should ++ round to even. */ ++ ++ /* Truncate and add guard bit. */ ++ andl r2, 0xff00 ++ orl r2, 0x0080 ++ ++ ++ /* Now do the multiplication. The quotient has the format 4.60 ++ while the divisor has the format 2.62 which gives a result ++ of 6.58 */ ++ mulu.d r0, r3, r8 ++ macu.d r0, r2, r9 ++ mulu.d r4, r2, r8 ++ mulu.d r8, r3, r9 ++ add r5, r0 ++ adc r8, r8, r1 ++ acr r9 ++ ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ ++ cp r4, 0 ++ cpc r5 ++__avr32_f64_div_round_subnormal: ++ cpc r8, r10 ++ cpc r9, r11 ++ srlo r6 /* Remainder positive: we need to round up.*/ ++ moveq r6, r12 /* Remainder zero: round up if mantissa odd. */ ++#else ++ bfextu r6, r2, 7, 1 /* Get guard bit */ ++#endif ++ /* Final packing, scale down mantissa. */ ++ lsr r10, r2, 8 ++ or r10, r10, r3<<24 ++ lsr r11, r3, 8 ++ /* Insert exponent and sign bit*/ ++ bfins r11, r7, 20, 11 ++ bld lr, 31 ++ bst r11, 31 ++ ++ /* Final rounding */ ++ add r10, r6 ++ acr r11 ++ ++ /* Return result in [r11,r10] */ ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++ ++2: ++ /* Op1 is NaN or inf */ ++ andh r11, 0x000f /* Extract mantissa */ ++ or r11, r10 ++ brne 16f /* Return NaN if op1 is NaN */ ++ /* Op1 is inf check op2 */ ++ lsr r6, r9, 20 /* Extract exponent */ ++ cbr r6, 11 /* Clear sign bit */ ++ cp r6, 0x7ff ++ brne 17f /* Inf/number gives inf, return inf */ ++ rjmp 16f /* The rest gives NaN*/ ++ ++3: ++ /* Op1 is a valid number. Op 2 is NaN or inf */ ++ andh r9, 0x000f /* Extract mantissa */ ++ or r9, r8 ++ brne 16f /* Return NaN if op2 is NaN */ ++ rjmp 15f /* Op2 was inf, return zero*/ ++ ++11: /* Op1 was denormal. Fix it. */ ++ lsl r11, 3 ++ or r11, r11, r10 >> 29 ++ lsl r10, 3 ++ /* Check if op1 is zero. */ ++ or r4, r10, r11 ++ breq __avr32_f64_div_op1_zero ++ normalize_df r7 /*exp*/, r10, r11 /*Mantissa*/, r4, r5 /*scratch*/ ++ lsr r10, 2 ++ or r10, r10, r11 << 30 ++ lsr r11, 2 ++ rjmp 22b ++ ++ ++13: /* Op2 was denormal. Fix it */ ++ lsl r9, 3 ++ or r9, r9, r8 >> 29 ++ lsl r8, 3 ++ /* Check if op2 is zero. */ ++ or r4, r9, r8 ++ breq 17f /* Divisor is zero -> return Inf */ ++ normalize_df r6 /*exp*/, r8, r9 /*Mantissa*/, r4, r5 /*scratch*/ ++ lsr r8, 2 ++ or r8, r8, r9 << 30 ++ lsr r9, 2 ++ rjmp 23b ++ ++ ++__avr32_f64_div_res_subnormal:/* Divide result was subnormal. */ ++#if defined(L_avr32_f64_div) ++ /* Check how much we must scale down the mantissa. */ ++ neg r7 ++ sub r7, -1 /* We do no longer have an implicit bit. */ ++ satu r7 >> 0, 6 /* Saturate shift amount to max 63. */ ++ cp.w r7, 32 ++ brge 0f ++ /* Shift amount <32 */ ++ /* Scale down quotient */ ++ rsub r6, r7, 32 ++ lsr r2, r2, r7 ++ lsl r12, r3, r6 ++ or r2, r12 ++ lsr r3, r3, r7 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsl r1, r10, r6 ++ lsr r10, r10, r7 ++ lsl r12, r11, r6 ++ or r10, r12 ++ lsr r11, r11, r7 ++ mov r0, 0 ++ rjmp 1f ++0: ++ /* Shift amount >=32 */ ++ rsub r6, r7, 32 ++ moveq r0, 0 ++ moveq r12, 0 ++ breq 0f ++ lsl r0, r10, r6 ++ lsl r12, r11, r6 ++0: ++ lsr r2, r3, r7 ++ mov r3, 0 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsr r1, r10, r7 ++ or r1, r12 ++ lsr r10, r11, r7 ++ mov r11, 0 ++1: ++ /* Start performing the same rounding as done for normal numbers ++ but this time we have scaled the quotient and dividend and hence ++ need a little different comparison. */ ++ /* Truncate and add guard bit. */ ++ andl r2, 0xff00 ++ orl r2, 0x0080 ++ ++ /* Now do the multiplication. */ ++ mulu.d r6, r3, r8 ++ macu.d r6, r2, r9 ++ mulu.d r4, r2, r8 ++ mulu.d r8, r3, r9 ++ add r5, r6 ++ adc r8, r8, r7 ++ acr r9 ++ ++ /* Set exponent to 0 */ ++ mov r7, 0 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r12, r2, 8, 1 /* Get parity bit into bit 0 of r0 */ ++ cp r4, r0 ++ cpc r5, r1 ++ /* Now the rest of the rounding is the same as for normals. */ ++ rjmp __avr32_f64_div_round_subnormal ++ ++#endif ++15: ++ /* Flush to zero for the fast version. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++16: /* Return NaN. */ ++ mov r11, -1 ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++17: ++ /* Check if op1 is zero. */ ++ or r4, r10, r11 ++ breq __avr32_f64_div_op1_zero ++ /* Return INF. */ ++ mov r11, lr /*Get correct sign*/ ++ andh r11, 0x8000, COH ++ orh r11, 0x7ff0 ++ mov r10, 0 ++ ldm sp++, r0, r1, r2, r3, r4, r5, r6, r7,pc ++ ++__avr32_f64_div_op1_zero: ++ or r5, r8, r9 << 1 ++ breq 16b /* 0.0/0.0 -> NaN */ ++ bfextu r4, r9, 20, 11 ++ cp r4, 0x7ff ++ brne 15b /* Return zero */ ++ /* Check if divisor is Inf or NaN */ ++ or r5, r8, r9 << 12 ++ breq 15b /* Divisor is inf -> return zero */ ++ rjmp 16b /* Return NaN */ ++ ++ ++ ++ ++#endif ++ ++#if defined(L_avr32_f32_addsub) || defined(L_avr32_f32_addsub_fast) ++ ++ .align 2 ++__avr32_f32_sub_from_add: ++ /* Switch sign on op2 */ ++ eorh r11, 0x8000 ++ ++#if defined(L_avr32_f32_addsub_fast) ++ .global __avr32_f32_sub_fast ++ .type __avr32_f32_sub_fast,@function ++__avr32_f32_sub_fast: ++#else ++ .global __avr32_f32_sub ++ .type __avr32_f32_sub,@function ++__avr32_f32_sub: ++#endif ++ ++ /* Check signs */ ++ eor r8, r11, r12 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f32_add_from_sub ++ ++ /* Get sign of op1 */ ++ mov r8, r12 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++#if defined(L_avr32_f32_addsub_fast) ++ reteq r8 /* If op2 is zero return op1 */ ++#endif ++ cbr r8, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ cp r10, r8 /*If largest operand (in R10) is not equal to op1*/ ++ subne r12, 1 /* Subtract 1 from sign, which will invert MSB of r12*/ ++ andh r12, 0x8000, COH /*Mask all but MSB*/ ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_sub_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++#if defined(L_avr32_f32_addsub) ++ /* Keep sticky bit for correct IEEE rounding */ ++ st.w --sp, r12 ++ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_sub_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ sub r12, r10, r9 ++ ++ breq __avr32_f32_sub_shift_done ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r12 >> 0, 5 ++ ++ /* Put the remaining bits into r9.*/ ++ rsub r9, r12, 32 ++ lsl r9, r11, r9 ++ ++ /* If the remaining bits are non-zero then we must subtract one ++ more from opL. */ ++ subne r8, 1 ++ srne r9 /* LSB of r9 represents sticky bits. */ ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r12 ++ ++ ++__avr32_f32_sub_shift_done: ++ /* Now subtract the mantissas. */ ++ sub r8, r11 ++ ++ ld.w r12, sp++ ++ ++ /* Normalize resulting mantissa. */ ++ clz r11, r8 ++ ++ retcs 0 ++ lsl r8, r8, r11 ++ sub r10, r11 ++ brle __avr32_f32_sub_subnormal_result ++ ++ /* Insert the bits we will remove from the mantissa into r9[31:24] */ ++ or r9, r9, r8 << 24 ++#else ++ /* Ignore sticky bit to simplify and speed up rounding */ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_sub_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r9 ++ ++ /* Now subtract the mantissas. */ ++ sub r8, r11 ++ ++ /* Normalize resulting mantissa. */ ++ clz r9, r8 ++ retcs 0 ++ lsl r8, r8, r9 ++ sub r10, r9 ++ brle __avr32_f32_sub_subnormal_result ++#endif ++ ++ /* Pack result. */ ++ or r12, r12, r8 >> 8 ++ bfins r12, r10, 23, 8 ++ ++ /* Round */ ++__avr32_f32_sub_round: ++#if defined(L_avr32_f32_addsub) ++ mov_imm r10, 0x80000000 ++ bld r12, 0 ++ subne r10, -1 ++ cp.w r9, r10 ++ subhs r12, -1 ++#else ++ bld r8, 7 ++ acr r12 ++#endif ++ ++ ret r12 ++ ++ ++__avr32_f32_sub_op2_subnormal: ++ /* Fix implicit bit and adjust exponent of subnormals. */ ++ cbr r11, 31 ++ /* Set exponent to 1 if we do not have a zero. */ ++ movne r9,1 ++ ++ /* Check if op1 is also subnormal. */ ++ cp.w r10, 0 ++ brne 0b ++ ++ cbr r8, 31 ++ /* If op1 is not zero set exponent to 1. */ ++ movne r10,1 ++ ++ rjmp 0b ++ ++__avr32_f32_sub_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return op1 */ ++ ++ ret -1 /* op2 Inf or NaN, return NaN */ ++ ++__avr32_f32_sub_subnormal_result: ++ /* Check if the number is so small that ++ it will be represented with zero. */ ++ rsub r10, r10, 9 ++ rsub r11, r10, 32 ++ retcs 0 ++ ++ /* Shift the mantissa into the correct position.*/ ++ lsr r10, r8, r10 ++ /* Add sign bit. */ ++ or r12, r10 ++ ++ /* Put the shifted out bits in the most significant part ++ of r8. */ ++ lsl r8, r8, r11 ++ ++#if defined(L_avr32_f32_addsub) ++ /* Add all the remainder bits used for rounding into r9 */ ++ or r9, r8 ++#else ++ lsr r8, 24 ++#endif ++ rjmp __avr32_f32_sub_round ++ ++ ++ .align 2 ++ ++__avr32_f32_add_from_sub: ++ /* Switch sign on op2 */ ++ eorh r11, 0x8000 ++ ++#if defined(L_avr32_f32_addsub_fast) ++ .global __avr32_f32_add_fast ++ .type __avr32_f32_add_fast,@function ++__avr32_f32_add_fast: ++#else ++ .global __avr32_f32_add ++ .type __avr32_f32_add,@function ++__avr32_f32_add: ++#endif ++ ++ /* Check signs */ ++ eor r8, r11, r12 ++ /* Different signs, use subtraction. */ ++ brmi __avr32_f32_sub_from_add ++ ++ /* Get sign of op1 */ ++ mov r8, r12 ++ andh r12, 0x8000, COH ++ ++ /* Remove sign from operands */ ++ cbr r11, 31 ++#if defined(L_avr32_f32_addsub_fast) ++ reteq r8 /* If op2 is zero return op1 */ ++#endif ++ cbr r8, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_add_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++#if defined(L_avr32_f32_addsub) ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_add_op2_subnormal ++0: ++ /* Keep sticky bit for correct IEEE rounding */ ++ st.w --sp, r12 ++ ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r12, r11, r9 ++ ++ /* Put the remainding bits into r11[23:..].*/ ++ rsub r9, r9, (32-8) ++ lsl r11, r11, r9 ++ /* Insert the bits we will remove from the mantissa into r11[31:24] */ ++ bfins r11, r12, 24, 8 ++ ++ /* Now add the mantissas. */ ++ add r8, r12 ++ ++ ld.w r12, sp++ ++#else ++ /* Ignore sticky bit to simplify and speed up rounding */ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_add_op2_subnormal ++0: ++ /* Get shift amount to scale mantissa of op2. */ ++ rsub r9, r10 ++ ++ /* Saturate the shift amount to 31. If the amount ++ is any larger op2 is insignificant. */ ++ satu r9 >> 0, 5 ++ ++ /* Shift mantissa of op2 to same decimal point as the mantissa ++ of op1. */ ++ lsr r11, r11, r9 ++ ++ /* Now add the mantissas. */ ++ add r8, r11 ++ ++#endif ++ /* Check if we overflowed. */ ++ brcs __avr32_f32_add_res_of ++1: ++ /* Pack result. */ ++ or r12, r12, r8 >> 8 ++ bfins r12, r10, 23, 8 ++ ++ /* Round */ ++#if defined(L_avr32_f32_addsub) ++ mov_imm r10, 0x80000000 ++ bld r12, 0 ++ subne r10, -1 ++ cp.w r11, r10 ++ subhs r12, -1 ++#else ++ bld r8, 7 ++ acr r12 ++#endif ++ ++ ret r12 ++ ++__avr32_f32_add_op2_subnormal: ++ /* Fix implicit bit and adjust exponent of subnormals. */ ++ cbr r11, 31 ++ /* Set exponent to 1 if we do not have a zero. */ ++ movne r9,1 ++ ++ /* Check if op1 is also subnormal. */ ++ cp.w r10, 0 ++ brne 0b ++ /* Both operands subnormal, just add the mantissas and ++ pack. If the addition of the subnormal numbers results ++ in a normal number then the exponent will automatically ++ be set to 1 by the addition. */ ++ cbr r8, 31 ++ add r11, r8 ++ or r12, r12, r11 >> 8 ++ ret r12 ++ ++__avr32_f32_add_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return op1 */ ++ ++ lsl r9, 9 ++ reteq r12 /* op2 Inf return op1 */ ++ ret -1 /* op2 is NaN, return NaN */ ++ ++__avr32_f32_add_res_of: ++ /* We overflowed. Increase exponent and shift mantissa.*/ ++ lsr r8, 1 ++ sub r10, -1 ++ ++ /* Clear mantissa to set result to Inf if the exponent is 255. */ ++ cp.w r10, 255 ++ moveq r8, 0 ++ moveq r11, 0 ++ rjmp 1b ++ ++ ++#endif ++ ++ ++#if defined(L_avr32_f32_div) || defined(L_avr32_f32_div_fast) ++ .align 2 ++ ++#if defined(L_avr32_f32_div_fast) ++ .global __avr32_f32_div_fast ++ .type __avr32_f32_div_fast,@function ++__avr32_f32_div_fast: ++#else ++ .global __avr32_f32_div ++ .type __avr32_f32_div,@function ++__avr32_f32_div: ++#endif ++ ++ eor r8, r11, r12 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ ++ ++ /* Unpack */ ++ lsl r12,1 ++ lsl r11,1 ++ breq 4f /* Check op2 for zero */ ++ ++ tst r12, r12 ++ moveq r9, 0 ++ breq 12f ++ ++ /* Unpack op1*/ ++ /* exp: r9 */ ++ /* sf: r12 */ ++ lsr r9, r12, 24 ++ breq 11f /*If number is subnormal*/ ++ cp r9, 0xff ++ brhs 2f /* Check op1 for NaN or Inf */ ++ lsl r12, 7 ++ sbr r12, 31 /*Implicit bit*/ ++12: ++ ++ /* Unpack op2*/ ++ /* exp: r10 */ ++ /* sf: r11 */ ++ lsr r10, r11, 24 ++ breq 13f /*If number is subnormal*/ ++ cp r10, 0xff ++ brhs 3f /* Check op2 for NaN or Inf */ ++ lsl r11,7 ++ sbr r11, 31 /*Implicit bit*/ ++ ++ cp.w r9, 0 ++ subfeq r12, 0 ++ reteq 0 /* op1 is zero and op2 is not zero */ ++ /* or NaN so return zero */ ++ ++14: ++ ++ /* For UC3, store with predecrement is faster than stm */ ++ st.w --sp, r5 ++ st.d --sp, r6 ++ ++ /* Calculate new exponent */ ++ sub r9, r10 ++ sub r9,-127 ++ ++ /* Divide */ ++ /* Approximating 1/d with the following recurrence: */ ++ /* R[j+1] = R[j]*(2-R[j]*d) */ ++ /* Using 2.30 format */ ++ /* TWO: r10 */ ++ /* d: r5 */ ++ /* Multiply result : r6, r7 */ ++ /* Initial guess : r11 */ ++ /* New approximations : r11 */ ++ /* Dividend : r12 */ ++ ++ /* Load TWO */ ++ mov_imm r10, 0x80000000 ++ ++ lsr r12, 2 /* Get significand of Op1 in 2.30 format */ ++ lsr r5, r11, 2 /* Get significand of Op2 (=d) in 2.30 format */ ++ ++ /* Load initial guess, using look-up table */ ++ /* Initial guess is of format 01.XY, where XY is constructed as follows: */ ++ /* Let d be of following format: 00.1xy....., then XY=~xy */ ++ /* For d=00.100 = 0,5 -> initial guess=01.11 = 1,75 */ ++ /* For d=00.101 = 0,625 -> initial guess=01.11 = 1,5 */ ++ /* For d=00.110 = 0,75 -> initial guess=01.11 = 1,25 */ ++ /* For d=00.111 = 0,875 -> initial guess=01.11 = 1,0 */ ++ ++ lsr r11, r10, 1 ++ bfextu r6, r5, 27, 2 ++ com r6 ++ bfins r11, r6, 28, 2 ++ ++ /* First approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Second approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Third approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ /* Fourth approximation */ ++ /* r7 = R[j]*d */ ++ mulu.d r6, r11, r5 ++ /* r7 = 2-R[j]*d */ ++ sub r7, r10, r7<<2 ++ /* r11 = R[j]*(2-R[j]*d) */ ++ mulu.d r6, r11, r7 ++ lsl r11, r7, 2 ++ ++ ++ /* Multiply with dividend to get quotient, r7 = sf(op1)/sf(op2) */ ++ mulu.d r6, r11, r12 ++ ++ /* Shift by 3 to get result in 1.31 format, as required by the exponent. */ ++ /* Note that 1.31 format is already used by the exponent in r9, since */ ++ /* a bias of 127 was added to the result exponent, even though the implicit */ ++ /* bit was inserted. This gives the exponent an additional bias of 1, which */ ++ /* supports 1.31 format. */ ++ //lsl r10, r7, 3 ++ ++ /* Adjust exponent and mantissa in case the result is of format ++ 0000.1xxx to 0001.xxx*/ ++#if defined(L_avr32_f32_div) ++ lsr r12, 4 /* Scale dividend to 6.26 format to match the ++ result of the multiplication of the divisor and ++ quotient to get the remainder. */ ++#endif ++ bld r7, 31-3 ++ breq 0f ++ lsl r7, 1 ++ sub r9, 1 ++#if defined(L_avr32_f32_div) ++ lsl r12, 1 /* Scale dividend to 5.27 format to match the ++ result of the multiplication of the divisor and ++ quotient to get the remainder. */ ++#endif ++0: ++ cp r9, 0 ++ brle __avr32_f32_div_res_subnormal /* Result was subnormal. */ ++ ++ ++#if defined(L_avr32_f32_div) ++ /* In order to round correctly we calculate the remainder: ++ Remainder = dividend[r12] - divisor[r5]*quotient[r7] ++ for the case when the quotient is halfway between the round-up ++ value and the round down value. If the remainder then is negative ++ it means that the quotient was to big and that it should not be ++ rounded up, if the remainder is positive the quotient was to small ++ and we need to round up. If the remainder is zero it means that the ++ quotient is exact but since we need to remove the guard bit we should ++ round to even. */ ++ andl r7, 0xffe0 ++ orl r7, 0x0010 ++ ++ /* Now do the multiplication. The quotient has the format 4.28 ++ while the divisor has the format 2.30 which gives a result ++ of 6.26 */ ++ mulu.d r10, r5, r7 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ ++ cp r10, 0 ++__avr32_f32_div_round_subnormal: ++ cpc r11, r12 ++ srlo r11 /* Remainder positive: we need to round up.*/ ++ moveq r11, r5 /* Remainder zero: round up if mantissa odd. */ ++#else ++ bfextu r11, r7, 4, 1 /* Get guard bit */ ++#endif ++ ++ /* Pack final result*/ ++ lsr r12, r7, 5 ++ bfins r12, r9, 23, 8 ++ /* For UC3, load with postincrement is faster than ldm */ ++ ld.d r6, sp++ ++ ld.w r5, sp++ ++ bld r8, 31 ++ bst r12, 31 ++ /* Rounding add. */ ++ add r12, r11 ++ ret r12 ++ ++__divsf_return_op1: ++ lsl r8, 1 ++ ror r12 ++ ret r12 ++ ++ ++2: ++ /* Op1 is NaN or inf */ ++ retne -1 /* Return NaN if op1 is NaN */ ++ /* Op1 is inf check op2 */ ++ mov_imm r9, 0xff000000 ++ cp r11, r9 ++ brlo __divsf_return_op1 /* inf/number gives inf */ ++ ret -1 /* The rest gives NaN*/ ++3: ++ /* Op2 is NaN or inf */ ++ reteq 0 /* Return zero if number/inf*/ ++ ret -1 /* Return NaN*/ ++4: ++ /* Op1 is zero ? */ ++ tst r12,r12 ++ reteq -1 /* 0.0/0.0 is NaN */ ++ /* Op1 is Nan? */ ++ lsr r9, r12, 24 ++ breq 11f /*If number is subnormal*/ ++ cp r9, 0xff ++ brhs 2b /* Check op1 for NaN or Inf */ ++ /* Nonzero/0.0 is Inf. Sign bit will be shifted in before returning*/ ++ mov_imm r12, 0xff000000 ++ rjmp __divsf_return_op1 ++ ++11: /* Op1 was denormal. Fix it. */ ++ lsl r12,7 ++ clz r9,r12 ++ lsl r12,r12,r9 ++ rsub r9,r9,1 ++ rjmp 12b ++ ++13: /* Op2 was denormal. Fix it. */ ++ lsl r11,7 ++ clz r10,r11 ++ lsl r11,r11,r10 ++ rsub r10,r10,1 ++ rjmp 14b ++ ++ ++__avr32_f32_div_res_subnormal: /* Divide result was subnormal */ ++#if defined(L_avr32_f32_div) ++ /* Check how much we must scale down the mantissa. */ ++ neg r9 ++ sub r9, -1 /* We do no longer have an implicit bit. */ ++ satu r9 >> 0, 5 /* Saturate shift amount to max 32. */ ++ /* Scale down quotient */ ++ rsub r10, r9, 32 ++ lsr r7, r7, r9 ++ /* Scale down the dividend to match the scaling of the quotient. */ ++ lsl r6, r12, r10 /* Make the divident 64-bit and put the lsw in r6 */ ++ lsr r12, r12, r9 ++ ++ /* Start performing the same rounding as done for normal numbers ++ but this time we have scaled the quotient and dividend and hence ++ need a little different comparison. */ ++ andl r7, 0xffe0 ++ orl r7, 0x0010 ++ ++ /* Now do the multiplication. The quotient has the format 4.28 ++ while the divisor has the format 2.30 which gives a result ++ of 6.26 */ ++ mulu.d r10, r5, r7 ++ ++ /* Set exponent to 0 */ ++ mov r9, 0 ++ ++ /* Check if remainder is positive, negative or equal. */ ++ bfextu r5, r7, 5, 1 /* Get parity bit into bit 0 of r5 */ ++ cp r10, r6 ++ rjmp __avr32_f32_div_round_subnormal ++ ++#else ++ ld.d r6, sp++ ++ ld.w r5, sp++ ++ /*Flush to zero*/ ++ ret 0 ++#endif ++#endif ++ ++#ifdef L_avr32_f32_mul ++ .global __avr32_f32_mul ++ .type __avr32_f32_mul,@function ++ ++ ++__avr32_f32_mul: ++ mov r8, r12 ++ eor r12, r11 /* MSB(r8) = Sign(op1) ^ Sign(op2) */ ++ andh r12, 0x8000, COH ++ ++ /* arrange operands so that that op1 >= op2 */ ++ cbr r8, 31 ++ breq __avr32_f32_mul_op1_zero ++ cbr r11, 31 ++ ++ /* Put the number with the largest exponent in r10 ++ and the number with the smallest exponent in r9 */ ++ max r10, r8, r11 ++ min r9, r8, r11 ++ ++ /* Unpack exponent and mantissa of op1 */ ++ lsl r8, r10, 8 ++ sbr r8, 31 /* Set implicit bit. */ ++ lsr r10, 23 ++ ++ /* op1 is NaN or Inf. */ ++ cp.w r10, 0xff ++ breq __avr32_f32_mul_op1_nan_or_inf ++ ++ /* Unpack exponent and mantissa of op2 */ ++ lsl r11, r9, 8 ++ sbr r11, 31 /* Set implicit bit. */ ++ lsr r9, 23 ++ ++ /* op2 is either zero or subnormal. */ ++ breq __avr32_f32_mul_op2_subnormal ++0: ++ /* Calculate new exponent */ ++ add r9,r10 ++ ++ /* Do the multiplication */ ++ mulu.d r10,r8,r11 ++ ++ /* We might need to scale up by two if the MSB of the result is ++ zero. */ ++ lsl r8, r11, 1 ++ movcc r11, r8 ++ subcc r9, 1 ++ ++ /* Put the shifted out bits of the mantissa into r10 */ ++ lsr r10, 8 ++ bfins r10, r11, 24, 8 ++ ++ sub r9,(127-1) /* remove extra exponent bias */ ++ brle __avr32_f32_mul_res_subnormal ++ ++ /* Check for Inf. */ ++ cp.w r9, 0xff ++ brge 1f ++ ++ /* Pack result. */ ++ or r12, r12, r11 >> 8 ++ bfins r12, r9, 23, 8 ++ ++ /* Round */ ++__avr32_f32_mul_round: ++ mov_imm r8, 0x80000000 ++ bld r12, 0 ++ subne r8, -1 ++ ++ cp.w r10, r8 ++ subhs r12, -1 ++ ++ ret r12 ++ ++1: ++ /* Return Inf */ ++ orh r12, 0x7f80 ++ ret r12 ++ ++__avr32_f32_mul_op2_subnormal: ++ cbr r11, 31 ++ clz r9, r11 ++ retcs 0 /* op2 is zero. Return 0 */ ++ sub r9, 8 ++ lsl r11, r11, r9 ++ rsub r9, r9, 1 ++ ++ /* Check if op2 is subnormal. */ ++ tst r10, r10 ++ brne 0b ++ ++ /* op2 is subnormal */ ++ cbr r8, 31 ++ clz r10, r11 ++ retcs 0 /* op1 is zero. Return 0 */ ++ lsl r8, r8, r10 ++ rsub r10, r10, 1 ++ ++ rjmp 0b ++ ++ ++__avr32_f32_mul_op1_nan_or_inf: ++ /* Check if op1 is NaN, if so return NaN */ ++ lsl r11, r8, 1 ++ retne -1 ++ ++ /* op1 is Inf. */ ++ tst r9, r9 ++ reteq -1 /* Inf * 0 -> NaN */ ++ ++ bfins r12, r10, 23, 8 /* Generate Inf in r12 */ ++ ++ /* Check if op2 is Inf. or NaN */ ++ lsr r11, r9, 23 ++ cp.w r11, 0xff ++ retne r12 /* op2 not Inf or NaN, return Info */ ++ ++ lsl r9, 9 ++ reteq r12 /* op2 Inf return Inf */ ++ ret -1 /* op2 is NaN, return NaN */ ++ ++__avr32_f32_mul_res_subnormal: ++ /* Check if the number is so small that ++ it will be represented with zero. */ ++ rsub r9, r9, 9 ++ rsub r8, r9, 32 ++ retcs 0 ++ ++ /* Shift the mantissa into the correct position.*/ ++ lsr r9, r11, r9 ++ /* Add sign bit. */ ++ or r12, r9 ++ /* Put the shifted out bits in the most significant part ++ of r8. */ ++ lsl r11, r11, r8 ++ ++ /* Add all the remainder bits used for rounding into r11 */ ++ andh r10, 0x00FF ++ or r10, r11 ++ rjmp __avr32_f32_mul_round ++ ++__avr32_f32_mul_op1_zero: ++ bfextu r10, r11, 23, 8 ++ cp.w r10, 0xff ++ retne r12 ++ reteq -1 ++ ++#endif ++ ++ ++#ifdef L_avr32_s32_to_f32 ++ .global __avr32_s32_to_f32 ++ .type __avr32_s32_to_f32,@function ++__avr32_s32_to_f32: ++ cp r12, 0 ++ reteq r12 /* If zero then return zero float */ ++ mov r11, r12 /* Keep the sign */ ++ abs r12 /* Compute the absolute value */ ++ mov r10, 31 + 127 /* Set the correct exponent */ ++ ++ /* Normalize */ ++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ ++ /* Check for subnormal result */ ++ cp.w r10, 0 ++ brle __avr32_s32_to_f32_subnormal ++ ++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ ++ lsl r11, 1 ++ ror r12 ++ ret r12 ++ ++__avr32_s32_to_f32_subnormal: ++ /* Adjust a subnormal result */ ++ adjust_subnormal_sf r12/*sf*/, r10 /*exp*/, r12 /*mant*/, r11/*sign*/, r9 /*scratch*/ ++ ret r12 ++ ++#endif ++ ++#ifdef L_avr32_u32_to_f32 ++ .global __avr32_u32_to_f32 ++ .type __avr32_u32_to_f32,@function ++__avr32_u32_to_f32: ++ cp r12, 0 ++ reteq r12 /* If zero then return zero float */ ++ mov r10, 31 + 127 /* Set the correct exponent */ ++ ++ /* Normalize */ ++ normalize_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ ++ /* Check for subnormal result */ ++ cp.w r10, 0 ++ brle __avr32_u32_to_f32_subnormal ++ ++ round_sf r10 /*exp*/, r12 /*mant*/, r9 /*scratch*/ ++ pack_sf r12 /*sf*/, r10 /*exp*/, r12 /*mant*/ ++ lsr r12,1 /* Sign bit is 0 for unsigned int */ ++ ret r12 ++ ++__avr32_u32_to_f32_subnormal: ++ /* Adjust a subnormal result */ ++ mov r8, 0 ++ adjust_subnormal_sf r12/*sf*/,r10 /*exp*/, r12 /*mant*/,r8/*sign*/, r9 /*scratch*/ ++ ret r12 ++ ++ ++#endif ++ ++ ++#ifdef L_avr32_f32_to_s32 ++ .global __avr32_f32_to_s32 ++ .type __avr32_f32_to_s32,@function ++__avr32_f32_to_s32: ++ bfextu r11, r12, 23, 8 ++ sub r11,127 /* Fix bias */ ++ retlo 0 /* Negative exponent yields zero integer */ ++ ++ /* Shift mantissa into correct position */ ++ rsub r11,r11,31 /* Shift amount */ ++ lsl r10,r12,8 /* Get mantissa */ ++ sbr r10,31 /* Add implicit bit */ ++ lsr r10,r10,r11 /* Perform shift */ ++ lsl r12,1 /* Check sign */ ++ retcc r10 /* if positive, we are done */ ++ neg r10 /* if negative float, negate result */ ++ ret r10 ++ ++#endif ++ ++#ifdef L_avr32_f32_to_u32 ++ .global __avr32_f32_to_u32 ++ .type __avr32_f32_to_u32,@function ++__avr32_f32_to_u32: ++ cp r12,0 ++ retmi 0 /* Negative numbers gives 0 */ ++ bfextu r11, r12, 23, 8 /* Extract exponent */ ++ sub r11,127 /* Fix bias */ ++ retlo 0 /* Negative exponent yields zero integer */ ++ ++ /* Shift mantissa into correct position */ ++ rsub r11,r11,31 /* Shift amount */ ++ lsl r12,8 /* Get mantissa */ ++ sbr r12,31 /* Add implicit bit */ ++ lsr r12,r12,r11 /* Perform shift */ ++ ret r12 ++ ++#endif ++ ++#ifdef L_avr32_f32_to_f64 ++ .global __avr32_f32_to_f64 ++ .type __avr32_f32_to_f64,@function ++ ++__avr32_f32_to_f64: ++ lsl r11,r12,1 /* Remove sign bit, keep original value in r12*/ ++ moveq r10, 0 ++ reteq r11 /* Return zero if input is zero */ ++ ++ bfextu r9,r11,24,8 /* Get exponent */ ++ cp.w r9,0xff /* check for NaN or inf */ ++ breq 0f ++ ++ lsl r11,7 /* Convert sf mantissa to df format */ ++ mov r10,0 ++ ++ /* Check if implicit bit should be set */ ++ cp.w r9, 0 ++ subeq r9,-1 /* Adjust exponent if it was 0 */ ++ srne r8 ++ or r11, r11, r8 << 31 /* Set implicit bit if needed */ ++ sub r9,(127-0x3ff) /* Convert exponent to df format exponent */ ++ ++ /*We know that low register of mantissa is 0, and will be unaffected by normalization.*/ ++ /*We can therefore use the faster normalize_sf function instead of normalize_df.*/ ++ normalize_sf r9 /*exp*/, r11 /*mantissa*/, r8 /*scratch*/ ++ pack_df r9 /*exp*/, r10, r11 /*mantissa*/, r10, r11 /*df*/ ++ ++__extendsfdf_return_op1: ++ /* Rotate in sign bit */ ++ lsl r12, 1 ++ ror r11 ++ ret r11 ++ ++0: ++ /* Inf or NaN*/ ++ mov_imm r10, 0xffe00000 ++ lsl r11,8 /* check mantissa */ ++ movne r11, -1 /* Return NaN */ ++ moveq r11, r10 /* Return inf */ ++ mov r10, 0 ++ rjmp __extendsfdf_return_op1 ++#endif ++ ++ ++#ifdef L_avr32_f64_to_f32 ++ .global __avr32_f64_to_f32 ++ .type __avr32_f64_to_f32,@function ++ ++__avr32_f64_to_f32: ++ /* Unpack */ ++ lsl r9,r11,1 /* Unpack exponent */ ++ lsr r9,21 ++ ++ reteq 0 /* If exponent is 0 the number is so small ++ that the conversion to single float gives ++ zero */ ++ ++ lsl r8,r11,10 /* Adjust mantissa */ ++ or r12,r8,r10>>22 ++ ++ lsl r10,10 /* Check if there are any remaining bits ++ in the low part of the mantissa.*/ ++ neg r10 ++ rol r12 /* If there were remaining bits then set lsb ++ of mantissa to 1 */ ++ ++ cp r9,0x7ff ++ breq 2f /* Check for NaN or inf */ ++ ++ sub r9,(0x3ff-127) /* Adjust bias of exponent */ ++ sbr r12,31 /* set the implicit bit.*/ ++ ++ cp.w r9, 0 /* Check for subnormal number */ ++ brle 3f ++ ++ round_sf r9 /*exp*/, r12 /*mant*/, r10 /*scratch*/ ++ pack_sf r12 /*sf*/, r9 /*exp*/, r12 /*mant*/ ++__truncdfsf_return_op1: ++ /* Rotate in sign bit */ ++ lsl r11, 1 ++ ror r12 ++ ret r12 ++ ++2: ++ /* NaN or inf */ ++ cbr r12,31 /* clear implicit bit */ ++ retne -1 /* Return NaN if mantissa not zero */ ++ mov_imm r12, 0x7f800000 ++ ret r12 /* Return inf */ ++ ++3: /* Result is subnormal. Adjust it.*/ ++ adjust_subnormal_sf r12/*sf*/,r9 /*exp*/, r12 /*mant*/, r11/*sign*/, r10 /*scratch*/ ++ ret r12 ++ ++ ++#endif ++ ++#if defined(L_mulsi3) && defined(__AVR32_NO_MUL__) ++ .global __mulsi3 ++ .type __mulsi3,@function ++ ++__mulsi3: ++ mov r9, 0 ++0: ++ lsr r11, 1 ++ addcs r9, r9, r12 ++ breq 1f ++ lsl r12, 1 ++ rjmp 0b ++1: ++ ret r9 ++#endif +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/lib2funcs.S gcc-4.4.6/gcc/config/avr32/lib2funcs.S +--- gcc-4.4.6.orig/gcc/config/avr32/lib2funcs.S 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/lib2funcs.S 2011-08-27 19:45:43.100490428 +0200 +@@ -0,0 +1,21 @@ ++ .align 4 ++ .global __nonlocal_goto ++ .type __nonlocal_goto,@function ++ ++/* __nonlocal_goto: This function handles nonlocal_goto's in gcc. ++ ++ parameter 0 (r12) = New Frame Pointer ++ parameter 1 (r11) = Address to goto ++ parameter 2 (r10) = New Stack Pointer ++ ++ This function invalidates the return stack, since it returns from a ++ function without using a return instruction. ++*/ ++__nonlocal_goto: ++ mov r7, r12 ++ mov sp, r10 ++ frs # Flush return stack ++ mov pc, r11 ++ ++ ++ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/linux-elf.h gcc-4.4.6/gcc/config/avr32/linux-elf.h +--- gcc-4.4.6.orig/gcc/config/avr32/linux-elf.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/linux-elf.h 2011-08-27 19:45:43.160490580 +0200 +@@ -0,0 +1,151 @@ ++/* ++ Linux/Elf specific definitions. ++ Copyright 2003-2006 Atmel Corporation. ++ ++ Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++ and H�vard Skinnemoen, Atmel Norway, <hskinnemoen@atmel.com> ++ ++ This file is part of GCC. ++ ++ This program is free software; you can redistribute it and/or modify ++ it under the terms of the GNU General Public License as published by ++ the Free Software Foundation; either version 2 of the License, or ++ (at your option) any later version. ++ ++ This program is distributed in the hope that it will be useful, ++ but WITHOUT ANY WARRANTY; without even the implied warranty of ++ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++ GNU General Public License for more details. ++ ++ You should have received a copy of the GNU General Public License ++ along with this program; if not, write to the Free Software ++ Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ ++ ++ ++ ++/* elfos.h should have already been included. Now just override ++ any conflicting definitions and add any extras. */ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 GNU/Linux with ELF)", stderr); ++ ++/* Do not assume anything about header files. */ ++#define NO_IMPLICIT_EXTERN_C ++ ++/* The GNU C++ standard library requires that these macros be defined. */ ++#undef CPLUSPLUS_CPP_SPEC ++#define CPLUSPLUS_CPP_SPEC "-D_GNU_SOURCE %(cpp)" ++ ++/* Now we define the strings used to build the spec file. */ ++#undef LIB_SPEC ++#define LIB_SPEC \ ++ "%{pthread:-lpthread} \ ++ %{shared:-lc} \ ++ %{!shared:%{profile:-lc_p}%{!profile:-lc}}" ++ ++/* Provide a STARTFILE_SPEC appropriate for GNU/Linux. Here we add ++ the GNU/Linux magical crtbegin.o file (see crtstuff.c) which ++ provides part of the support for getting C++ file-scope static ++ object constructed before entering `main'. */ ++ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: \ ++ %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s} \ ++ %{!p:%{profile:gcrt1.o%s} \ ++ %{!profile:crt1.o%s}}}} \ ++ crti.o%s %{!shared:crtbegin.o%s} %{shared:crtbeginS.o%s}" ++ ++/* Provide a ENDFILE_SPEC appropriate for GNU/Linux. Here we tack on ++ the GNU/Linux magical crtend.o file (see crtstuff.c) which ++ provides part of the support for getting C++ file-scope static ++ object constructed before entering `main', followed by a normal ++ GNU/Linux "finalizer" file, `crtn.o'. */ ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC \ ++ "%{!shared:crtend.o%s} %{shared:crtendS.o%s} crtn.o%s" ++ ++#undef ASM_SPEC ++#define ASM_SPEC "%{!mno-pic:%{!fno-pic:--pic}} %{mrelax|O*:%{mno-relax|O0|O1: ;:--linkrelax}} %{mcpu=*:-mcpu=%*}" ++ ++#undef LINK_SPEC ++#define LINK_SPEC "%{version:-v} \ ++ %{static:-Bstatic} \ ++ %{shared:-shared} \ ++ %{symbolic:-Bsymbolic} \ ++ %{rdynamic:-export-dynamic} \ ++ %{!dynamic-linker:-dynamic-linker /lib/ld-uClibc.so.0} \ ++ %{mrelax|O*:%{mno-relax|O0|O1: ;:--relax}}" ++ ++#define TARGET_OS_CPP_BUILTINS() LINUX_TARGET_OS_CPP_BUILTINS() ++ ++/* This is how we tell the assembler that two symbols have the same value. */ ++#define ASM_OUTPUT_DEF(FILE, NAME1, NAME2) \ ++ do \ ++ { \ ++ assemble_name (FILE, NAME1); \ ++ fputs (" = ", FILE); \ ++ assemble_name (FILE, NAME2); \ ++ fputc ('\n', FILE); \ ++ } \ ++ while (0) ++ ++ ++ ++#undef CC1_SPEC ++#define CC1_SPEC "%{profile:-p}" ++ ++/* Target CPU builtins. */ ++#define TARGET_CPU_CPP_BUILTINS() \ ++ do \ ++ { \ ++ builtin_define ("__avr32__"); \ ++ builtin_define ("__AVR32__"); \ ++ builtin_define ("__AVR32_LINUX__"); \ ++ builtin_define (avr32_part->macro); \ ++ builtin_define (avr32_arch->macro); \ ++ if (avr32_arch->uarch_type == UARCH_TYPE_AVR32A) \ ++ builtin_define ("__AVR32_AVR32A__"); \ ++ else \ ++ builtin_define ("__AVR32_AVR32B__"); \ ++ if (TARGET_UNALIGNED_WORD) \ ++ builtin_define ("__AVR32_HAS_UNALIGNED_WORD__"); \ ++ if (TARGET_SIMD) \ ++ builtin_define ("__AVR32_HAS_SIMD__"); \ ++ if (TARGET_DSP) \ ++ builtin_define ("__AVR32_HAS_DSP__"); \ ++ if (TARGET_RMW) \ ++ builtin_define ("__AVR32_HAS_RMW__"); \ ++ if (TARGET_BRANCH_PRED) \ ++ builtin_define ("__AVR32_HAS_BRANCH_PRED__"); \ ++ if (TARGET_FAST_FLOAT) \ ++ builtin_define ("__AVR32_FAST_FLOAT__"); \ ++ } \ ++ while (0) ++ ++ ++ ++/* Call the function profiler with a given profile label. */ ++#undef FUNCTION_PROFILER ++#define FUNCTION_PROFILER(STREAM, LABELNO) \ ++ do \ ++ { \ ++ fprintf (STREAM, "\tmov\tlr, lo(mcount)\n\torh\tlr, hi(mcount)\n"); \ ++ fprintf (STREAM, "\ticall lr\n"); \ ++ } \ ++ while (0) ++ ++#define NO_PROFILE_COUNTERS 1 ++ ++/* For dynamic libraries to work */ ++/* #define PLT_REG_CALL_CLOBBERED 1 */ ++#define AVR32_ALWAYS_PIC 1 ++ ++/* uclibc does not implement sinf, cosf etc. */ ++#undef TARGET_C99_FUNCTIONS ++#define TARGET_C99_FUNCTIONS 0 ++ ++#define LINK_GCC_C_SEQUENCE_SPEC \ ++ "%{static:--start-group} %G %L %{static:--end-group}%{!static:%G}" +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/predicates.md gcc-4.4.6/gcc/config/avr32/predicates.md +--- gcc-4.4.6.orig/gcc/config/avr32/predicates.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/predicates.md 2011-08-27 19:45:43.200490072 +0200 +@@ -0,0 +1,422 @@ ++;; AVR32 predicates file. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++ ++;; True if the operand is a memory reference which contains an ++;; Address consisting of a single pointer register ++(define_predicate "avr32_indirect_register_operand" ++ (and (match_code "mem") ++ (match_test "register_operand(XEXP(op, 0), SImode)"))) ++ ++ ++ ++;; Address expression with a base pointer offset with ++;; a register displacement ++(define_predicate "avr32_indexed_memory_operand" ++ (and (match_code "mem") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS")) ++ { ++ ++ rtx op0 = XEXP(XEXP(op, 0), 0); ++ rtx op1 = XEXP(XEXP(op, 0), 1); ++ ++ return ((avr32_address_register_rtx_p (op0, 0) ++ && avr32_legitimate_index_p (GET_MODE(op), op1, 0)) ++ || (avr32_address_register_rtx_p (op1, 0) ++ && avr32_legitimate_index_p (GET_MODE(op), op0, 0))); ++ ++ }) ++ ++;; Operand suitable for the ld.sb instruction ++(define_predicate "load_sb_memory_operand" ++ (ior (match_operand 0 "avr32_indirect_register_operand") ++ (match_operand 0 "avr32_indexed_memory_operand"))) ++ ++ ++;; Operand suitable as operand to insns sign extending QI values ++(define_predicate "extendqi_operand" ++ (ior (match_operand 0 "load_sb_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "post_inc_memory_operand" ++ (and (match_code "mem") ++ (match_test "(GET_CODE(XEXP(op, 0)) == POST_INC) ++ && REG_P(XEXP(XEXP(op, 0), 0))"))) ++ ++(define_predicate "pre_dec_memory_operand" ++ (and (match_code "mem") ++ (match_test "(GET_CODE(XEXP(op, 0)) == PRE_DEC) ++ && REG_P(XEXP(XEXP(op, 0), 0))"))) ++ ++;; Operand suitable for add instructions ++(define_predicate "avr32_add_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is21\")")))) ++ ++;; Operand is a power of two immediate ++(define_predicate "power_of_two_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return value != 0 && (value & (value - 1)) == 0; ++}) ++ ++;; Operand is a multiple of 8 immediate ++(define_predicate "multiple_of_8_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return (value & 0x7) == 0 ; ++}) ++ ++;; Operand is a multiple of 16 immediate ++(define_predicate "multiple_of_16_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op); ++ ++ return (value & 0xf) == 0 ; ++}) ++ ++;; Operand is a mask used for masking away upper bits of a reg ++(define_predicate "avr32_mask_upper_bits_operand" ++ (match_code "const_int") ++{ ++ HOST_WIDE_INT value = INTVAL (op) + 1; ++ ++ return value != 1 && value != 0 && (value & (value - 1)) == 0; ++}) ++ ++ ++;; Operand suitable for mul instructions ++(define_predicate "avr32_mul_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) ++ ++;; True for logical binary operators. ++(define_predicate "logical_binary_operator" ++ (match_code "ior,xor,and")) ++ ++;; True for logical shift operators ++(define_predicate "logical_shift_operator" ++ (match_code "ashift,lshiftrt")) ++ ++;; True for shift operand for logical and, or and eor insns ++(define_predicate "avr32_logical_shift_operand" ++ (and (match_code "ashift,lshiftrt") ++ (ior (and (match_test "GET_CODE(XEXP(op, 1)) == CONST_INT") ++ (match_test "register_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))")) ++ (and (match_test "GET_CODE(XEXP(op, 0)) == CONST_INT") ++ (match_test "register_operand(XEXP(op, 1), GET_MODE(XEXP(op, 1)))")))) ++ ) ++ ++ ++;; Predicate for second operand to and, ior and xor insn patterns ++(define_predicate "avr32_logical_insn_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_logical_shift_operand")) ++) ++ ++ ++;; True for avr32 comparison operators ++(define_predicate "avr32_comparison_operator" ++ (ior (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++(define_predicate "avr32_cond3_comparison_operator" ++ (ior (match_code "eq, ne, ge, lt, geu, ltu") ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++;; True for avr32 comparison operand ++(define_predicate "avr32_comparison_operand" ++ (ior (and (match_code "eq, ne, gt, ge, lt, le, gtu, geu, ltu, leu") ++ (match_test "(CC0_P (XEXP(op,0)) && rtx_equal_p (XEXP(op,1), const0_rtx))")) ++ (and (match_code "unspec") ++ (match_test "(XINT(op, 1) == UNSPEC_COND_MI) ++ || (XINT(op, 1) == UNSPEC_COND_PL)")))) ++ ++;; True if this is a const_int with one bit set ++(define_predicate "one_bit_set_operand" ++ (match_code "const_int") ++ { ++ int i; ++ int value; ++ int ones = 0; ++ ++ value = INTVAL(op); ++ for ( i = 0 ; i < 32; i++ ){ ++ if ( value & ( 1 << i ) ){ ++ ones++; ++ } ++ } ++ ++ return ( ones == 1 ); ++ }) ++ ++ ++;; True if this is a const_int with one bit cleared ++(define_predicate "one_bit_cleared_operand" ++ (match_code "const_int") ++ { ++ int i; ++ int value; ++ int zeroes = 0; ++ ++ value = INTVAL(op); ++ for ( i = 0 ; i < 32; i++ ){ ++ if ( !(value & ( 1 << i )) ){ ++ zeroes++; ++ } ++ } ++ ++ return ( zeroes == 1 ); ++ }) ++ ++ ++;; Immediate all the low 16-bits cleared ++(define_predicate "avr32_hi16_immediate_operand" ++ (match_code "const_int") ++ { ++ /* If the low 16-bits are zero then this ++ is a hi16 immediate. */ ++ return ((INTVAL(op) & 0xffff) == 0); ++ } ++) ++ ++;; True if this is a register or immediate operand ++(define_predicate "register_immediate_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "immediate_operand"))) ++ ++;; True if this is a register or const_int operand ++(define_predicate "register_const_int_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "const_int_operand") ++ (match_operand 0 "immediate_operand")))) ++ ++;; True if this is a register or const_double operand ++(define_predicate "register_const_double_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "const_double_operand"))) ++ ++;; True if this is an operand containing a label_ref. ++(define_predicate "avr32_label_ref_operand" ++ (and (match_code "mem") ++ (match_test "avr32_find_symbol(op) ++ && (GET_CODE(avr32_find_symbol(op)) == LABEL_REF)"))) ++ ++;; True if this is a valid symbol pointing to the constant pool. ++(define_predicate "avr32_const_pool_operand" ++ (and (match_code "symbol_ref") ++ (match_test "CONSTANT_POOL_ADDRESS_P(op)")) ++ { ++ return (flag_pic ? (!(symbol_mentioned_p (get_pool_constant (op)) ++ || label_mentioned_p (get_pool_constant (op))) ++ || avr32_got_mentioned_p(get_pool_constant (op))) ++ : true); ++ } ++) ++ ++;; True if this is a memory reference to the constant or mini pool. ++(define_predicate "avr32_const_pool_ref_operand" ++ (ior (match_operand 0 "avr32_label_ref_operand") ++ (and (match_code "mem") ++ (match_test "avr32_const_pool_operand(XEXP(op,0), GET_MODE(XEXP(op,0)))")))) ++ ++ ++;; Legal source operand for movti insns ++(define_predicate "avr32_movti_src_operand" ++ (ior (match_operand 0 "avr32_const_pool_ref_operand") ++ (ior (ior (match_operand 0 "register_immediate_operand") ++ (match_operand 0 "avr32_indirect_register_operand")) ++ (match_operand 0 "post_inc_memory_operand")))) ++ ++;; Legal destination operand for movti insns ++(define_predicate "avr32_movti_dst_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_indirect_register_operand")) ++ (match_operand 0 "pre_dec_memory_operand"))) ++ ++ ++;; True if this is a k12 offseted memory operand. ++(define_predicate "avr32_k12_memory_operand" ++ (and (match_code "mem") ++ (ior (match_test "REG_P(XEXP(op, 0))") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) ++ && (CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), ++ 'K', (mode == SImode) ? \"Ks14\" : ((mode == HImode) ? \"Ks13\" : \"Ks12\")))")))) ++ ++;; True if this is a memory operand with an immediate displacement. ++(define_predicate "avr32_imm_disp_memory_operand" ++ (and (match_code "mem") ++ (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT)"))) ++ ++;; True if this is a bswap operand. ++(define_predicate "avr32_bswap_operand" ++ (ior (match_operand 0 "avr32_k12_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++;; True if this is a valid coprocessor insn memory operand. ++(define_predicate "avr32_cop_memory_operand" ++ (and (match_operand 0 "memory_operand") ++ (not (match_test "GET_CODE(XEXP(op, 0)) == PLUS ++ && REG_P(XEXP(XEXP(op, 0), 0)) ++ && (GET_CODE(XEXP(XEXP(op, 0), 1)) == CONST_INT) ++ && !(CONST_OK_FOR_CONSTRAINT_P(INTVAL(XEXP(XEXP(op, 0), 0)), 'K', \"Ku10\"))")))) ++ ++;; True if this is a valid source/destination operand. ++;; for moving values to/from a coprocessor ++(define_predicate "avr32_cop_move_operand" ++ (ior (match_operand 0 "register_operand") ++ (match_operand 0 "avr32_cop_memory_operand"))) ++ ++ ++;; True if this is a valid extract byte offset for use in ++;; load extracted index insns. ++(define_predicate "avr32_extract_shift_operand" ++ (and (match_operand 0 "const_int_operand") ++ (match_test "(INTVAL(op) == 0) || (INTVAL(op) == 8) ++ || (INTVAL(op) == 16) || (INTVAL(op) == 24)"))) ++ ++;; True if this is a valid avr32 symbol operand. ++(define_predicate "avr32_symbol_operand" ++ (and (match_code "label_ref, symbol_ref, const") ++ (match_test "avr32_find_symbol(op)"))) ++ ++;; True if this is a valid operand for the lda.w and call pseudo insns. ++(define_predicate "avr32_address_operand" ++ (and (and (match_code "label_ref, symbol_ref") ++ (match_test "avr32_find_symbol(op)")) ++ (ior (match_test "TARGET_HAS_ASM_ADDR_PSEUDOS") ++ (match_test "flag_pic")) )) ++ ++;; An immediate k16 address operand ++(define_predicate "avr32_ks16_address_operand" ++ (and (match_operand 0 "address_operand") ++ (ior (match_test "REG_P(op)") ++ (match_test "GET_CODE(op) == PLUS ++ && ((GET_CODE(XEXP(op,0)) == CONST_INT) ++ || (GET_CODE(XEXP(op,1)) == CONST_INT))")) )) ++ ++;; An offset k16 memory operand ++(define_predicate "avr32_ks16_memory_operand" ++ (and (match_code "mem") ++ (match_test "avr32_ks16_address_operand (XEXP (op, 0), GET_MODE (XEXP (op, 0)))"))) ++ ++;; An immediate k11 address operand ++(define_predicate "avr32_ks11_address_operand" ++ (and (match_operand 0 "address_operand") ++ (ior (match_test "REG_P(op)") ++ (match_test "GET_CODE(op) == PLUS ++ && (((GET_CODE(XEXP(op,0)) == CONST_INT) ++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,0)), 'K', \"Ks11\")) ++ || ((GET_CODE(XEXP(op,1)) == CONST_INT) ++ && avr32_const_ok_for_constraint_p(INTVAL(XEXP(op,1)), 'K', \"Ks11\")))")) )) ++ ++;; True if this is a avr32 call operand ++(define_predicate "avr32_call_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (ior (match_operand 0 "avr32_const_pool_ref_operand") ++ (match_operand 0 "avr32_address_operand"))) ++ (match_test "SYMBOL_REF_RCALL_FUNCTION_P(op)"))) ++ ++;; Return true for operators performing ALU operations ++ ++(define_predicate "alu_operator" ++ (match_code "ior, xor, and, plus, minus, ashift, lshiftrt, ashiftrt")) ++ ++(define_predicate "avr32_add_shift_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ku02\")"))) ++ ++(define_predicate "avr32_cond_register_immediate_operand" ++ (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")")))) ++ ++(define_predicate "avr32_cond_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'I', \"Is08\")"))) ++ ++ ++(define_predicate "avr32_cond_move_operand" ++ (ior (ior (match_operand 0 "register_operand") ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks08\")"))) ++ (and (match_test "TARGET_V2_INSNS") ++ (match_operand 0 "memory_operand")))) ++ ++(define_predicate "avr32_mov_immediate_operand" ++ (and (match_operand 0 "immediate_operand") ++ (match_test "avr32_const_ok_for_move(INTVAL(op))"))) ++ ++ ++(define_predicate "avr32_rmw_address_operand" ++ (ior (and (match_code "symbol_ref") ++ (match_test "({rtx symbol = avr32_find_symbol(op); \ ++ symbol && (GET_CODE (symbol) == SYMBOL_REF) && SYMBOL_REF_RMW_ADDR(symbol);})")) ++ (and (match_operand 0 "immediate_operand") ++ (match_test "CONST_OK_FOR_CONSTRAINT_P(INTVAL(op), 'K', \"Ks17\")"))) ++ { ++ return TARGET_RMW && !flag_pic; ++ } ++) ++ ++(define_predicate "avr32_rmw_memory_operand" ++ (and (match_code "mem") ++ (match_test "!volatile_refs_p(op) && (GET_MODE(op) == SImode) && ++ avr32_rmw_address_operand(XEXP(op, 0), GET_MODE(XEXP(op, 0)))"))) ++ ++(define_predicate "avr32_rmw_memory_or_register_operand" ++ (ior (match_operand 0 "avr32_rmw_memory_operand") ++ (match_operand 0 "register_operand"))) ++ ++(define_predicate "avr32_non_rmw_memory_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "memory_operand"))) ++ ++(define_predicate "avr32_non_rmw_general_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "general_operand"))) ++ ++(define_predicate "avr32_non_rmw_nonimmediate_operand" ++ (and (not (match_operand 0 "avr32_rmw_memory_operand")) ++ (match_operand 0 "nonimmediate_operand"))) ++ ++;; Return true if the operand is the 1.0f constant. ++ ++(define_predicate "const_1f_operand" ++ (match_code "const_int,const_double") ++{ ++ return (op == CONST1_RTX (SFmode)); ++}) +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/simd.md gcc-4.4.6/gcc/config/avr32/simd.md +--- gcc-4.4.6.orig/gcc/config/avr32/simd.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/simd.md 2011-08-27 19:45:43.237989394 +0200 +@@ -0,0 +1,145 @@ ++;; AVR32 machine description file for SIMD instructions. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; Written by Ronny Pedersen, Atmel Norway, <rpedersen@atmel.com> ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++;; -*- Mode: Scheme -*- ++ ++ ++;; Vector modes ++(define_mode_iterator VECM [V2HI V4QI]) ++(define_mode_attr size [(V2HI "h") (V4QI "b")]) ++ ++(define_insn "add<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (plus:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:VECM 2 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "padd.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "sub<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (minus:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:VECM 2 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "psub.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "abs<mode>2" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (abs:VECM (match_operand:VECM 1 "register_operand" "r")))] ++ "TARGET_SIMD" ++ "pabs.s<size>\t%0, %1" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "ashl<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (ashift:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "plsl.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "ashr<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (ashiftrt:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "pasr.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "lshr<mode>3" ++ [(set (match_operand:VECM 0 "register_operand" "=r") ++ (lshiftrt:VECM (match_operand:VECM 1 "register_operand" "r") ++ (match_operand:SI 2 "immediate_operand" "Ku04")))] ++ "TARGET_SIMD" ++ "plsr.<size>\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "smaxv2hi3" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (smax:V2HI (match_operand:V2HI 1 "register_operand" "r") ++ (match_operand:V2HI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmax.sh\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "sminv2hi3" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (smin:V2HI (match_operand:V2HI 1 "register_operand" "r") ++ (match_operand:V2HI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmin.sh\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "umaxv4qi3" ++ [(set (match_operand:V4QI 0 "register_operand" "=r") ++ (umax:V4QI (match_operand:V4QI 1 "register_operand" "r") ++ (match_operand:V4QI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmax.ub\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "uminv4qi3" ++ [(set (match_operand:V4QI 0 "register_operand" "=r") ++ (umin:V4QI (match_operand:V4QI 1 "register_operand" "r") ++ (match_operand:V4QI 2 "register_operand" "r")))] ++ ++ "TARGET_SIMD" ++ "pmin.ub\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++ ++(define_insn "addsubv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_concat:V2HI ++ (plus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")) ++ (minus:HI (match_dup 1) (match_dup 2))))] ++ "TARGET_SIMD" ++ "paddsub.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) ++ ++(define_insn "subaddv2hi" ++ [(set (match_operand:V2HI 0 "register_operand" "=r") ++ (vec_concat:V2HI ++ (minus:HI (match_operand:HI 1 "register_operand" "r") ++ (match_operand:HI 2 "register_operand" "r")) ++ (plus:HI (match_dup 1) (match_dup 2))))] ++ "TARGET_SIMD" ++ "psubadd.h\t%0, %1:b, %2:b" ++ [(set_attr "length" "4") ++ (set_attr "type" "alu")]) +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/sync.md gcc-4.4.6/gcc/config/avr32/sync.md +--- gcc-4.4.6.orig/gcc/config/avr32/sync.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/sync.md 2011-08-27 19:45:43.280490475 +0200 +@@ -0,0 +1,244 @@ ++;;================================================================= ++;; Atomic operations ++;;================================================================= ++ ++ ++(define_insn "sync_compare_and_swapsi" ++ [(set (match_operand:SI 0 "register_operand" "=&r,&r") ++ (match_operand:SI 1 "memory_operand" "+RKs16,+RKs16")) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 1) ++ (match_operand:SI 2 "register_immediate_operand" "r,Ks21") ++ (match_operand:SI 3 "register_operand" "r,r")] ++ VUNSPEC_SYNC_CMPXCHG)) ] ++ "" ++ "0: ++ ssrf\t5 ++ ld.w\t%0,%1 ++ cp.w\t%0,%2 ++ brne\t0f ++ stcond\t%1, %3 ++ brne\t0b ++ 0: ++ " ++ [(set_attr "length" "16,18") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_code_iterator atomic_op [plus minus and ior xor]) ++(define_code_attr atomic_asm_insn [(plus "add") (minus "sub") (and "and") (ior "or") (xor "eor")]) ++(define_code_attr atomic_insn [(plus "add") (minus "sub") (and "and") (ior "ior") (xor "xor")]) ++ ++(define_insn "sync_loadsi" ++ ; NB! Put an early clobber on the destination operand to ++ ; avoid gcc using the same register in the source and ++ ; destination. This is done in order to avoid gcc to ++ ; clobber the source operand since these instructions ++ ; are actually inside a "loop". ++ [(set (match_operand:SI 0 "register_operand" "=&r") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "RKs16") ++ (label_ref (match_operand 2 "" ""))] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD) )] ++ "" ++ "%2: ++ ssrf\t5 ++ ld.w\t%0,%1" ++ [(set_attr "length" "6") ++ (set_attr "cc" "clobber")] ++ ) ++ ++(define_insn "sync_store_if_lock" ++ [(set (match_operand:SI 0 "avr32_ks16_memory_operand" "=RKs16") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "register_operand" "r") ++ (label_ref (match_operand 2 "" ""))] ++ VUNSPEC_SYNC_STORE_IF_LOCK) )] ++ "" ++ "stcond\t%0, %1 ++ brne\t%2" ++ [(set_attr "length" "6") ++ (set_attr "cc" "clobber")] ++ ) ++ ++ ++(define_expand "sync_<atomic_insn>si" ++ [(set (match_dup 2) ++ (unspec_volatile:SI ++ [(match_operand:SI 0 "avr32_ks16_memory_operand" "") ++ (match_dup 3)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 2) ++ (atomic_op:SI (match_dup 2) ++ (match_operand:SI 1 "register_immediate_operand" ""))) ++ (set (match_dup 0) ++ (unspec_volatile:SI ++ [(match_dup 2) ++ (match_dup 3)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 1)) ++ (use (match_dup 4))] ++ "" ++ { ++ rtx *mem_expr = &operands[0]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[2] = gen_reg_rtx (SImode); ++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[4] = ptr_reg; ++ ++ } ++ ) ++ ++ ++ ++(define_expand "sync_old_<atomic_insn>si" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") ++ (match_dup 4)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 3) ++ (atomic_op:SI (match_dup 0) ++ (match_operand:SI 2 "register_immediate_operand" ""))) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 3) ++ (match_dup 4)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 2)) ++ (use (match_dup 5))] ++ "" ++ { ++ rtx *mem_expr = &operands[1]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[3] = gen_reg_rtx (SImode); ++ operands[4] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[5] = ptr_reg; ++ } ++ ) ++ ++(define_expand "sync_new_<atomic_insn>si" ++ [(set (match_operand:SI 0 "register_operand" "") ++ (unspec_volatile:SI ++ [(match_operand:SI 1 "avr32_ks16_memory_operand" "") ++ (match_dup 3)] ++ VUNSPEC_SYNC_SET_LOCK_AND_LOAD)) ++ (set (match_dup 0) ++ (atomic_op:SI (match_dup 0) ++ (match_operand:SI 2 "register_immediate_operand" ""))) ++ (set (match_dup 1) ++ (unspec_volatile:SI ++ [(match_dup 0) ++ (match_dup 3)] ++ VUNSPEC_SYNC_STORE_IF_LOCK) ) ++ (use (match_dup 2)) ++ (use (match_dup 4))] ++ "" ++ { ++ rtx *mem_expr = &operands[1]; ++ rtx ptr_reg; ++ if ( !avr32_ks16_memory_operand (*mem_expr, GET_MODE (*mem_expr)) ) ++ { ++ ptr_reg = force_reg (Pmode, XEXP (*mem_expr, 0)); ++ XEXP (*mem_expr, 0) = ptr_reg; ++ } ++ else ++ { ++ rtx address = XEXP (*mem_expr, 0); ++ if ( REG_P (address) ) ++ ptr_reg = address; ++ else if ( REG_P (XEXP (address, 0)) ) ++ ptr_reg = XEXP (address, 0); ++ else ++ ptr_reg = XEXP (address, 1); ++ } ++ ++ operands[3] = gen_rtx_LABEL_REF(Pmode, gen_label_rtx ()); ++ operands[4] = ptr_reg; ++ } ++ ) ++ ++ ++;(define_insn "sync_<atomic_insn>si" ++; [(set (match_operand:SI 0 "memory_operand" "+RKs16") ++; (unspec_volatile:SI ++; [(atomic_op:SI (match_dup 0) ++; (match_operand:SI 1 "register_operand" "r"))] ++; VUNSPEC_SYNC_CMPXCHG)) ++; (clobber (match_scratch:SI 2 "=&r"))] ++; "" ++; "0: ++; ssrf\t5 ++; ld.w\t%2,%0 ++; <atomic_asm_insn>\t%2,%1 ++; stcond\t%0, %2 ++; brne\t0b ++; " ++; [(set_attr "length" "14") ++; (set_attr "cc" "clobber")] ++; ) ++; ++;(define_insn "sync_new_<atomic_insn>si" ++; [(set (match_operand:SI 1 "memory_operand" "+RKs16") ++; (unspec_volatile:SI ++; [(atomic_op:SI (match_dup 1) ++; (match_operand:SI 2 "register_operand" "r"))] ++; VUNSPEC_SYNC_CMPXCHG)) ++; (set (match_operand:SI 0 "register_operand" "=&r") ++; (atomic_op:SI (match_dup 1) ++; (match_dup 2)))] ++; "" ++; "0: ++; ssrf\t5 ++; ld.w\t%0,%1 ++; <atomic_asm_insn>\t%0,%2 ++; stcond\t%1, %0 ++; brne\t0b ++; " ++; [(set_attr "length" "14") ++; (set_attr "cc" "clobber")] ++; ) ++ ++(define_insn "sync_lock_test_and_setsi" ++ [ (set (match_operand:SI 0 "register_operand" "=&r") ++ (match_operand:SI 1 "memory_operand" "+RKu00")) ++ (set (match_dup 1) ++ (match_operand:SI 2 "register_operand" "r")) ] ++ "" ++ "xchg\t%0, %p1, %2" ++ [(set_attr "length" "4")] ++ ) +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/t-avr32 gcc-4.4.6/gcc/config/avr32/t-avr32 +--- gcc-4.4.6.orig/gcc/config/avr32/t-avr32 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/t-avr32 2011-08-27 19:45:43.327990411 +0200 +@@ -0,0 +1,118 @@ ++ ++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ ++ $(srcdir)/config/avr32/sync.md \ ++ $(srcdir)/config/avr32/simd.md \ ++ $(srcdir)/config/avr32/predicates.md ++ ++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ ++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) ++ ++# We want fine grained libraries, so use the new code ++# to build the floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++LIB1ASMSRC = avr32/lib1funcs.S ++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ ++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ ++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ ++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ ++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ ++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ ++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 ++ ++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S ++ ++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp ++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp ++MULTILIB_EXCEPTIONS = ++MULTILIB_MATCHES += march?ap=mpart?ap7000 ++MULTILIB_MATCHES += march?ap=mpart?ap7001 ++MULTILIB_MATCHES += march?ap=mpart?ap7002 ++MULTILIB_MATCHES += march?ap=mpart?ap7200 ++MULTILIB_MATCHES += march?ucr1=march?uc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 ++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c ++MULTILIB_MATCHES += march?ucr3=mpart?mxt768e ++ ++ ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o ++ ++CRTSTUFF_T_CFLAGS = -mrelax ++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC ++TARGET_LIBGCC2_CFLAGS += -mrelax ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++ ++ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/t-avr32-linux gcc-4.4.6/gcc/config/avr32/t-avr32-linux +--- gcc-4.4.6.orig/gcc/config/avr32/t-avr32-linux 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/t-avr32-linux 2011-08-27 19:45:43.367991180 +0200 +@@ -0,0 +1,118 @@ ++ ++MD_INCLUDES= $(srcdir)/config/avr32/avr32.md \ ++ $(srcdir)/config/avr32/sync.md \ ++ $(srcdir)/config/avr32/simd.md \ ++ $(srcdir)/config/avr32/predicates.md ++ ++s-config s-conditions s-flags s-codes s-constants s-emit s-recog s-preds \ ++ s-opinit s-extract s-peep s-attr s-attrtab s-output: $(MD_INCLUDES) ++ ++# We want fine grained libraries, so use the new code ++# to build the floating point emulation libraries. ++FPBIT = fp-bit.c ++DPBIT = dp-bit.c ++ ++LIB1ASMSRC = avr32/lib1funcs.S ++LIB1ASMFUNCS = _avr32_f64_mul _avr32_f64_mul_fast _avr32_f64_addsub _avr32_f64_addsub_fast _avr32_f64_to_u32 \ ++ _avr32_f64_to_s32 _avr32_f64_to_u64 _avr32_f64_to_s64 _avr32_u32_to_f64 \ ++ _avr32_s32_to_f64 _avr32_f64_cmp_eq _avr32_f64_cmp_ge _avr32_f64_cmp_lt \ ++ _avr32_f32_cmp_eq _avr32_f32_cmp_ge _avr32_f32_cmp_lt _avr32_f64_div _avr32_f64_div_fast \ ++ _avr32_f32_div _avr32_f32_div_fast _avr32_f32_addsub _avr32_f32_addsub_fast \ ++ _avr32_f32_mul _avr32_s32_to_f32 _avr32_u32_to_f32 _avr32_f32_to_s32 \ ++ _avr32_f32_to_u32 _avr32_f32_to_f64 _avr32_f64_to_f32 _mulsi3 ++ ++#LIB2FUNCS_EXTRA += $(srcdir)/config/avr32/lib2funcs.S ++ ++MULTILIB_OPTIONS = march=ap/march=ucr1/march=ucr2/march=ucr2nomul/march=ucr3/march=ucr3fp ++MULTILIB_DIRNAMES = ap ucr1 ucr2 ucr2nomul ucr3 ucr3fp ++MULTILIB_EXCEPTIONS = ++MULTILIB_MATCHES += march?ap=mpart?ap7000 ++MULTILIB_MATCHES += march?ap=mpart?ap7001 ++MULTILIB_MATCHES += march?ap=mpart?ap7002 ++MULTILIB_MATCHES += march?ap=mpart?ap7200 ++MULTILIB_MATCHES += march?ucr1=march?uc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a0512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1256 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3a1512es ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a1512 ++MULTILIB_MATCHES += march?ucr2nomul=mpart?uc3a3revd ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a364s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a3256s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a464s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4128s ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3a4256s ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b064 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b0256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b0512revc ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b164 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1128 ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256es ++MULTILIB_MATCHES += march?ucr1=mpart?uc3b1256 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512 ++MULTILIB_MATCHES += march?ucr2=mpart?uc3b1512revc ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d3 ++MULTILIB_MATCHES += march?ucr3=mpart?uc64d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc128d4 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c0512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c1512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3c2512crevc ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0256 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l0128 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l032 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l016 ++MULTILIB_MATCHES += march?ucr3=mpart?uc3l064revb ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l3u ++MULTILIB_MATCHES += march?ucr3=mpart?uc64l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc128l4u ++MULTILIB_MATCHES += march?ucr3=mpart?uc256l4u ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c064c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c0512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c164c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c1512c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c264c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2128c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2256c ++MULTILIB_MATCHES += march?ucr3fp=mpart?uc3c2512c ++MULTILIB_MATCHES += march?ucr3=mpart?mxt768e ++ ++ ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o ++ ++CRTSTUFF_T_CFLAGS = -mrelax ++CRTSTUFF_T_CFLAGS_S = -mrelax -fPIC ++TARGET_LIBGCC2_CFLAGS += -mrelax ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib ++ ++fp-bit.c: $(srcdir)/config/fp-bit.c ++ echo '#define FLOAT' > fp-bit.c ++ cat $(srcdir)/config/fp-bit.c >> fp-bit.c ++ ++dp-bit.c: $(srcdir)/config/fp-bit.c ++ cat $(srcdir)/config/fp-bit.c > dp-bit.c ++ ++ ++ +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/t-elf gcc-4.4.6/gcc/config/avr32/t-elf +--- gcc-4.4.6.orig/gcc/config/avr32/t-elf 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/t-elf 2011-08-27 19:45:43.427991160 +0200 +@@ -0,0 +1,16 @@ ++ ++# Assemble startup files. ++$(T)crti.o: $(srcdir)/config/avr32/crti.asm $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crti.o -x assembler-with-cpp $(srcdir)/config/avr32/crti.asm ++ ++$(T)crtn.o: $(srcdir)/config/avr32/crtn.asm $(GCC_PASSES) ++ $(GCC_FOR_TARGET) $(CRTSTUFF_CFLAGS) $(CRTSTUFF_T_CFLAGS) $(INCLUDES) \ ++ -c -o $(T)crtn.o -x assembler-with-cpp $(srcdir)/config/avr32/crtn.asm ++ ++ ++# Build the libraries for both hard and soft floating point ++EXTRA_MULTILIB_PARTS = crtbegin.o crtbeginS.o crtend.o crtendS.o crti.o crtn.o ++ ++LIBGCC = stmp-multilib ++INSTALL_LIBGCC = install-multilib +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/uc3fpu.md gcc-4.4.6/gcc/config/avr32/uc3fpu.md +--- gcc-4.4.6.orig/gcc/config/avr32/uc3fpu.md 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/uc3fpu.md 2011-08-27 19:45:43.470489984 +0200 +@@ -0,0 +1,199 @@ ++;; AVR32 machine description file for Floating-Point instructions. ++;; Copyright 2003-2006 Atmel Corporation. ++;; ++;; ++;; This file is part of GCC. ++;; ++;; This program is free software; you can redistribute it and/or modify ++;; it under the terms of the GNU General Public License as published by ++;; the Free Software Foundation; either version 2 of the License, or ++;; (at your option) any later version. ++;; ++;; This program is distributed in the hope that it will be useful, ++;; but WITHOUT ANY WARRANTY; without even the implied warranty of ++;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ++;; GNU General Public License for more details. ++;; ++;; You should have received a copy of the GNU General Public License ++;; along with this program; if not, write to the Free Software ++;; Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ++ ++(define_insn "*movsf_uc3fp" ++ [(set (match_operand:SF 0 "nonimmediate_operand" "=r,r,r,m") ++ (match_operand:SF 1 "general_operand" "r,G,m,r"))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "@ ++ mov\t%0, %1 ++ mov\t%0, %1 ++ ld.w\t%0, %1 ++ st.w\t%0, %1" ++ [(set_attr "length" "2,4,4,4") ++ (set_attr "type" "alu,alu,load,store")]) ++ ++(define_insn "mulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmul.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "nmulsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "%r") ++ (match_operand:SF 2 "register_operand" "r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmul.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "macsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (plus:SF (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")) ++ (match_operand:SF 3 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmac.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++;(define_insn "nmacsf3" ++; [(set (match_operand:SF 0 "register_operand" "=r") ++; (plus:SF (neg:SF (match_operand:SF 1 "register_operand" "r")) ++; (mult:SF(match_operand:SF 2 "register_operand" "r") ++; (match_operand:SF 3 "register_operand" "r"))))] ++; "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++; "fnmac.s\t%0, %1, %2, %3" ++; [(set_attr "length" "4") ++; (set_attr "type" "fmul")]) ++ ++(define_insn "nmacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (mult:SF (match_operand:SF 2 "register_operand" "r") ++ (match_operand:SF 3 "register_operand" "r")) ++ (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmac.s\t%0, %1, %2, %3" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "msubacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (match_operand:SF 3 "register_operand" "r") ++ (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fmsc.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "nmsubacsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (neg:SF (mult:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r"))) ++ (match_operand:SF 3 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fnmsc.s\t%0, %3, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "addsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (plus:SF (match_operand:SF 1 "register_operand" "%r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fadd.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "subsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (minus:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fsub.s\t%0, %1, %2" ++ [(set_attr "length" "4") ++ (set_attr "type" "fmul")]) ++ ++(define_insn "fixuns_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (unsigned_fix:SI (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastrs.uw\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "fix_truncsfsi2" ++ [(set (match_operand:SI 0 "register_operand" "=r") ++ (fix:SI (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastrs.sw\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "floatunssisf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (unsigned_float:SF (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastuw.s\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "floatsisf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (float:SF (match_operand:SI 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "fcastsw.s\t%0, %1" ++ [(set_attr "length" "4")]) ++ ++(define_insn "cmpsf_internal_uc3fp" ++ [(set (cc0) ++ (compare:CC ++ (match_operand:SF 0 "register_operand" "r") ++ (match_operand:SF 1 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ { ++ avr32_branch_type = CMP_SF; ++ if (!rtx_equal_p(cc_prev_status.mdep.value, SET_SRC(PATTERN (insn))) ) ++ return "fcmp.s\t%0, %1"; ++ return ""; ++ } ++ [(set_attr "length" "4") ++ (set_attr "cc" "compare")]) ++ ++(define_expand "divsf3" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (div:SF (match_operand:SF 1 "register_operand" "r") ++ (match_operand:SF 2 "register_operand" "r")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" ++ "{ ++ emit_insn(gen_frcpa_internal(operands[0],operands[2])); ++ emit_insn(gen_mulsf3(operands[0],operands[0],operands[1])); ++ DONE; ++ }" ++) ++ ++(define_insn "frcpa_internal" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (unspec:SF [(match_operand:SF 1 "register_operand" "r")] UNSPEC_FRCPA))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "frcpa.s %0,%1" ++ [(set_attr "length" "4")]) ++ ++(define_expand "sqrtsf2" ++ [(set (match_operand:SF 0 "register_operand" "") ++ (sqrt:SF (match_operand:SF 1 "register_operand" "")))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT && flag_unsafe_math_optimizations" ++ " ++{ ++ rtx scratch = gen_reg_rtx (SFmode); ++ emit_insn (gen_rsqrtsf2 (scratch, operands[1], CONST1_RTX (SFmode))); ++ emit_insn (gen_divsf3(operands[0], force_reg (SFmode, CONST1_RTX (SFmode)), ++ scratch)); ++ DONE; ++}") ++ ++(define_insn "rsqrtsf2" ++ [(set (match_operand:SF 0 "register_operand" "=r") ++ (div:SF (match_operand:SF 2 "const_1f_operand" "F") ++ (sqrt:SF (match_operand:SF 1 "register_operand" "?r"))))] ++ "TARGET_ARCH_FPU && TARGET_HARD_FLOAT" ++ "frsqrta.s %1, %0") +diff -Nur gcc-4.4.6.orig/gcc/config/avr32/uclinux-elf.h gcc-4.4.6/gcc/config/avr32/uclinux-elf.h +--- gcc-4.4.6.orig/gcc/config/avr32/uclinux-elf.h 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config/avr32/uclinux-elf.h 2011-08-27 19:45:43.510490479 +0200 +@@ -0,0 +1,20 @@ ++ ++/* Run-time Target Specification. */ ++#undef TARGET_VERSION ++#define TARGET_VERSION fputs (" (AVR32 uClinux with ELF)", stderr) ++ ++/* We don't want a .jcr section on uClinux. As if this makes a difference... */ ++#define TARGET_USE_JCR_SECTION 0 ++ ++/* Here we go. Drop the crtbegin/crtend stuff completely. */ ++#undef STARTFILE_SPEC ++#define STARTFILE_SPEC \ ++ "%{!shared: %{pg:gcrt1.o%s} %{!pg:%{p:gcrt1.o%s}" \ ++ " %{!p:%{profile:gcrt1.o%s}" \ ++ " %{!profile:crt1.o%s}}}} crti.o%s" ++ ++#undef ENDFILE_SPEC ++#define ENDFILE_SPEC "crtn.o%s" ++ ++#undef TARGET_DEFAULT ++#define TARGET_DEFAULT (AVR32_FLAG_NO_INIT_GOT) +diff -Nur gcc-4.4.6.orig/gcc/config/host-linux.c gcc-4.4.6/gcc/config/host-linux.c +--- gcc-4.4.6.orig/gcc/config/host-linux.c 2009-02-20 16:20:38.000000000 +0100 ++++ gcc-4.4.6/gcc/config/host-linux.c 2011-08-27 19:45:43.560490932 +0200 +@@ -25,6 +25,9 @@ + #include "hosthooks.h" + #include "hosthooks-def.h" + ++#ifndef SSIZE_MAX ++#define SSIZE_MAX LONG_MAX ++#endif + + /* Linux has a feature called exec-shield-randomize that perturbs the + address of non-fixed mapped segments by a (relatively) small amount. +diff -Nur gcc-4.4.6.orig/gcc/config.gcc gcc-4.4.6/gcc/config.gcc +--- gcc-4.4.6.orig/gcc/config.gcc 2011-02-18 22:39:51.000000000 +0100 ++++ gcc-4.4.6/gcc/config.gcc 2011-08-27 19:45:43.637990448 +0200 +@@ -810,6 +810,24 @@ + avr-*-*) + tm_file="avr/avr.h dbxelf.h" + ;; ++avr32*-*-linux*) ++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/avr32.h " ++ tmake_file="t-linux avr32/t-avr32-linux" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ extra_modes=avr32/avr32-modes.def ++ gnu_ld=yes ++ ;; ++avr32*-*-uclinux*) ++ tm_file="dbxelf.h elfos.h linux.h avr32/linux-elf.h avr32/uclinux-elf.h avr32/avr32.h" ++ tmake_file="t-linux avr32/t-avr32-linux" ++ extra_modes=avr32/avr32-modes.def ++ gnu_ld=yes ++ ;; ++avr32-*-*) ++ tm_file="dbxelf.h elfos.h avr32/avr32.h avr32/avr32-elf.h" ++ tmake_file="avr32/t-avr32 avr32/t-elf" ++ extra_modes=avr32/avr32-modes.def ++ ;; + bfin*-elf*) + tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h" + tmake_file=bfin/t-bfin-elf +@@ -2736,6 +2754,32 @@ + fi + ;; + ++ avr32*-*-*) ++ supported_defaults="part arch" ++ ++ case "$with_part" in ++ "" \ ++ | "ap7000" | "ap7010" | "ap7020" | "uc3a0256" | "uc3a0512" | "uc3a1128" | "uc3a1256" | "uc3a1512" ) ++ # OK ++ ;; ++ *) ++ echo "Unknown part used in --with-part=$with_part" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_arch" in ++ "" \ ++ | "ap" | "uc") ++ # OK ++ ;; ++ *) ++ echo "Unknown arch used in --with-arch=$with_arch" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ + fr*-*-*linux*) + supported_defaults=cpu + case "$with_cpu" in +diff -Nur gcc-4.4.6.orig/gcc/config.gcc.orig gcc-4.4.6/gcc/config.gcc.orig +--- gcc-4.4.6.orig/gcc/config.gcc.orig 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/config.gcc.orig 2011-02-18 22:39:51.000000000 +0100 +@@ -0,0 +1,3208 @@ ++# GCC target-specific configuration file. ++# Copyright 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, ++# 2008, 2009, 2010 Free Software Foundation, Inc. ++ ++#This file is part of GCC. ++ ++#GCC is free software; you can redistribute it and/or modify it under ++#the terms of the GNU General Public License as published by the Free ++#Software Foundation; either version 3, or (at your option) any later ++#version. ++ ++#GCC is distributed in the hope that it will be useful, but WITHOUT ++#ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ++#FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License ++#for more details. ++ ++#You should have received a copy of the GNU General Public License ++#along with GCC; see the file COPYING3. If not see ++#<http://www.gnu.org/licenses/>. ++ ++# This is the GCC target-specific configuration file ++# where a configuration type is mapped to different system-specific ++# definitions and files. This is invoked by the autoconf-generated ++# configure script. Putting it in a separate shell file lets us skip ++# running autoconf when modifying target-specific information. ++ ++# When you change the cases in the OS or target switches, consider ++# updating ../libgcc/config.host also. ++ ++# This file switches on the shell variable ${target}, and also uses the ++# following shell variables: ++# ++# with_* Various variables as set by configure. ++# ++# enable_threads Either the name, yes or no depending on whether ++# threads support was requested. ++# ++# default_use_cxa_atexit ++# The default value for the $enable___cxa_atexit ++# variable. enable___cxa_atexit needs to be set to ++# "yes" for the correct operation of C++ destructors ++# but it relies upon the presence of a non-standard C ++# library function called __cxa_atexit. ++# Since not all C libraries provide __cxa_atexit the ++# default value of $default_use_cxa_atexit is set to ++# "no" except for targets which are known to be OK. ++# ++# gas_flag Either yes or no depending on whether GNU as was ++# requested. ++# ++# gnu_ld_flag Either yes or no depending on whether GNU ld was ++# requested. ++ ++# This file sets the following shell variables for use by the ++# autoconf-generated configure script: ++# ++# cpu_type The name of the cpu, if different from the first ++# chunk of the canonical target name. ++# ++# tm_defines List of target macros to define for all compilations. ++# ++# tm_file A list of target macro files, if different from ++# "$cpu_type/$cpu_type.h". Usually it's constructed ++# per target in a way like this: ++# tm_file="${tm_file} dbxelf.h elfos.h svr4.h ${cpu_type.h}/elf.h" ++# Note that the preferred order is: ++# - specific target header "${cpu_type}/${cpu_type.h}" ++# - generic headers like dbxelf.h elfos.h, etc. ++# - specializing target headers like ${cpu_type.h}/elf.h ++# This helps to keep OS specific stuff out of the CPU ++# defining header ${cpu_type}/${cpu_type.h}. ++# ++# It is possible to include automatically-generated ++# build-directory files by prefixing them with "./". ++# All other files should relative to $srcdir/config. ++# ++# tm_p_file Location of file with declarations for functions ++# in $out_file. ++# ++# out_file The name of the machine description C support ++# file, if different from "$cpu_type/$cpu_type.c". ++# ++# md_file The name of the machine-description file, if ++# different from "$cpu_type/$cpu_type.md". ++# ++# tmake_file A list of machine-description-specific ++# makefile-fragments, if different from ++# "$cpu_type/t-$cpu_type". ++# ++# extra_modes The name of the file containing a list of extra ++# machine modes, if necessary and different from ++# "$cpu_type/$cpu_type-modes.def". ++# ++# extra_objs List of extra objects that should be linked into ++# the compiler proper (cc1, cc1obj, cc1plus) ++# depending on target. ++# ++# extra_gcc_objs List of extra objects that should be linked into ++# the compiler driver (gcc) depending on target. ++# ++# extra_headers List of used header files from the directory ++# config/${cpu_type}. ++# ++# use_gcc_tgmath If set, add tgmath.h to the list of used header ++# files. ++# ++# extra_passes List of extra executables compiled for this target ++# machine, used for compiling from source to object. ++# ++# extra_parts List of extra object files that should be compiled ++# for this target machine. ++# ++# extra_programs Like extra_passes, but these are used when linking. ++# ++# extra_options List of target-dependent .opt files. ++# ++# c_target_objs List of extra target-dependent objects that be ++# linked into the C compiler only. ++# ++# cxx_target_objs List of extra target-dependent objects that be ++# linked into the C++ compiler only. ++# ++# fortran_target_objs List of extra target-dependent objects that be ++# linked into the fortran compiler only. ++# ++# target_gtfiles List of extra source files with type information. ++# ++# xm_defines List of macros to define when compiling for the ++# target machine. ++# ++# xm_file List of files to include when compiling for the ++# target machine. ++# ++# use_collect2 Set to yes or no, depending on whether collect2 ++# will be used. ++# ++# target_cpu_default Set to override the default target model. ++# ++# gdb_needs_out_file_path ++# Set to yes if gdb needs a dir command with ++# `dirname $out_file`. ++# ++# thread_file Set to control which thread package to use. ++# ++# gas Set to yes or no depending on whether the target ++# system normally uses GNU as. ++# ++# need_64bit_hwint Set to yes if HOST_WIDE_INT must be 64 bits wide ++# for this target. This is true if this target ++# supports "long" or "wchar_t" wider than 32 bits, ++# or BITS_PER_WORD is wider than 32 bits. ++# The setting made here must match the one made in ++# other locations such as libcpp/configure.ac ++# ++# configure_default_options ++# Set to an initializer for configure_default_options ++# in configargs.h, based on --with-cpu et cetera. ++# ++# use_fixproto Set to "yes" if fixproto should be run normally, ++# "no" if fixproto should never be run. ++ ++# The following variables are used in each case-construct to build up the ++# outgoing variables: ++# ++# gnu_ld Set to yes or no depending on whether the target ++# system normally uses GNU ld. ++ ++out_file= ++tmake_file= ++extra_headers= ++use_gcc_tgmath=yes ++extra_passes= ++extra_parts= ++extra_programs= ++extra_objs= ++extra_gcc_objs= ++extra_options= ++c_target_objs= ++cxx_target_objs= ++fortran_target_objs= ++tm_defines= ++xm_defines= ++# Set this to force installation and use of collect2. ++use_collect2= ++# Set this to override the default target model. ++target_cpu_default= ++# Set this if gdb needs a dir command with `dirname $out_file` ++gdb_needs_out_file_path= ++# Set this to control which thread package will be used. ++thread_file= ++# Reinitialize these from the flag values every loop pass, since some ++# configure entries modify them. ++gas="$gas_flag" ++gnu_ld="$gnu_ld_flag" ++default_use_cxa_atexit=no ++target_gtfiles= ++need_64bit_hwint= ++ ++# Default to not using fixproto. Targets which need fixproto should ++# specifically set this to 'yes'. ++use_fixproto=no ++ ++# Don't carry these over build->host->target. Please. ++xm_file= ++md_file= ++ ++# Obsolete configurations. ++case ${target} in ++# Avoid generic cases below matching. ++ h8300-*-rtems* | h8300-*-elf* \ ++ | sh-*-elf* | sh-*-symbianelf* | sh-*-linux* | sh-*-netbsdelf* \ ++ | sh-*-rtems* | sh-wrs-vxworks) ;; ++ arm-*-coff* \ ++ | armel-*-coff* \ ++ | h8300-*-* \ ++ | i[34567]86-*-aout* \ ++ | i[34567]86-*-coff* \ ++ | m68k-*-aout* \ ++ | m68k-*-coff* \ ++ | sh-*-* \ ++ | pdp11-*-bsd \ ++ | rs6000-ibm-aix4.[12]* \ ++ | powerpc-ibm-aix4.[12]* \ ++ ) ++ if test "x$enable_obsolete" != xyes; then ++ echo "*** Configuration ${target} is obsolete." >&2 ++ echo "*** Specify --enable-obsolete to build it anyway." >&2 ++ echo "*** Support will be REMOVED in the next major release of GCC," >&2 ++ echo "*** unless a maintainer comes forward." >&2 ++ exit 1 ++ fi;; ++esac ++ ++# Unsupported targets list. Do not put an entry in this list unless ++# it would otherwise be caught by a more permissive pattern. The list ++# should be in alphabetical order. ++case ${target} in ++ i[34567]86-go32-* \ ++ | i[34567]86-*-go32* \ ++ | mips64orion*-*-rtems* \ ++ | sparc-hal-solaris2* \ ++ | thumb-*-* \ ++ | *-*-linux*aout* \ ++ | *-*-linux*coff* \ ++ | *-*-linux*libc1* \ ++ | *-*-linux*oldld* \ ++ | *-*-rtemsaout* \ ++ | *-*-rtemscoff* \ ++ | *-*-solaris2.[0-6] \ ++ | *-*-solaris2.[0-6].* \ ++ | *-*-sysv* \ ++ | vax-*-vms* \ ++ ) ++ echo "*** Configuration ${target} not supported" 1>&2 ++ exit 1 ++ ;; ++esac ++ ++# Set default cpu_type, tm_file, tm_p_file and xm_file so it can be ++# updated in each machine entry. Also set default extra_headers for some ++# machines. ++tm_p_file= ++cpu_type=`echo ${target} | sed 's/-.*$//'` ++cpu_is_64bit= ++case ${target} in ++m32c*-*-*) ++ cpu_type=m32c ++ tmake_file=m32c/t-m32c ++ ;; ++alpha*-*-*) ++ cpu_type=alpha ++ need_64bit_hwint=yes ++ ;; ++am33_2.0-*-linux*) ++ cpu_type=mn10300 ++ ;; ++arm*-*-*) ++ cpu_type=arm ++ extra_headers="mmintrin.h arm_neon.h" ++ c_target_objs="arm-c.o" ++ cxx_target_objs="arm-c.o" ++ ;; ++bfin*-*) ++ cpu_type=bfin ++ ;; ++crisv32-*) ++ cpu_type=cris ++ ;; ++frv*) cpu_type=frv ++ ;; ++fido-*-*) ++ cpu_type=m68k ++ extra_headers=math-68881.h ++ ;; ++i[34567]86-*-*) ++ cpu_type=i386 ++ c_target_objs="i386-c.o" ++ cxx_target_objs="i386-c.o" ++ extra_headers="cpuid.h mmintrin.h mm3dnow.h xmmintrin.h emmintrin.h ++ pmmintrin.h tmmintrin.h ammintrin.h smmintrin.h ++ nmmintrin.h bmmintrin.h mmintrin-common.h ++ wmmintrin.h immintrin.h x86intrin.h avxintrin.h ++ cross-stdarg.h" ++ ;; ++x86_64-*-*) ++ cpu_type=i386 ++ c_target_objs="i386-c.o" ++ cxx_target_objs="i386-c.o" ++ extra_headers="cpuid.h mmintrin.h mm3dnow.h xmmintrin.h emmintrin.h ++ pmmintrin.h tmmintrin.h ammintrin.h smmintrin.h ++ nmmintrin.h bmmintrin.h mmintrin-common.h ++ wmmintrin.h immintrin.h x86intrin.h avxintrin.h ++ cross-stdarg.h" ++ need_64bit_hwint=yes ++ ;; ++ia64-*-*) ++ extra_headers=ia64intrin.h ++ need_64bit_hwint=yes ++ ;; ++hppa*-*-*) ++ cpu_type=pa ++ ;; ++m32r*-*-*) ++ cpu_type=m32r ++ ;; ++m68k-*-*) ++ extra_headers=math-68881.h ++ ;; ++mips*-*-*) ++ cpu_type=mips ++ need_64bit_hwint=yes ++ extra_headers="loongson.h" ++ ;; ++picochip-*-*) ++ cpu_type=picochip ++ ;; ++powerpc*-*-*) ++ cpu_type=rs6000 ++ extra_headers="ppc-asm.h altivec.h spe.h ppu_intrinsics.h paired.h spu2vmx.h vec_types.h si2vmx.h" ++ need_64bit_hwint=yes ++ case x$with_cpu in ++ xpowerpc64|xdefault64|x6[23]0|x970|xG5|xpower[34567]|xpower6x|xrs64a|xcell) ++ cpu_is_64bit=yes ++ ;; ++ esac ++ ;; ++rs6000*-*-*) ++ need_64bit_hwint=yes ++ ;; ++score*-*-*) ++ cpu_type=score ++ ;; ++sparc*-*-*) ++ cpu_type=sparc ++ need_64bit_hwint=yes ++ ;; ++spu*-*-*) ++ cpu_type=spu ++ need_64bit_hwint=yes ++ ;; ++s390*-*-*) ++ cpu_type=s390 ++ need_64bit_hwint=yes ++ ;; ++# Note the 'l'; we need to be able to match e.g. "shle" or "shl". ++sh[123456789lbe]*-*-* | sh-*-*) ++ cpu_type=sh ++ need_64bit_hwint=yes ++ ;; ++esac ++ ++tm_file=${cpu_type}/${cpu_type}.h ++if test -f ${srcdir}/config/${cpu_type}/${cpu_type}-protos.h ++then ++ tm_p_file=${cpu_type}/${cpu_type}-protos.h ++fi ++extra_modes= ++if test -f ${srcdir}/config/${cpu_type}/${cpu_type}-modes.def ++then ++ extra_modes=${cpu_type}/${cpu_type}-modes.def ++fi ++if test -f ${srcdir}/config/${cpu_type}/${cpu_type}.opt ++then ++ extra_options="${extra_options} ${cpu_type}/${cpu_type}.opt" ++fi ++ ++case ${target} in ++i[34567]86-*-*) ++ if test "x$enable_cld" = xyes; then ++ tm_defines="${tm_defines} USE_IX86_CLD=1" ++ fi ++ ;; ++x86_64-*-*) ++ tm_file="i386/biarch64.h ${tm_file}" ++ if test "x$enable_cld" = xyes; then ++ tm_defines="${tm_defines} USE_IX86_CLD=1" ++ fi ++ ;; ++esac ++ ++# On a.out targets, we need to use collect2. ++case ${target} in ++*-*-*aout*) ++ use_collect2=yes ++ ;; ++esac ++ ++# Common parts for widely ported systems. ++case ${target} in ++*-*-darwin*) ++ tm_file="${tm_file} darwin.h" ++ case ${target} in ++ *-*-darwin[912]*) ++ tm_file="${tm_file} darwin9.h" ++ ;; ++ esac ++ tm_file="${tm_file} ${cpu_type}/darwin.h" ++ tm_p_file="${tm_p_file} darwin-protos.h" ++ tmake_file="t-darwin ${cpu_type}/t-darwin t-slibgcc-darwin" ++ target_gtfiles="\$(srcdir)/config/darwin.c" ++ extra_options="${extra_options} darwin.opt" ++ c_target_objs="${c_target_objs} darwin-c.o" ++ cxx_target_objs="${cxx_target_objs} darwin-c.o" ++ fortran_target_objs="darwin-f.o" ++ extra_objs="darwin.o" ++ extra_gcc_objs="darwin-driver.o" ++ default_use_cxa_atexit=yes ++ case ${enable_threads} in ++ "" | yes | posix) thread_file='posix' ;; ++ esac ++ ;; ++*-*-freebsd[12] | *-*-freebsd[12].* | *-*-freebsd*aout*) ++ # This is the place-holder for the generic a.out configuration ++ # of FreeBSD. No actual configuration resides here since ++ # there was only ever a bare-bones ix86 configuration for ++ # a.out and it exists solely in the machine-specific section. ++ # This place-holder must exist to avoid dropping into ++ # the generic ELF configuration of FreeBSD (i.e. it must be ++ # ordered before that section). ++ ;; ++*-*-freebsd*) ++ # This is the generic ELF configuration of FreeBSD. Later ++ # machine-specific sections may refine and add to this ++ # configuration. ++ # ++ # Due to tm_file entry ordering issues that vary between cpu ++ # architectures, we only define fbsd_tm_file to allow the ++ # machine-specific section to dictate the final order of all ++ # entries of tm_file with the minor exception that components ++ # of the tm_file set here will always be of the form: ++ # ++ # freebsd<version_number>.h [freebsd-<conf_option>.h ...] freebsd-spec.h freebsd.h ++ # ++ # The machine-specific section should not tamper with this ++ # ordering but may order all other entries of tm_file as it ++ # pleases around the provided core setting. ++ gas=yes ++ gnu_ld=yes ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o" ++ fbsd_major=`echo ${target} | sed -e 's/.*freebsd//g' | sed -e 's/\..*//g'` ++ tm_defines="${tm_defines} FBSD_MAJOR=${fbsd_major}" ++ tmake_file="t-slibgcc-elf-ver t-freebsd" ++ case ${enable_threads} in ++ no) ++ fbsd_tm_file="${fbsd_tm_file} freebsd-nthr.h" ++ ;; ++ "" | yes | posix) ++ thread_file='posix' ++ tmake_file="${tmake_file} t-freebsd-thread" ++ # Before 5.0, FreeBSD can't bind shared libraries to -lc ++ # when "optionally" threaded via weak pthread_* checks. ++ case ${target} in ++ *-*-freebsd[34] | *-*-freebsd[34].*) ++ tmake_file="${tmake_file} t-slibgcc-nolc-override" ++ ;; ++ esac ++ ;; ++ *) ++ echo 'Unknown thread configuration for FreeBSD' ++ exit 1 ++ ;; ++ esac ++ fbsd_tm_file="${fbsd_tm_file} freebsd-spec.h freebsd.h" ++ case ${target} in ++ *-*-freebsd[345].*) ++ :;; ++ *) ++ default_use_cxa_atexit=yes;; ++ esac ++ ;; ++*-*-linux* | frv-*-*linux* | *-*-kfreebsd*-gnu | *-*-knetbsd*-gnu | *-*-gnu* | *-*-kopensolaris*-gnu) ++ extra_parts="crtbegin.o crtbeginS.o crtbeginT.o crtend.o crtendS.o" ++ gas=yes ++ gnu_ld=yes ++ case ${enable_threads} in ++ "" | yes | posix) thread_file='posix' ;; ++ esac ++ tmake_file="t-slibgcc-elf-ver t-linux" ++ case $target in ++ *-*-linux* | frv-*-*linux* | *-*-kfreebsd*-gnu | *-*-knetbsd*-gnu | *-*-kopensolaris*-gnu) ++ :;; ++ *-*-gnu*) ++ tmake_file="$tmake_file t-gnu";; ++ esac ++ # glibc / uclibc switch. uclibc isn't usable for GNU/Hurd and neither for ++ # GNU/k*BSD. ++ case $target in ++ *linux*) ++ extra_options="$extra_options linux.opt";; ++ *) ++ tm_defines="$tm_defines OPTION_GLIBC=1";; ++ esac ++ case ${target} in ++ *-*-*uclibc*) ++ tm_defines="${tm_defines} UCLIBC_DEFAULT=1" ++ ;; ++ *) ++ tm_defines="${tm_defines} UCLIBC_DEFAULT=0" ++ ;; ++ esac ++ # Assume that glibc or uClibc are being used and so __cxa_atexit is provided. ++ default_use_cxa_atexit=yes ++ use_gcc_tgmath=no ++ ;; ++*-*-netbsd*) ++ tmake_file="t-slibgcc-elf-ver t-libc-ok t-netbsd t-libgcc-pic" ++ gas=yes ++ gnu_ld=yes ++ ++ # NetBSD 2.0 and later get POSIX threads enabled by default. ++ # Allow them to be explicitly enabled on any other version. ++ case ${enable_threads} in ++ "") ++ case ${target} in ++ *-*-netbsd[2-9]* | *-*-netbsdelf[2-9]*) ++ thread_file='posix' ++ tm_defines="${tm_defines} NETBSD_ENABLE_PTHREADS" ++ ;; ++ esac ++ ;; ++ yes | posix) ++ thread_file='posix' ++ tm_defines="${tm_defines} NETBSD_ENABLE_PTHREADS" ++ ;; ++ esac ++ ++ # NetBSD 1.7 and later are set up to use GCC's crtstuff for ++ # ELF configurations. We will clear extra_parts in the ++ # a.out configurations. ++ case ${target} in ++ *-*-netbsd*1.[7-9]* | *-*-netbsd[2-9]* | *-*-netbsdelf[2-9]*) ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o crtbeginT.o" ++ ;; ++ esac ++ ++ # NetBSD 2.0 and later provide __cxa_atexit(), which we use by ++ # default (unless overridden by --disable-__cxa_atexit). ++ case ${target} in ++ *-*-netbsd[2-9]* | *-*-netbsdelf[2-9]*) ++ default_use_cxa_atexit=yes ++ ;; ++ esac ++ ;; ++*-*-openbsd*) ++ tmake_file="t-libc-ok t-openbsd t-libgcc-pic" ++ case ${enable_threads} in ++ yes) ++ thread_file='posix' ++ tmake_file="${tmake_file} t-openbsd-thread" ++ ;; ++ esac ++ case ${target} in ++ *-*-openbsd2.*|*-*-openbsd3.[012]) ++ tm_defines="${tm_defines} HAS_LIBC_R=1" ;; ++ esac ++ ;; ++*-*-rtems*) ++ case ${enable_threads} in ++ yes) thread_file='rtems' ;; ++ esac ++ ;; ++*-*-vxworks*) ++ tmake_file=t-vxworks ++ xm_defines=POSIX ++ extra_options="${extra_options} vxworks.opt" ++ extra_objs=vxworks.o ++ case ${enable_threads} in ++ no) ;; ++ "" | yes | vxworks) thread_file='vxworks' ;; ++ *) echo 'Unknown thread configuration for VxWorks'; exit 1 ;; ++ esac ++ ;; ++*-*-elf) ++ # Assume that newlib is being used and so __cxa_atexit is provided. ++ default_use_cxa_atexit=yes ++ ;; ++esac ++ ++case ${target} in ++# Support site-specific machine types. ++*local*) ++ rest=`echo ${target} | sed -e "s/$cpu_type-//"` ++ tm_file=${cpu_type}/$rest.h ++ if test -f $srcdir/config/${cpu_type}/xm-$rest.h ++ then xm_file=${cpu_type}/xm-$rest.h ++ fi ++ if test -f $srcdir/config/${cpu_type}/t-$rest ++ then tmake_file=${cpu_type}/t-$rest ++ fi ++ ;; ++alpha*-*-linux*) ++ tm_file="${tm_file} alpha/elf.h alpha/linux.h alpha/linux-elf.h" ++ target_cpu_default="MASK_GAS" ++ tmake_file="${tmake_file} alpha/t-crtfm alpha/t-alpha alpha/t-ieee alpha/t-linux" ++ ;; ++alpha*-*-gnu*) ++ tm_file="$tm_file alpha/elf.h alpha/linux.h alpha/linux-elf.h gnu.h alpha/gnu.h" ++ target_cpu_default="MASK_GAS" ++ tmake_file="${tmake_file} alpha/t-crtfm alpha/t-alpha alpha/t-ieee" ++ ;; ++alpha*-*-freebsd*) ++ tm_file="${tm_file} ${fbsd_tm_file} alpha/elf.h alpha/freebsd.h" ++ target_cpu_default="MASK_GAS" ++ tmake_file="${tmake_file} alpha/t-crtfm alpha/t-alpha alpha/t-ieee" ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o crtbeginT.o" ++ ;; ++alpha*-*-netbsd*) ++ tm_file="${tm_file} netbsd.h alpha/elf.h netbsd-elf.h alpha/netbsd.h" ++ target_cpu_default="MASK_GAS" ++ tmake_file="${tmake_file} alpha/t-alpha alpha/t-ieee" ++ ;; ++alpha*-*-openbsd*) ++ tm_defines="${tm_defines} OBSD_NO_DYNAMIC_LIBRARIES OBSD_HAS_DECLARE_FUNCTION_NAME OBSD_HAS_DECLARE_FUNCTION_SIZE OBSD_HAS_DECLARE_OBJECT" ++ tm_file="alpha/alpha.h openbsd.h alpha/openbsd.h" ++ # default x-alpha is only appropriate for dec-osf. ++ target_cpu_default="MASK_GAS" ++ tmake_file="alpha/t-alpha alpha/t-ieee" ++ ;; ++alpha*-dec-osf[45]*) ++ if test x$stabs = xyes ++ then ++ tm_file="${tm_file} dbx.h" ++ fi ++ if test x$gas != xyes ++ then ++ extra_passes="mips-tfile mips-tdump" ++ fi ++ use_collect2=yes ++ tmake_file="alpha/t-alpha alpha/t-ieee alpha/t-crtfm alpha/t-osf4" ++ tm_file="${tm_file} alpha/osf.h" ++ extra_headers=va_list.h ++ case ${target} in ++ *-*-osf4*) ++ # Define TARGET_SUPPORT_ARCH except on 4.0a. ++ case ${target} in ++ *-*-osf4.0a) ;; ++ *) tm_defines="${tm_defines} TARGET_SUPPORT_ARCH=1" ++ esac ++ ;; ++ *-*-osf5*) ++ tm_file="${tm_file} alpha/osf5.h" ++ tm_defines="${tm_defines} TARGET_SUPPORT_ARCH=1" ++ ;; ++ esac ++ case ${enable_threads} in ++ "" | yes | posix) ++ thread_file='posix' ++ tmake_file="${tmake_file} alpha/t-osf-pthread" ++ ;; ++ esac ++ ;; ++alpha64-dec-*vms*) ++ tm_file="${tm_file} alpha/vms.h alpha/vms64.h" ++ xm_file="alpha/xm-vms.h" ++ tmake_file="alpha/t-alpha alpha/t-vms alpha/t-vms64 alpha/t-ieee" ++ prefix=/gnu ++ local_prefix=/gnu ++ ;; ++alpha*-dec-*vms*) ++ tm_file="${tm_file} alpha/vms.h" ++ xm_file=alpha/xm-vms.h ++ tmake_file="alpha/t-alpha alpha/t-vms alpha/t-ieee" ++ prefix=/gnu ++ local_prefix=/gnu ++ ;; ++arc-*-elf*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file}" ++ extra_parts="crtinit.o crtfini.o" ++ ;; ++arm-*-coff* | armel-*-coff*) ++ tm_file="arm/semi.h arm/aout.h arm/arm.h arm/coff.h dbxcoff.h" ++ tmake_file="arm/t-arm arm/t-arm-coff" ++ ;; ++arm-wrs-vxworks) ++ tm_file="elfos.h arm/elf.h arm/aout.h ${tm_file} vx-common.h vxworks.h arm/vxworks.h" ++ tmake_file="${tmake_file} arm/t-arm arm/t-vxworks" ++ ;; ++arm*-*-freebsd*) ++ tm_file="dbxelf.h elfos.h ${fbsd_tm_file} arm/elf.h arm/aout.h arm/freebsd.h arm/arm.h" ++ tmake_file="${tmake_file} arm/t-arm arm/t-strongarm-elf" ++ ;; ++arm*-*-netbsdelf*) ++ tm_file="dbxelf.h elfos.h netbsd.h netbsd-elf.h arm/elf.h arm/aout.h arm/arm.h arm/netbsd-elf.h" ++ tmake_file="${tmake_file} arm/t-arm arm/t-netbsd" ++ ;; ++arm*-*-netbsd*) ++ tm_file="arm/aout.h arm/arm.h netbsd.h netbsd-aout.h arm/netbsd.h" ++ tmake_file="t-netbsd arm/t-arm arm/t-netbsd" ++ extra_parts="" ++ use_collect2=yes ++ ;; ++arm*-*-linux*) # ARM GNU/Linux with ELF ++ tm_file="dbxelf.h elfos.h linux.h arm/elf.h arm/linux-gas.h arm/linux-elf.h" ++ case $target in ++ arm*b-*) ++ tm_defines="${tm_defines} TARGET_BIG_ENDIAN_DEFAULT=1" ++ ;; ++ esac ++ tmake_file="${tmake_file} t-linux arm/t-arm" ++ case ${target} in ++ arm*-*-linux-*eabi) ++ tm_file="$tm_file arm/bpabi.h arm/linux-eabi.h" ++ tmake_file="$tmake_file arm/t-arm-elf arm/t-bpabi arm/t-linux-eabi t-slibgcc-libgcc" ++ # The BPABI long long divmod functions return a 128-bit value in ++ # registers r0-r3. Correctly modeling that requires the use of ++ # TImode. ++ need_64bit_hwint=yes ++ # The EABI requires the use of __cxa_atexit. ++ default_use_cxa_atexit=yes ++ ;; ++ *) ++ tmake_file="$tmake_file arm/t-linux" ++ ;; ++ esac ++ tm_file="$tm_file arm/aout.h arm/arm.h" ++ tmake_file="${tmake_file} arm/t-arm-softfp soft-fp/t-softfp" ++ ;; ++arm*-*-uclinux*) # ARM ucLinux ++ tm_file="dbxelf.h elfos.h arm/unknown-elf.h arm/elf.h arm/linux-gas.h arm/uclinux-elf.h" ++ tmake_file="arm/t-arm arm/t-arm-elf" ++ case ${target} in ++ arm*-*-uclinux*eabi) ++ tm_file="$tm_file arm/bpabi.h arm/uclinux-eabi.h" ++ tmake_file="$tmake_file arm/t-bpabi" ++ # The BPABI long long divmod functions return a 128-bit value in ++ # registers r0-r3. Correctly modeling that requires the use of ++ # TImode. ++ need_64bit_hwint=yes ++ # The EABI requires the use of __cxa_atexit. ++ default_use_cxa_atexit=yes ++ esac ++ tm_file="$tm_file arm/aout.h arm/arm.h" ++ tmake_file="${tmake_file} arm/t-arm-softfp soft-fp/t-softfp" ++ ;; ++arm*-*-ecos-elf) ++ tm_file="dbxelf.h elfos.h arm/unknown-elf.h arm/elf.h arm/aout.h arm/arm.h arm/ecos-elf.h" ++ tmake_file="arm/t-arm arm/t-arm-elf" ++ tmake_file="${tmake_file} arm/t-arm-softfp soft-fp/t-softfp" ++ ;; ++arm*-*-eabi* | arm*-*-symbianelf* ) ++ # The BPABI long long divmod functions return a 128-bit value in ++ # registers r0-r3. Correctly modeling that requires the use of ++ # TImode. ++ need_64bit_hwint=yes ++ default_use_cxa_atexit=yes ++ tm_file="dbxelf.h elfos.h arm/unknown-elf.h arm/elf.h arm/bpabi.h" ++ tmake_file="arm/t-arm arm/t-arm-elf" ++ case ${target} in ++ arm*-*-eabi*) ++ tm_file="$tm_file arm/eabi.h" ++ tmake_file="${tmake_file} arm/t-bpabi" ++ extra_options="${extra_options} arm/eabi.opt" ++ ;; ++ arm*-*-symbianelf*) ++ tm_file="${tm_file} arm/symbian.h" ++ # We do not include t-bpabi for Symbian OS because the system ++ # provides its own implementation of the BPABI functions. ++ tmake_file="${tmake_file} arm/t-symbian" ++ ;; ++ esac ++ tm_file="${tm_file} arm/aout.h arm/arm.h" ++ tmake_file="${tmake_file} arm/t-arm-softfp soft-fp/t-softfp" ++ ;; ++arm*-*-rtems*) ++ tm_file="dbxelf.h elfos.h arm/unknown-elf.h arm/elf.h arm/aout.h arm/arm.h arm/rtems-elf.h rtems.h" ++ tmake_file="arm/t-arm arm/t-arm-elf t-rtems arm/t-rtems" ++ tmake_file="${tmake_file} arm/t-arm-softfp soft-fp/t-softfp" ++ ;; ++arm*-*-elf) ++ tm_file="dbxelf.h elfos.h arm/unknown-elf.h arm/elf.h arm/aout.h arm/arm.h" ++ tmake_file="arm/t-arm arm/t-arm-elf" ++ tmake_file="${tmake_file} arm/t-arm-softfp soft-fp/t-softfp" ++ ;; ++arm*-wince-pe*) ++ tm_file="arm/semi.h arm/aout.h arm/arm.h arm/coff.h dbxcoff.h arm/pe.h arm/wince-pe.h" ++ tmake_file="arm/t-arm arm/t-wince-pe" ++ extra_options="${extra_options} arm/pe.opt" ++ extra_objs="pe.o" ++ ;; ++arm-*-pe*) ++ tm_file="arm/semi.h arm/aout.h arm/arm.h arm/coff.h dbxcoff.h arm/pe.h" ++ tmake_file="arm/t-arm arm/t-pe" ++ extra_options="${extra_options} arm/pe.opt" ++ extra_objs="pe.o" ++ ;; ++avr-*-rtems*) ++ tm_file="avr/avr.h dbxelf.h avr/rtems.h rtems.h" ++ tmake_file="avr/t-avr t-rtems avr/t-rtems" ++ ;; ++avr-*-*) ++ tm_file="avr/avr.h dbxelf.h" ++ ;; ++bfin*-elf*) ++ tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h" ++ tmake_file=bfin/t-bfin-elf ++ use_collect2=no ++ ;; ++bfin*-uclinux*) ++ tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h linux.h bfin/uclinux.h" ++ tmake_file=bfin/t-bfin-uclinux ++ tm_defines="${tm_defines} UCLIBC_DEFAULT=1" ++ extra_options="${extra_options} linux.opt" ++ use_collect2=no ++ ;; ++bfin*-linux-uclibc*) ++ tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h linux.h bfin/linux.h ./linux-sysroot-suffix.h" ++ tmake_file="t-slibgcc-elf-ver bfin/t-bfin-linux" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ use_collect2=no ++ ;; ++bfin*-rtems*) ++ tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h bfin/rtems.h rtems.h" ++ tmake_file="bfin/t-bfin t-rtems bfin/t-rtems" ++ ;; ++bfin*-*) ++ tm_file="${tm_file} dbxelf.h elfos.h bfin/elf.h" ++ tmake_file=bfin/t-bfin ++ use_collect2=no ++ ;; ++crisv32-*-elf | crisv32-*-none) ++ tm_file="dbxelf.h elfos.h ${tm_file}" ++ tmake_file="cris/t-cris" ++ target_cpu_default=32 ++ gas=yes ++ extra_options="${extra_options} cris/elf.opt" ++ ;; ++cris-*-elf | cris-*-none) ++ tm_file="dbxelf.h elfos.h ${tm_file}" ++ tmake_file="cris/t-cris cris/t-elfmulti" ++ gas=yes ++ extra_options="${extra_options} cris/elf.opt" ++ ;; ++crisv32-*-linux* | cris-*-linux*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file} linux.h cris/linux.h" ++ # We need to avoid using t-linux, so override default tmake_file ++ tmake_file="cris/t-cris t-slibgcc-elf-ver cris/t-linux" ++ extra_options="${extra_options} cris/linux.opt" ++ case $target in ++ cris-*-*) ++ target_cpu_default=10 ++ ;; ++ crisv32-*-*) ++ target_cpu_default=32 ++ ;; ++ esac ++ ;; ++crx-*-elf) ++ tm_file="elfos.h ${tm_file}" ++ extra_parts="crtbegin.o crtend.o" ++ use_collect2=no ++ ;; ++fr30-*-elf) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file}" ++ tmake_file=fr30/t-fr30 ++ extra_parts="crti.o crtn.o crtbegin.o crtend.o" ++ ;; ++frv-*-elf) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file} frv/frv-abi.h" ++ tmake_file=frv/t-frv ++ ;; ++frv-*-*linux*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file} \ ++ linux.h frv/linux.h frv/frv-abi.h" ++ tmake_file="${tmake_file} frv/t-frv frv/t-linux" ++ ;; ++h8300-*-rtems*) ++ tmake_file="h8300/t-h8300 h8300/t-elf t-rtems h8300/t-rtems" ++ tm_file="h8300/h8300.h dbxelf.h elfos.h h8300/elf.h h8300/rtems.h rtems.h" ++ ;; ++h8300-*-elf*) ++ tmake_file="h8300/t-h8300 h8300/t-elf" ++ tm_file="h8300/h8300.h dbxelf.h elfos.h h8300/elf.h" ++ ;; ++h8300-*-*) ++ tm_file="h8300/h8300.h dbxcoff.h h8300/coff.h" ++ ;; ++hppa*64*-*-linux*) ++ target_cpu_default="MASK_PA_11|MASK_PA_20" ++ tm_file="pa/pa64-start.h ${tm_file} dbxelf.h elfos.h svr4.h linux.h \ ++ pa/pa-linux.h pa/pa64-regs.h pa/pa-64.h pa/pa64-linux.h" ++ tmake_file="${tmake_file} pa/t-linux64" ++ gas=yes gnu_ld=yes ++ need_64bit_hwint=yes ++ ;; ++hppa*-*-linux*) ++ target_cpu_default="MASK_PA_11|MASK_NO_SPACE_REGS" ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h linux.h pa/pa-linux.h \ ++ pa/pa32-regs.h pa/pa32-linux.h" ++ tmake_file="${tmake_file} pa/t-linux" ++ # Set the libgcc version number ++ if test x$sjlj = x1; then ++ tmake_file="$tmake_file pa/t-slibgcc-sjlj-ver" ++ else ++ tmake_file="$tmake_file pa/t-slibgcc-dwarf-ver" ++ fi ++ ;; ++# port not yet contributed. ++#hppa*-*-openbsd*) ++# target_cpu_default="MASK_PA_11" ++# ;; ++hppa[12]*-*-hpux10*) ++ case ${target} in ++ hppa1.1-*-* | hppa2*-*-*) ++ target_cpu_default="MASK_PA_11" ++ ;; ++ esac ++ tm_file="${tm_file} pa/pa32-regs.h dbxelf.h pa/som.h \ ++ pa/pa-hpux.h pa/pa-hpux10.h" ++ extra_options="${extra_options} pa/pa-hpux.opt" ++ case ${target} in ++ *-*-hpux10.[1-9]*) ++ tm_file="${tm_file} pa/pa-hpux1010.h" ++ extra_options="${extra_options} pa/pa-hpux1010.opt" ++ ;; ++ esac ++ tmake_file="pa/t-pa-hpux10 pa/t-pa-hpux pa/t-hpux-shlib" ++ case ${enable_threads} in ++ "") ++ if test x$have_pthread_h = xyes ; then ++ tmake_file="${tmake_file} pa/t-dce-thr" ++ fi ++ ;; ++ yes | dce) ++ tmake_file="${tmake_file} pa/t-dce-thr" ++ ;; ++ esac ++ # Set the libgcc version number ++ if test x$sjlj = x1; then ++ tmake_file="$tmake_file pa/t-slibgcc-sjlj-ver" ++ else ++ tmake_file="$tmake_file pa/t-slibgcc-dwarf-ver" ++ fi ++ use_collect2=yes ++ gas=yes ++ ;; ++hppa*64*-*-hpux11*) ++ target_cpu_default="MASK_PA_11|MASK_PA_20" ++ if test x$gnu_ld = xyes ++ then ++ target_cpu_default="${target_cpu_default}|MASK_GNU_LD" ++ fi ++ tm_file="pa/pa64-start.h ${tm_file} dbxelf.h elfos.h \ ++ pa/pa64-regs.h pa/pa-hpux.h pa/pa-hpux1010.h \ ++ pa/pa-hpux11.h" ++ case ${target} in ++ *-*-hpux11.[1-9]*) ++ tm_file="${tm_file} pa/pa-hpux1111.h pa/pa-64.h pa/pa64-hpux.h" ++ extra_options="${extra_options} pa/pa-hpux1111.opt" ++ ;; ++ *) ++ tm_file="${tm_file} pa/pa-64.h pa/pa64-hpux.h" ++ ;; ++ esac ++ extra_options="${extra_options} pa/pa-hpux.opt \ ++ pa/pa-hpux1010.opt pa/pa64-hpux.opt" ++ need_64bit_hwint=yes ++ tmake_file="pa/t-pa64 pa/t-pa-hpux pa/t-hpux-shlib" ++ # Set the libgcc version number ++ if test x$sjlj = x1; then ++ tmake_file="$tmake_file pa/t-slibgcc-sjlj-ver" ++ else ++ tmake_file="$tmake_file pa/t-slibgcc-dwarf-ver" ++ fi ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o crtbeginT.o \ ++ libgcc_stub.a" ++ case x${enable_threads} in ++ x | xyes | xposix ) ++ thread_file=posix ++ ;; ++ esac ++ gas=yes ++ ;; ++hppa[12]*-*-hpux11*) ++ case ${target} in ++ hppa1.1-*-* | hppa2*-*-*) ++ target_cpu_default="MASK_PA_11" ++ ;; ++ esac ++ tm_file="${tm_file} pa/pa32-regs.h dbxelf.h pa/som.h \ ++ pa/pa-hpux.h pa/pa-hpux1010.h pa/pa-hpux11.h" ++ extra_options="${extra_options} pa/pa-hpux.opt pa/pa-hpux1010.opt" ++ case ${target} in ++ *-*-hpux11.[1-9]*) ++ tm_file="${tm_file} pa/pa-hpux1111.h" ++ extra_options="${extra_options} pa/pa-hpux1111.opt" ++ ;; ++ esac ++ tmake_file="pa/t-pa-hpux11 pa/t-pa-hpux pa/t-hpux-shlib" ++ # Set the libgcc version number ++ if test x$sjlj = x1; then ++ tmake_file="$tmake_file pa/t-slibgcc-sjlj-ver" ++ else ++ tmake_file="$tmake_file pa/t-slibgcc-dwarf-ver" ++ fi ++ extra_parts="libgcc_stub.a" ++ case x${enable_threads} in ++ x | xyes | xposix ) ++ thread_file=posix ++ ;; ++ esac ++ use_collect2=yes ++ gas=yes ++ ;; ++i[34567]86-*-darwin*) ++ need_64bit_hwint=yes ++ ++ # This is so that '.../configure && make' doesn't fail due to ++ # config.guess deciding that the configuration is i386-*-darwin* and ++ # then this file using that to set --with-cpu=i386 which has no -m64 ++ # support. ++ with_cpu=${with_cpu:-generic} ++ tmake_file="${tmake_file} i386/t-crtpc i386/t-crtfm" ++ ;; ++x86_64-*-darwin*) ++ with_cpu=${with_cpu:-generic} ++ tmake_file="${tmake_file} t-darwin ${cpu_type}/t-darwin64 t-slibgcc-darwin i386/t-crtpc i386/t-crtfm" ++ tm_file="${tm_file} ${cpu_type}/darwin64.h" ++ ;; ++i[34567]86-*-elf*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h i386/i386elf.h" ++ tmake_file="${tmake_file} i386/t-i386elf t-svr4" ++ ;; ++x86_64-*-elf*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h i386/i386elf.h i386/x86-64.h" ++ tmake_file="${tmake_file} i386/t-i386elf t-svr4" ++ ;; ++i[34567]86-*-aout*) ++ tm_file="${tm_file} i386/unix.h i386/bsd.h i386/gas.h i386/gstabs.h i386/i386-aout.h" ++ ;; ++i[34567]86-*-freebsd*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h ${fbsd_tm_file} i386/freebsd.h" ++ ;; ++x86_64-*-freebsd*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h ${fbsd_tm_file} i386/x86-64.h i386/freebsd.h i386/freebsd64.h" ++ tmake_file="${tmake_file} i386/t-crtstuff" ++ ;; ++i[34567]86-*-netbsdelf*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h netbsd.h netbsd-elf.h i386/netbsd-elf.h" ++ ;; ++i[34567]86-*-netbsd*) ++ tm_file="${tm_file} i386/unix.h i386/bsd.h i386/gas.h i386/gstabs.h netbsd.h netbsd-aout.h i386/netbsd.h" ++ tmake_file="${tmake_file} t-netbsd" ++ extra_parts="" ++ use_collect2=yes ++ ;; ++x86_64-*-netbsd*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h netbsd.h netbsd-elf.h i386/x86-64.h i386/netbsd64.h" ++ tmake_file="${tmake_file} i386/t-crtstuff" ++ ;; ++i[34567]86-*-openbsd2.*|i[34567]86-*openbsd3.[0123]) ++ tm_file="i386/i386.h i386/unix.h i386/bsd.h i386/gas.h i386/gstabs.h openbsd-oldgas.h openbsd.h i386/openbsd.h" ++ # needed to unconfuse gdb ++ tmake_file="${tmake_file} t-libc-ok t-openbsd i386/t-openbsd" ++ # we need collect2 until our bug is fixed... ++ use_collect2=yes ++ ;; ++i[34567]86-*-openbsd*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h" ++ tm_file="${tm_file} openbsd.h i386/openbsdelf.h" ++ gas=yes ++ gnu_ld=yes ++ ;; ++i[34567]86-*-coff*) ++ tm_file="${tm_file} i386/unix.h i386/bsd.h i386/gas.h dbxcoff.h i386/i386-coff.h" ++ ;; ++i[34567]86-*-linux* | i[34567]86-*-kfreebsd*-gnu | i[34567]86-*-knetbsd*-gnu | i[34567]86-*-gnu* | i[34567]86-*-kopensolaris*-gnu) ++ # Intel 80386's running GNU/* ++ # with ELF format using glibc 2 ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h svr4.h linux.h" ++ case ${target} in ++ i[34567]86-*-linux*) ++ if test x$enable_targets = xall; then ++ tm_file="${tm_file} i386/x86-64.h i386/linux64.h" ++ tm_defines="${tm_defines} TARGET_BI_ARCH=1" ++ tmake_file="${tmake_file} i386/t-linux64" ++ need_64bit_hwint=yes ++ case X"${with_cpu}" in ++ Xgeneric|Xcore2|Xnocona|Xx86-64|Xamdfam10|Xbarcelona|Xk8|Xopteron|Xathlon64|Xathlon-fx|Xathlon64-sse3|Xk8-sse3|Xopteron-sse3) ++ ;; ++ X) ++ if test x$with_cpu_64 = x; then ++ with_cpu_64=generic ++ fi ++ ;; ++ *) ++ echo "Unsupported CPU used in --with-cpu=$with_cpu, supported values:" 1>&2 ++ echo "generic core2 nocona x86-64 amdfam10 barcelona k8 opteron athlon64 athlon-fx athlon64-sse3 k8-sse3 opteron-sse3" 1>&2 ++ exit 1 ++ ;; ++ esac ++ else ++ tm_file="${tm_file} i386/linux.h" ++ fi ++ ;; ++ i[34567]86-*-knetbsd*-gnu) tm_file="${tm_file} i386/linux.h knetbsd-gnu.h i386/knetbsd-gnu.h" ;; ++ i[34567]86-*-kfreebsd*-gnu) tm_file="${tm_file} i386/linux.h kfreebsd-gnu.h i386/kfreebsd-gnu.h" ;; ++ i[34567]86-*-kopensolaris*-gnu) tm_file="${tm_file} i386/linux.h kopensolaris-gnu.h i386/kopensolaris-gnu.h" ;; ++ i[34567]86-*-gnu*) tm_file="$tm_file i386/linux.h gnu.h i386/gnu.h";; ++ esac ++ tmake_file="${tmake_file} i386/t-crtstuff i386/t-crtpc i386/t-crtfm t-dfprules" ++ ;; ++x86_64-*-linux* | x86_64-*-kfreebsd*-gnu | x86_64-*-knetbsd*-gnu) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h svr4.h linux.h \ ++ i386/x86-64.h i386/linux64.h" ++ case ${target} in ++ x86_64-*-kfreebsd*-gnu) tm_file="${tm_file} kfreebsd-gnu.h" ;; ++ x86_64-*-knetbsd*-gnu) tm_file="${tm_file} knetbsd-gnu.h" ;; ++ esac ++ tmake_file="${tmake_file} i386/t-linux64 i386/t-crtstuff i386/t-crtpc i386/t-crtfm t-dfprules" ++ ;; ++i[34567]86-pc-msdosdjgpp*) ++ xm_file=i386/xm-djgpp.h ++ tm_file="dbxcoff.h ${tm_file} i386/unix.h i386/bsd.h i386/gas.h i386/djgpp.h" ++ tmake_file="${tmake_file} i386/t-djgpp" ++ extra_options="${extra_options} i386/djgpp.opt" ++ gnu_ld=yes ++ gas=yes ++ ;; ++i[34567]86-*-lynxos*) ++ xm_defines=POSIX ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h i386/lynx.h lynx.h" ++ tmake_file="${tmake_file} i386/t-crtstuff t-lynx" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ extra_options="${extra_options} lynx.opt" ++ thread_file=lynx ++ gnu_ld=yes ++ gas=yes ++ ;; ++i[3456x]86-*-netware*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h svr4.h tm-dwarf2.h i386/netware.h" ++ tmake_file="${tmake_file} i386/t-netware" ++ extra_objs=netware.o ++ case /${with_ld} in ++ */nwld) ++ extra_objs="$extra_objs nwld.o" ++ tm_file="${tm_file} i386/nwld.h" ++ tmake_file="${tmake_file} i386/t-nwld" ++ extra_parts="crt0.o libgcc.def libc.def libcpre.def posixpre.def" ++ ;; ++ esac ++ case x${enable_threads} in ++ x | xyes | xposix) thread_file='posix';; ++ xnks) thread_file='nks';; ++ xno) ;; ++ *) echo 'Unknown thread configuration for NetWare' >&2; exit 1;; ++ esac ++ ;; ++i[34567]86-*-nto-qnx*) ++ tm_file="${tm_file} i386/att.h dbxelf.h tm-dwarf2.h elfos.h svr4.h i386/unix.h i386/nto.h" ++ tmake_file="${tmake_file} i386/t-nto" ++ gnu_ld=yes ++ gas=yes ++ ;; ++i[34567]86-*-rtems*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h i386/i386elf.h i386/rtemself.h rtems.h" ++ extra_parts="crtbegin.o crtend.o crti.o crtn.o" ++ tmake_file="${tmake_file} i386/t-rtems-i386 i386/t-crtstuff t-rtems" ++ ;; ++i[34567]86-*-solaris2*) ++ tm_file="${tm_file} i386/unix.h i386/att.h dbxelf.h elfos.h svr4.h i386/sysv4.h sol2.h" ++ case ${target} in ++ *-*-solaris2.1[0-9]*) ++ tm_file="${tm_file} sol2-10.h" ++ ;; ++ esac ++ tm_file="${tm_file} i386/sol2.h" ++ if test x$gnu_ld = xyes; then ++ tm_file="${tm_file} sol2-gld.h" ++ fi ++ if test x$gas = xyes; then ++ tm_file="${tm_file} i386/sol2-gas.h" ++ fi ++ tmake_file="${tmake_file} t-sol2 t-svr4" ++ c_target_objs="${c_target_objs} sol2-c.o" ++ cxx_target_objs="${cxx_target_objs} sol2-c.o" ++ extra_objs="sol2.o" ++ tm_p_file="${tm_p_file} sol2-protos.h" ++ if test x$gnu_ld = xyes; then ++ tmake_file="$tmake_file t-slibgcc-elf-ver" ++ tm_defines="${tm_defines} TARGET_GNU_LD=1" ++ else ++ tmake_file="$tmake_file t-slibgcc-sld" ++ fi ++ if test x$gas = xyes; then ++ tm_file="usegas.h ${tm_file}" ++ fi ++ tm_file="$tm_file tm-dwarf2.h" ++ case ${target} in ++ *-*-solaris2.1[0-9]*) ++ tm_file="${tm_file} i386/x86-64.h i386/sol2-10.h" ++ tm_defines="${tm_defines} TARGET_BI_ARCH=1" ++ tmake_file="$tmake_file i386/t-sol2-10" ++ # i386/t-crtstuff only affects libgcc. Its inclusion ++ # depends on a runtime test and is thus performed in ++ # libgcc/configure.ac instead. ++ need_64bit_hwint=yes ++ case X"${with_cpu}" in ++ Xgeneric|Xcore2|Xnocona|Xx86-64|Xamdfam10|Xbarcelona|Xk8|Xopteron|Xathlon64|Xathlon-fx|Xathlon64-sse3|Xk8-sse3|Xopteron-sse3) ++ ;; ++ X) ++ if test x$with_cpu_64 = x; then ++ with_cpu_64=generic ++ fi ++ ;; ++ *) ++ echo "Unsupported CPU used in --with-cpu=$with_cpu, supported values:" 1>&2 ++ echo "generic core2 nocona x86-64 amdfam10 barcelona k8 opteron athlon64 athlon-fx athlon64-sse3 k8-sse3 opteron-sse3" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ esac ++ case ${enable_threads}:${have_pthread_h}:${have_thread_h} in ++ "":yes:* | yes:yes:* ) ++ thread_file=posix ++ ;; ++ "":*:yes | yes:*:yes ) ++ thread_file=solaris ++ ;; ++ esac ++ ;; ++i[4567]86-wrs-vxworks|i[4567]86-wrs-vxworksae) ++ tm_file="${tm_file} i386/unix.h i386/att.h elfos.h svr4.h vx-common.h" ++ case ${target} in ++ *-vxworksae*) ++ tm_file="${tm_file} vxworksae.h i386/vx-common.h i386/vxworksae.h" ++ tmake_file="${tmake_file} i386/t-vxworks i386/t-vxworksae" ++ ;; ++ *) ++ tm_file="${tm_file} vxworks.h i386/vx-common.h i386/vxworks.h" ++ tmake_file="${tmake_file} i386/t-vxworks" ++ ;; ++ esac ++ ;; ++i[34567]86-*-pe | i[34567]86-*-cygwin*) ++ tm_file="${tm_file} i386/unix.h i386/bsd.h i386/gas.h dbxcoff.h i386/cygming.h i386/cygwin.h" ++ xm_file=i386/xm-cygwin.h ++ # This has to match the logic for DWARF2_UNWIND_INFO in gcc/config/i386/cygming.h ++ if test x$sjlj = x0; then ++ tmake_eh_file="i386/t-dw2-eh" ++ else ++ tmake_eh_file="i386/t-sjlj-eh" ++ fi ++ tmake_file="${tmake_file} ${tmake_eh_file} i386/t-cygming i386/t-cygwin" ++ target_gtfiles="\$(srcdir)/config/i386/winnt.c" ++ extra_options="${extra_options} i386/cygming.opt" ++ extra_objs="winnt.o winnt-stubs.o" ++ c_target_objs="${c_target_objs} cygwin2.o msformat-c.o" ++ cxx_target_objs="${cxx_target_objs} cygwin2.o winnt-cxx.o msformat-c.o" ++ extra_gcc_objs=cygwin1.o ++ if test x$enable_threads = xyes; then ++ thread_file='posix' ++ fi ++ ;; ++i[34567]86-*-mingw* | x86_64-*-mingw*) ++ tm_file="${tm_file} i386/unix.h i386/bsd.h i386/gas.h dbxcoff.h i386/cygming.h i386/mingw32.h" ++ xm_file=i386/xm-mingw32.h ++ case ${target} in ++ x86_64-*-*) ++ need_64bit_hwint=yes ++ ;; ++ *) ++ ;; ++ esac ++ # This has to match the logic for DWARF2_UNWIND_INFO in gcc/config/i386/cygming.h ++ if test x$sjlj = x0; then ++ tmake_eh_file="i386/t-dw2-eh" ++ else ++ tmake_eh_file="i386/t-sjlj-eh" ++ fi ++ tmake_file="${tmake_file} ${tmake_eh_file} i386/t-cygming i386/t-mingw32" ++ target_gtfiles="\$(srcdir)/config/i386/winnt.c" ++ extra_options="${extra_options} i386/cygming.opt i386/mingw.opt" ++ extra_objs="winnt.o winnt-stubs.o" ++ c_target_objs="${c_target_objs} msformat-c.o" ++ cxx_target_objs="${cxx_target_objs} winnt-cxx.o msformat-c.o" ++ default_use_cxa_atexit=yes ++ case ${enable_threads} in ++ "" | yes | win32) ++ thread_file='win32' ++ tmake_file="${tmake_file} i386/t-gthr-win32" ++ ;; ++ esac ++ case ${target} in ++ x86_64-*-mingw*) ++ tmake_file="${tmake_file} i386/t-crtfm" ++ ;; ++ *) ++ ;; ++ esac ++ case ${target} in ++ *mingw32crt*) ++ tm_file="${tm_file} i386/crtdll.h" ++ ;; ++ *mingw32msv* | *mingw*) ++ ;; ++ esac ++ ;; ++i[34567]86-*-interix3*) ++ tm_file="${tm_file} i386/unix.h i386/bsd.h i386/gas.h i386/i386-interix.h i386/i386-interix3.h interix.h interix3.h" ++ tmake_file="${tmake_file} i386/t-interix" ++ extra_objs=winnt.o ++ target_gtfiles="\$(srcdir)/config/i386/winnt.c" ++ if test x$enable_threads = xyes ; then ++ thread_file='posix' ++ fi ++ if test x$stabs = xyes ; then ++ tm_file="${tm_file} dbxcoff.h" ++ fi ++ ;; ++ia64*-*-elf*) ++ tm_file="${tm_file} dbxelf.h elfos.h ia64/sysv4.h ia64/elf.h" ++ tmake_file="ia64/t-ia64" ++ target_cpu_default="0" ++ if test x$gas = xyes ++ then ++ target_cpu_default="${target_cpu_default}|MASK_GNU_AS" ++ fi ++ if test x$gnu_ld = xyes ++ then ++ target_cpu_default="${target_cpu_default}|MASK_GNU_LD" ++ fi ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o crtfastmath.o" ++ ;; ++ia64*-*-freebsd*) ++ tm_file="${tm_file} dbxelf.h elfos.h ${fbsd_tm_file} ia64/sysv4.h ia64/freebsd.h" ++ target_cpu_default="MASK_GNU_AS|MASK_GNU_LD" ++ tmake_file="${tmake_file} ia64/t-ia64" ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o crtfastmath.o" ++ ;; ++ia64*-*-linux*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h linux.h ia64/sysv4.h ia64/linux.h" ++ tmake_file="${tmake_file} ia64/t-ia64 t-libunwind ia64/t-glibc" ++ if test x$with_system_libunwind != xyes ; then ++ tmake_file="${tmake_file} t-libunwind-elf ia64/t-glibc-libunwind" ++ fi ++ target_cpu_default="MASK_GNU_AS|MASK_GNU_LD" ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o crtfastmath.o" ++ ;; ++ia64*-*-hpux*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h ia64/sysv4.h ia64/hpux.h" ++ tmake_file="ia64/t-ia64 ia64/t-hpux" ++ target_cpu_default="MASK_GNU_AS" ++ case x$enable_threads in ++ x | xyes | xposix ) ++ thread_file=posix ++ ;; ++ esac ++ use_collect2=no ++ c_target_objs="ia64-c.o" ++ cxx_target_objs="ia64-c.o" ++ extra_options="${extra_options} ia64/ilp32.opt" ++ ;; ++iq2000*-*-elf*) ++ tm_file="svr4.h elfos.h iq2000/iq2000.h" ++ tmake_file=iq2000/t-iq2000 ++ out_file=iq2000/iq2000.c ++ md_file=iq2000/iq2000.md ++ ;; ++m32r-*-elf*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file}" ++ extra_parts="crtinit.o crtfini.o" ++ ;; ++m32rle-*-elf*) ++ tm_file="dbxelf.h elfos.h svr4.h m32r/little.h ${tm_file}" ++ extra_parts="crtinit.o crtfini.o m32rx/crtinit.o m32rx/crtfini.o" ++ ;; ++m32r-*-rtems*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file} m32r/rtems.h rtems.h" ++ tmake_file="m32r/t-m32r t-rtems" ++ extra_parts="crtinit.o crtfini.o" ++ ;; ++m32r-*-linux*) ++ tm_file="dbxelf.h elfos.h svr4.h linux.h ${tm_file} m32r/linux.h" ++ # We override the tmake_file for linux -- why? ++ tmake_file="t-slibgcc-elf-ver m32r/t-linux" ++ gnu_ld=yes ++ if test x$enable_threads = xyes; then ++ thread_file='posix' ++ fi ++ ;; ++m32rle-*-linux*) ++ tm_file="dbxelf.h elfos.h svr4.h linux.h m32r/little.h ${tm_file} m32r/linux.h" ++ # We override the tmake_file for linux -- why? ++ tmake_file="t-slibgcc-elf-ver m32r/t-linux" ++ gnu_ld=yes ++ if test x$enable_threads = xyes; then ++ thread_file='posix' ++ fi ++ ;; ++# m68hc11 and m68hc12 share the same machine description. ++m68hc11-*-*|m6811-*-*) ++ tm_file="dbxelf.h elfos.h usegas.h m68hc11/m68hc11.h" ++ tm_p_file="m68hc11/m68hc11-protos.h" ++ md_file="m68hc11/m68hc11.md" ++ out_file="m68hc11/m68hc11.c" ++ tmake_file="m68hc11/t-m68hc11" ++ ;; ++m68hc12-*-*|m6812-*-*) ++ tm_file="m68hc11/m68hc12.h dbxelf.h elfos.h usegas.h m68hc11/m68hc11.h" ++ tm_p_file="m68hc11/m68hc11-protos.h" ++ md_file="m68hc11/m68hc11.md" ++ out_file="m68hc11/m68hc11.c" ++ tmake_file="m68hc11/t-m68hc11" ++ extra_options="${extra_options} m68hc11/m68hc11.opt" ++ ;; ++m68k-*-aout*) ++ default_m68k_cpu=68020 ++ default_cf_cpu=5206 ++ tmake_file="m68k/t-floatlib m68k/t-m68kbare m68k/t-mlibs" ++ tm_file="${tm_file} m68k/m68k-none.h m68k/m68kemb.h m68k/m68k-aout.h libgloss.h" ++ ;; ++m68k-*-coff*) ++ default_m68k_cpu=68020 ++ default_cf_cpu=5206 ++ tmake_file="m68k/t-floatlib m68k/t-m68kbare m68k/t-mlibs" ++ tm_defines="${tm_defines} MOTOROLA=1" ++ tm_file="${tm_file} m68k/m68k-none.h m68k/m68kemb.h dbxcoff.h m68k/coff.h dbx.h" ++ ;; ++m68k-*-elf* | fido-*-elf*) ++ case ${target} in ++ fido-*-elf*) ++ # Check that $with_cpu makes sense. ++ case $with_cpu in ++ "" | "fidoa") ++ ;; ++ *) ++ echo "Cannot accept --with-cpu=$with_cpu" ++ exit 1 ++ ;; ++ esac ++ with_cpu=fidoa ++ ;; ++ *) ++ default_m68k_cpu=68020 ++ default_cf_cpu=5206 ++ ;; ++ esac ++ tm_file="${tm_file} m68k/m68k-none.h m68k/m68kelf.h dbxelf.h elfos.h m68k/m68kemb.h m68k/m68020-elf.h" ++ tm_defines="${tm_defines} MOTOROLA=1" ++ tmake_file="m68k/t-floatlib m68k/t-m68kbare m68k/t-m68kelf" ++ # Add multilibs for targets other than fido. ++ case ${target} in ++ fido-*-elf*) ++ ;; ++ *) ++ tmake_file="$tmake_file m68k/t-mlibs" ++ ;; ++ esac ++ extra_parts="crtbegin.o crtend.o" ++ ;; ++m68k*-*-netbsdelf*) ++ default_m68k_cpu=68020 ++ default_cf_cpu=5475 ++ tm_file="${tm_file} dbxelf.h elfos.h netbsd.h netbsd-elf.h m68k/netbsd-elf.h" ++ tm_defines="${tm_defines} MOTOROLA=1" ++ ;; ++m68k*-*-openbsd*) ++ default_m68k_cpu=68020 ++ default_cf_cpu=5475 ++ # needed to unconfuse gdb ++ tm_defines="${tm_defines} OBSD_OLD_GAS" ++ tm_file="${tm_file} openbsd.h m68k/openbsd.h" ++ tmake_file="t-libc-ok t-openbsd m68k/t-openbsd" ++ # we need collect2 until our bug is fixed... ++ use_collect2=yes ++ ;; ++m68k-*-uclinuxoldabi*) # Motorola m68k/ColdFire running uClinux ++ # with uClibc, using the original ++ # m68k-elf-based ABI ++ default_m68k_cpu=68020 ++ default_cf_cpu=5206 ++ tm_file="${tm_file} m68k/m68k-none.h m68k/m68kelf.h dbxelf.h elfos.h m68k/uclinux-oldabi.h" ++ tm_defines="${tm_defines} MOTOROLA=1" ++ tmake_file="m68k/t-floatlib m68k/t-uclinux" ++ ;; ++m68k-*-uclinux*) # Motorola m68k/ColdFire running uClinux ++ # with uClibc, using the new GNU/Linux-style ++ # ABI. ++ default_m68k_cpu=68020 ++ default_cf_cpu=5206 ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h linux.h flat.h m68k/linux.h m68k/uclinux.h ./sysroot-suffix.h" ++ tm_defines="${tm_defines} MOTOROLA=1 UCLIBC_DEFAULT=1" ++ extra_options="${extra_options} linux.opt" ++ tmake_file="m68k/t-floatlib m68k/t-uclinux m68k/t-mlibs" ++ ;; ++m68k-*-linux*) # Motorola m68k's running GNU/Linux ++ # with ELF format using glibc 2 ++ # aka the GNU/Linux C library 6. ++ default_m68k_cpu=68020 ++ default_cf_cpu=5475 ++ with_arch=${with_arch:-m68k} ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h linux.h m68k/linux.h ./sysroot-suffix.h" ++ extra_options="${extra_options} m68k/ieee.opt" ++ tm_defines="${tm_defines} MOTOROLA=1" ++ tmake_file="${tmake_file} m68k/t-floatlib m68k/t-linux m68k/t-mlibs" ++ # if not configured with --enable-sjlj-exceptions, bump the ++ # libgcc version number ++ if test x$sjlj != x1; then ++ tmake_file="$tmake_file m68k/t-slibgcc-elf-ver" ++ fi ++ ;; ++m68k-*-rtems*) ++ default_m68k_cpu=68020 ++ default_cf_cpu=5206 ++ tmake_file="m68k/t-floatlib m68k/t-m68kbare m68k/t-crtstuff t-rtems m68k/t-rtems m68k/t-mlibs" ++ tm_file="${tm_file} m68k/m68k-none.h m68k/m68kelf.h dbxelf.h elfos.h m68k/m68kemb.h m68k/m68020-elf.h m68k/rtemself.h rtems.h" ++ tm_defines="${tm_defines} MOTOROLA=1" ++ extra_parts="crtbegin.o crtend.o" ++ ;; ++mcore-*-elf) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file} mcore/mcore-elf.h" ++ tmake_file=mcore/t-mcore ++ inhibit_libc=true ++ ;; ++mcore-*-pe*) ++ tm_file="svr3.h dbxcoff.h ${tm_file} mcore/mcore-pe.h" ++ tmake_file=mcore/t-mcore-pe ++ inhibit_libc=true ++ ;; ++mips-sgi-irix[56]*) ++ tm_file="elfos.h ${tm_file} mips/iris.h" ++ tmake_file="mips/t-iris mips/t-slibgcc-irix" ++ target_cpu_default="MASK_ABICALLS" ++ case ${target} in ++ *-*-irix5*) ++ tm_file="${tm_file} mips/iris5.h" ++ ;; ++ ++ *-*-irix6*) ++ tm_file="${tm_file} mips/iris6.h" ++ tmake_file="${tmake_file} mips/t-iris6" ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=3 MIPS_ABI_DEFAULT=ABI_N32" ++ ;; ++ esac ++ if test "x$stabs" = xyes ++ then ++ tm_file="${tm_file} dbx.h mips/dbxmdebug.h" ++ fi ++ if test "x$gnu_ld" = xyes ++ then ++ tm_defines="${tm_defines} IRIX_USING_GNU_LD" ++ fi ++ case ${enable_threads}:${have_pthread_h} in ++ "":yes | yes:yes ) thread_file=posix ;; ++ esac ++ ;; ++mips*-*-netbsd*) # NetBSD/mips, either endian. ++ target_cpu_default="MASK_ABICALLS" ++ tm_file="elfos.h ${tm_file} mips/elf.h netbsd.h netbsd-elf.h mips/netbsd.h" ++ ;; ++mips64*-*-linux* | mipsisa64*-*-linux*) ++ tm_file="dbxelf.h elfos.h svr4.h linux.h ${tm_file} mips/linux.h mips/linux64.h" ++ tmake_file="${tmake_file} mips/t-linux64 mips/t-libgcc-mips16" ++ tm_defines="${tm_defines} MIPS_ABI_DEFAULT=ABI_N32" ++ case ${target} in ++ mips64el-st-linux-gnu) ++ tm_file="${tm_file} mips/st.h" ++ tmake_file="${tmake_file} mips/t-st" ++ ;; ++ mips64octeon*-*-linux*) ++ tm_defines="${tm_defines} MIPS_CPU_STRING_DEFAULT=\\\"octeon\\\"" ++ target_cpu_default=MASK_SOFT_FLOAT_ABI ++ ;; ++ mipsisa64r2*-*-linux*) ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=65" ++ ;; ++ esac ++ gnu_ld=yes ++ gas=yes ++ test x$with_llsc != x || with_llsc=yes ++ ;; ++mips*-*-linux*) # Linux MIPS, either endian. ++ tm_file="dbxelf.h elfos.h svr4.h linux.h ${tm_file} mips/linux.h" ++ tmake_file="${tmake_file} mips/t-libgcc-mips16" ++ case ${target} in ++ mipsisa32r2*) ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=33" ++ ;; ++ mipsisa32*) ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=32" ++ esac ++ test x$with_llsc != x || with_llsc=yes ++ ;; ++mips*-*-openbsd*) ++ tm_defines="${tm_defines} OBSD_HAS_DECLARE_FUNCTION_NAME OBSD_HAS_DECLARE_OBJECT OBSD_HAS_CORRECT_SPECS" ++ target_cpu_default="MASK_ABICALLS" ++ tm_file="mips/mips.h openbsd.h mips/openbsd.h mips/sdb.h" ++ case ${target} in ++ mips*el-*-openbsd*) ++ tm_defines="${tm_defines} TARGET_ENDIAN_DEFAULT=0";; ++ *) tm_defines="${tm_defines} TARGET_ENDIAN_DEFAULT=MASK_BIG_ENDIAN";; ++ esac ++ ;; ++mips*-sde-elf*) ++ tm_file="elfos.h ${tm_file} mips/elf.h mips/sde.h" ++ tmake_file="mips/t-sde mips/t-libgcc-mips16" ++ case "${with_newlib}" in ++ yes) ++ # newlib / libgloss. ++ ;; ++ *) ++ # MIPS toolkit libraries. ++ tm_file="$tm_file mips/sdemtk.h" ++ tmake_file="$tmake_file mips/t-sdemtk" ++ extra_options="$extra_options mips/sdemtk.opt" ++ case ${enable_threads} in ++ "" | yes | mipssde) ++ thread_file='mipssde' ++ ;; ++ esac ++ ;; ++ esac ++ case ${target} in ++ mipsisa32r2*) ++ tm_defines="MIPS_ISA_DEFAULT=33 MIPS_ABI_DEFAULT=ABI_32" ++ ;; ++ mipsisa32*) ++ tm_defines="MIPS_ISA_DEFAULT=32 MIPS_ABI_DEFAULT=ABI_32" ++ ;; ++ mipsisa64r2*) ++ tm_defines="MIPS_ISA_DEFAULT=65 MIPS_ABI_DEFAULT=ABI_N32" ++ ;; ++ mipsisa64*) ++ tm_defines="MIPS_ISA_DEFAULT=64 MIPS_ABI_DEFAULT=ABI_N32" ++ ;; ++ esac ++ ;; ++mipsisa32-*-elf* | mipsisa32el-*-elf* | \ ++mipsisa32r2-*-elf* | mipsisa32r2el-*-elf* | \ ++mipsisa64-*-elf* | mipsisa64el-*-elf* | \ ++mipsisa64r2-*-elf* | mipsisa64r2el-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/elf.h" ++ tmake_file="mips/t-isa3264 mips/t-libgcc-mips16" ++ case ${target} in ++ mipsisa32r2*) ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=33" ++ ;; ++ mipsisa32*) ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=32" ++ ;; ++ mipsisa64r2*) ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=65" ++ ;; ++ mipsisa64*) ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=64" ++ ;; ++ esac ++ case ${target} in ++ mipsisa32*-*-elfoabi*) ++ tm_defines="${tm_defines} MIPS_ABI_DEFAULT=ABI_32" ++ tm_file="${tm_file} mips/elfoabi.h" ++ ;; ++ mipsisa64*-*-elfoabi*) ++ tm_defines="${tm_defines} MIPS_ABI_DEFAULT=ABI_O64" ++ tm_file="${tm_file} mips/elfoabi.h" ++ ;; ++ *-*-elf*) ++ tm_defines="${tm_defines} MIPS_ABI_DEFAULT=ABI_EABI" ++ ;; ++ esac ++ ;; ++mipsisa64sr71k-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/elf.h" ++ tmake_file=mips/t-sr71k ++ target_cpu_default="MASK_64BIT|MASK_FLOAT64" ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=64 MIPS_CPU_STRING_DEFAULT=\\\"sr71000\\\" MIPS_ABI_DEFAULT=ABI_EABI" ++ ;; ++mipsisa64sb1-*-elf* | mipsisa64sb1el-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/elf.h" ++ tmake_file="mips/t-elf mips/t-libgcc-mips16 mips/t-sb1" ++ target_cpu_default="MASK_64BIT|MASK_FLOAT64" ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=64 MIPS_CPU_STRING_DEFAULT=\\\"sb1\\\" MIPS_ABI_DEFAULT=ABI_O64" ++ ;; ++mips-*-elf* | mipsel-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/elf.h" ++ tmake_file="mips/t-elf mips/t-libgcc-mips16" ++ ;; ++mips64-*-elf* | mips64el-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/elf.h" ++ tmake_file="mips/t-elf mips/t-libgcc-mips16" ++ target_cpu_default="MASK_64BIT|MASK_FLOAT64" ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=3 MIPS_ABI_DEFAULT=ABI_O64" ++ ;; ++mips64vr-*-elf* | mips64vrel-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/vr.h mips/elf.h" ++ tmake_file=mips/t-vr ++ ;; ++mips64orion-*-elf* | mips64orionel-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/elforion.h mips/elf.h" ++ tmake_file="mips/t-elf mips/t-libgcc-mips16" ++ target_cpu_default="MASK_64BIT|MASK_FLOAT64" ++ tm_defines="${tm_defines} MIPS_ISA_DEFAULT=3 MIPS_ABI_DEFAULT=ABI_O64" ++ ;; ++mips*-*-rtems*) ++ tm_file="elfos.h ${tm_file} mips/elf.h mips/rtems.h rtems.h" ++ tmake_file="mips/t-elf mips/t-libgcc-mips16 t-rtems mips/t-rtems" ++ ;; ++mips-wrs-vxworks) ++ tm_file="elfos.h ${tm_file} svr4.h mips/elf.h vx-common.h vxworks.h mips/vxworks.h" ++ tmake_file="${tmake_file} mips/t-vxworks" ++ ;; ++mipstx39-*-elf* | mipstx39el-*-elf*) ++ tm_file="elfos.h ${tm_file} mips/r3900.h mips/elf.h" ++ tmake_file="mips/t-r3900 mips/t-libgcc-mips16" ++ ;; ++mmix-knuth-mmixware) ++ need_64bit_hwint=yes ++ ;; ++mn10300-*-*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file}" ++ if test x$stabs = xyes ++ then ++ tm_file="${tm_file} dbx.h" ++ fi ++ use_collect2=no ++ ;; ++pdp11-*-bsd) ++ tm_file="${tm_file} pdp11/2bsd.h" ++ use_fixproto=yes ++ ;; ++pdp11-*-*) ++ ;; ++picochip-*) ++ # Nothing special ++ ;; ++# port not yet contributed ++#powerpc-*-openbsd*) ++# tmake_file="${tmake_file} rs6000/t-fprules rs6000/t-fprules-fpbit " ++# extra_headers= ++# ;; ++powerpc64-*-linux*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h" ++ test x$with_cpu != x || cpu_is_64bit=yes ++ test x$cpu_is_64bit != xyes || tm_file="${tm_file} rs6000/default64.h" ++ tm_file="rs6000/biarch64.h ${tm_file} rs6000/linux64.h" ++ if test x${enable_secureplt} = xyes; then ++ tm_file="rs6000/secureplt.h ${tm_file}" ++ fi ++ extra_options="${extra_options} rs6000/sysv4.opt rs6000/linux64.opt" ++ tmake_file="t-dfprules rs6000/t-fprules ${tmake_file} rs6000/t-ppccomm rs6000/t-linux64 rs6000/t-fprules-softfp soft-fp/t-softfp" ++ ;; ++powerpc64-*-gnu*) ++ tm_file="${cpu_type}/${cpu_type}.h elfos.h svr4.h freebsd-spec.h gnu.h rs6000/sysv4.h rs6000/linux64.h rs6000/gnu.h" ++ extra_options="${extra_options} rs6000/sysv4.opt rs6000/linux64.opt" ++ tmake_file="rs6000/t-fprules t-slibgcc-elf-ver t-gnu rs6000/t-linux64 rs6000/t-fprules-softfp soft-fp/t-softfp" ++ ;; ++powerpc-*-darwin*) ++ extra_options="${extra_options} rs6000/darwin.opt" ++ extra_parts="crt2.o" ++ case ${target} in ++ *-darwin1[0-9]* | *-darwin[8-9]*) ++ tmake_file="${tmake_file} rs6000/t-darwin8" ++ tm_file="${tm_file} rs6000/darwin8.h" ++ ;; ++ *-darwin7*) ++ tm_file="${tm_file} rs6000/darwin7.h" ++ ;; ++ *-darwin[0-6]*) ++ ;; ++ esac ++ extra_headers=altivec.h ++ ;; ++powerpc64-*-darwin*) ++ tm_file="${tm_file} ${cpu_type}/darwin8.h ${cpu_type}/darwin64.h" ++ extra_options="${extra_options} ${cpu_type}/darwin.opt" ++ # We're omitting t-darwin8 to avoid building any multilibs ++ extra_headers=altivec.h ++ ;; ++powerpc*-*-freebsd*) ++ tm_file="${tm_file} dbxelf.h elfos.h ${fbsd_tm_file} rs6000/sysv4.h rs6000/freebsd.h" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ ;; ++powerpc-*-netbsd*) ++ tm_file="${tm_file} dbxelf.h elfos.h netbsd.h netbsd-elf.h freebsd-spec.h rs6000/sysv4.h rs6000/netbsd.h" ++ tmake_file="${tmake_file} rs6000/t-netbsd" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ ;; ++powerpc-*-eabispe*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/e500.h rs6000/eabispe.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-spe rs6000/t-ppccomm" ++ ;; ++powerpc-*-eabisimaltivec*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/e500.h rs6000/eabisim.h rs6000/eabialtivec.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcendian rs6000/t-ppccomm" ++ ;; ++powerpc-*-eabisim*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/e500.h rs6000/eabisim.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ ;; ++powerpc-*-elf*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ ;; ++powerpc-*-eabialtivec*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/e500.h rs6000/eabialtivec.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcendian rs6000/t-ppccomm" ++ ;; ++powerpc-xilinx-eabi*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/singlefp.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ ;; ++powerpc-*-eabi*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/e500.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ ;; ++powerpc-*-rtems*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/e500.h rs6000/rtems.h rtems.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-rtems t-rtems rs6000/t-ppccomm" ++ ;; ++powerpc-*-linux*altivec*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/linux.h rs6000/linuxaltivec.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-softfp soft-fp/t-softfp rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm" ++ ;; ++powerpc-*-linux*spe*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/linux.h rs6000/linuxspe.h rs6000/e500.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="t-dfprules rs6000/t-fprules rs6000/t-fprules-softfp soft-fp/t-softfp rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm" ++ ;; ++powerpc-*-linux*paired*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/linux.h rs6000/750cl.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-softfp soft-fp/t-softfp rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm" ++ ;; ++powerpc-*-linux*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="t-dfprules rs6000/t-fprules rs6000/t-ppcos ${tmake_file} rs6000/t-ppccomm" ++ case ${enable_targets}:${cpu_is_64bit} in ++ *powerpc64* | all:* | *:yes) ++ if test x$cpu_is_64bit = xyes; then ++ tm_file="${tm_file} rs6000/default64.h" ++ fi ++ tm_file="rs6000/biarch64.h ${tm_file} rs6000/linux64.h" ++ tmake_file="$tmake_file rs6000/t-linux64" ++ extra_options="${extra_options} rs6000/linux64.opt" ++ ;; ++ *) ++ tm_file="${tm_file} rs6000/linux.h" ++ ;; ++ esac ++ tmake_file="${tmake_file} rs6000/t-fprules-softfp soft-fp/t-softfp" ++ if test x${enable_secureplt} = xyes; then ++ tm_file="rs6000/secureplt.h ${tm_file}" ++ fi ++ ;; ++powerpc-*-gnu-gnualtivec*) ++ tm_file="${cpu_type}/${cpu_type}.h elfos.h svr4.h freebsd-spec.h gnu.h rs6000/sysv4.h rs6000/linux.h rs6000/linuxaltivec.h rs6000/gnu.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcos t-slibgcc-elf-ver t-gnu rs6000/t-ppccomm" ++ if test x$enable_threads = xyes; then ++ thread_file='posix' ++ fi ++ ;; ++powerpc-*-gnu*) ++ tm_file="${cpu_type}/${cpu_type}.h elfos.h svr4.h freebsd-spec.h gnu.h rs6000/sysv4.h rs6000/linux.h rs6000/gnu.h" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcos t-slibgcc-elf-ver t-gnu rs6000/t-ppccomm" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ if test x$enable_threads = xyes; then ++ thread_file='posix' ++ fi ++ ;; ++powerpc-wrs-vxworks|powerpc-wrs-vxworksae) ++ tm_file="${tm_file} elfos.h svr4.h freebsd-spec.h rs6000/sysv4.h" ++ tmake_file="${tmake_file} rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppccomm rs6000/t-vxworks" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ extra_headers=ppc-asm.h ++ case ${target} in ++ *-vxworksae*) ++ tm_file="${tm_file} vx-common.h vxworksae.h rs6000/vxworks.h rs6000/e500.h rs6000/vxworksae.h" ++ tmake_file="${tmake_file} rs6000/t-vxworksae" ++ ;; ++ *-vxworks*) ++ tm_file="${tm_file} vx-common.h vxworks.h rs6000/vxworks.h rs6000/e500.h" ++ ;; ++ esac ++ ;; ++powerpc-*-lynxos*) ++ xm_defines=POSIX ++ tm_file="${tm_file} dbxelf.h elfos.h rs6000/sysv4.h rs6000/lynx.h lynx.h" ++ tmake_file="t-lynx rs6000/t-lynx" ++ extra_options="${extra_options} rs6000/sysv4.opt lynx.opt" ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ extra_options="${extra_options} lynx.opt" ++ thread_file=lynx ++ gnu_ld=yes ++ gas=yes ++ ;; ++powerpcle-*-elf*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/sysv4le.h" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ ;; ++powerpcle-*-eabisim*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/sysv4le.h rs6000/eabi.h rs6000/e500.h rs6000/eabisim.h" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ ;; ++powerpcle-*-eabi*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/sysv4le.h rs6000/eabi.h rs6000/e500.h" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ ;; ++powerpc-xilinx-eabi*) ++ tm_file="${tm_file} dbxelf.h elfos.h usegas.h svr4.h freebsd-spec.h rs6000/sysv4.h rs6000/eabi.h rs6000/singlefp.h rs6000/xfpu.h" ++ extra_options="${extra_options} rs6000/sysv4.opt" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-ppcgas rs6000/t-ppccomm" ++ ;; ++rs6000-ibm-aix4.[12]* | powerpc-ibm-aix4.[12]*) ++ tm_file="${tm_file} rs6000/aix.h rs6000/aix41.h rs6000/xcoff.h" ++ tmake_file="rs6000/t-fprules rs6000/t-fprules-fpbit rs6000/t-newas" ++ extra_options="${extra_options} rs6000/aix41.opt" ++ use_collect2=yes ++ extra_headers= ++ use_fixproto=yes ++ ;; ++rs6000-ibm-aix4.[3456789]* | powerpc-ibm-aix4.[3456789]*) ++ tm_file="rs6000/biarch64.h ${tm_file} rs6000/aix.h rs6000/aix43.h rs6000/xcoff.h" ++ tmake_file=rs6000/t-aix43 ++ extra_options="${extra_options} rs6000/aix64.opt" ++ use_collect2=yes ++ thread_file='aix' ++ extra_headers= ++ ;; ++rs6000-ibm-aix5.1.* | powerpc-ibm-aix5.1.*) ++ tm_file="rs6000/biarch64.h ${tm_file} rs6000/aix.h rs6000/aix51.h rs6000/xcoff.h" ++ extra_options="${extra_options} rs6000/aix64.opt" ++ tmake_file=rs6000/t-aix43 ++ use_collect2=yes ++ thread_file='aix' ++ extra_headers= ++ ;; ++rs6000-ibm-aix5.2.* | powerpc-ibm-aix5.2.*) ++ tm_file="${tm_file} rs6000/aix.h rs6000/aix52.h rs6000/xcoff.h" ++ tmake_file=rs6000/t-aix52 ++ extra_options="${extra_options} rs6000/aix64.opt" ++ use_collect2=yes ++ thread_file='aix' ++ extra_headers= ++ ;; ++rs6000-ibm-aix5.3.* | powerpc-ibm-aix5.3.*) ++ tm_file="${tm_file} rs6000/aix.h rs6000/aix53.h rs6000/xcoff.h" ++ tmake_file=rs6000/t-aix52 ++ extra_options="${extra_options} rs6000/aix64.opt" ++ use_collect2=yes ++ thread_file='aix' ++ extra_headers=altivec.h ++ ;; ++rs6000-ibm-aix[6789].* | powerpc-ibm-aix[6789].*) ++ tm_file="${tm_file} rs6000/aix.h rs6000/aix61.h rs6000/xcoff.h" ++ tmake_file=rs6000/t-aix52 ++ extra_options="${extra_options} rs6000/aix64.opt" ++ use_collect2=yes ++ thread_file='aix' ++ extra_headers=altivec.h ++ ;; ++s390-*-linux*) ++ tm_file="s390/s390.h dbxelf.h elfos.h svr4.h linux.h s390/linux.h" ++ tmake_file="${tmake_file} t-dfprules s390/t-crtstuff s390/t-linux" ++ ;; ++s390x-*-linux*) ++ tm_file="s390/s390x.h s390/s390.h dbxelf.h elfos.h svr4.h linux.h s390/linux.h" ++ tm_p_file=s390/s390-protos.h ++ md_file=s390/s390.md ++ extra_modes=s390/s390-modes.def ++ out_file=s390/s390.c ++ tmake_file="${tmake_file} t-dfprules s390/t-crtstuff s390/t-linux s390/t-linux64" ++ ;; ++s390x-ibm-tpf*) ++ tm_file="s390/s390x.h s390/s390.h dbxelf.h elfos.h svr4.h s390/tpf.h" ++ tm_p_file=s390/s390-protos.h ++ md_file=s390/s390.md ++ extra_modes=s390/s390-modes.def ++ out_file=s390/s390.c ++ extra_parts="crtbeginS.o crtendS.o" ++ tmake_file="s390/t-crtstuff s390/t-tpf" ++ thread_file='tpf' ++ extra_options="${extra_options} s390/tpf.opt" ++ ;; ++score-*-elf) ++ tm_file="dbxelf.h elfos.h score/elf.h score/score.h" ++ tmake_file=score/t-score-elf ++ extra_objs="score7.o score3.o" ++ ;; ++sh-*-elf* | sh[12346l]*-*-elf* | \ ++sh-*-symbianelf* | sh[12346l]*-*-symbianelf* | \ ++ sh-*-linux* | sh[2346lbe]*-*-linux* | \ ++ sh-*-netbsdelf* | shl*-*-netbsdelf* | sh5-*-netbsd* | sh5l*-*-netbsd* | \ ++ sh64-*-netbsd* | sh64l*-*-netbsd*) ++ tmake_file="${tmake_file} sh/t-sh sh/t-elf" ++ if test x${with_endian} = x; then ++ case ${target} in ++ sh[1234]*be-*-* | sh[1234]*eb-*-*) with_endian=big ;; ++ shbe-*-* | sheb-*-*) with_endian=big,little ;; ++ sh[1234]l* | sh[34]*-*-linux*) with_endian=little ;; ++ shl* | sh64l* | sh*-*-linux* | \ ++ sh5l* | sh-superh-elf) with_endian=little,big ;; ++ sh[1234]*-*-*) with_endian=big ;; ++ *) with_endian=big,little ;; ++ esac ++ fi ++ case ${with_endian} in ++ big|little) tmake_file="${tmake_file} sh/t-1e" ;; ++ big,little|little,big) ;; ++ *) echo "with_endian=${with_endian} not supported."; exit 1 ;; ++ esac ++ case ${with_endian} in ++ little*) tm_file="sh/little.h ${tm_file}" ;; ++ esac ++ tm_file="${tm_file} dbxelf.h elfos.h" ++ case ${target} in ++ sh*-*-netbsd*) ;; ++ *) tm_file="${tm_file} svr4.h" ;; ++ esac ++ tm_file="${tm_file} sh/elf.h" ++ case ${target} in ++ sh*-*-linux*) tmake_file="${tmake_file} sh/t-linux" ++ tm_file="${tm_file} linux.h sh/linux.h" ;; ++ sh*-*-netbsd*) tm_file="${tm_file} netbsd.h netbsd-elf.h sh/netbsd-elf.h" ;; ++ sh*-superh-elf) if test x$with_libgloss != xno; then ++ with_libgloss=yes ++ tm_file="${tm_file} sh/newlib.h" ++ fi ++ tm_file="${tm_file} sh/embed-elf.h sh/superh.h" ++ tmake_file="${tmake_file} sh/t-superh" ++ extra_options="${extra_options} sh/superh.opt" ;; ++ *) if test x$with_newlib = xyes \ ++ && test x$with_libgloss = xyes; then ++ tm_file="${tm_file} sh/newlib.h" ++ fi ++ tm_file="${tm_file} sh/embed-elf.h" ;; ++ esac ++ case ${target} in ++ sh5*-*-netbsd*) ++ # SHmedia, 32-bit ABI ++ tmake_file="${tmake_file} sh/t-sh64 sh/t-netbsd" ++ ;; ++ sh64*-netbsd*) ++ # SHmedia, 64-bit ABI ++ tmake_file="${tmake_file} sh/t-sh64 sh/t-netbsd sh/t-netbsd-sh5-64" ++ ;; ++ *-*-netbsd) ++ tmake_file="${tmake_file} sh/t-netbsd" ++ ;; ++ sh64*-*-linux*) ++ tmake_file="${tmake_file} sh/t-sh64 sh/t-linux64" ++ tm_file="${tm_file} sh/sh64.h" ++ extra_headers="shmedia.h ushmedia.h sshmedia.h" ++ ;; ++ sh64*) ++ tmake_file="${tmake_file} sh/t-sh64" ++ tm_file="${tm_file} sh/sh64.h" ++ extra_headers="shmedia.h ushmedia.h sshmedia.h" ++ ;; ++ *-*-symbianelf*) ++ tmake_file="sh/t-symbian" ++ tm_file="sh/symbian-pre.h sh/little.h ${tm_file} sh/symbian-post.h" ++ extra_objs="symbian.o" ++ extra_parts="crt1.o crti.o crtn.o crtbegin.o crtend.o crtbeginS.o crtendS.o" ++ ;; ++ esac ++ # sed el/eb endian suffixes away to avoid confusion with sh[23]e ++ case `echo ${target} | sed 's/e[lb]-/-/'` in ++ sh64*-*-netbsd*) sh_cpu_target=sh5-64media ;; ++ sh64* | sh5*-*-netbsd*) sh_cpu_target=sh5-32media ;; ++ sh4a_single_only*) sh_cpu_target=sh4a-single-only ;; ++ sh4a_single*) sh_cpu_target=sh4a-single ;; ++ sh4a_nofpu*) sh_cpu_target=sh4a-nofpu ;; ++ sh4al) sh_cpu_target=sh4al ;; ++ sh4a*) sh_cpu_target=sh4a ;; ++ sh4_single_only*) sh_cpu_target=sh4-single-only ;; ++ sh4_single*) sh_cpu_target=sh4-single ;; ++ sh4_nofpu*) sh_cpu_target=sh4-nofpu ;; ++ sh4* | sh-superh-*) sh_cpu_target=sh4 ;; ++ sh3e*) sh_cpu_target=sh3e ;; ++ sh*-*-netbsd* | sh3*) sh_cpu_target=sh3 ;; ++ sh2a_single_only*) sh_cpu_target=sh2a-single-only ;; ++ sh2a_single*) sh_cpu_target=sh2a-single ;; ++ sh2a_nofpu*) sh_cpu_target=sh2a-nofpu ;; ++ sh2a*) sh_cpu_target=sh2a ;; ++ sh2e*) sh_cpu_target=sh2e ;; ++ sh2*) sh_cpu_target=sh2 ;; ++ *) sh_cpu_target=sh1 ;; ++ esac ++ # did the user say --without-fp ? ++ if test x$with_fp = xno; then ++ case ${sh_cpu_target} in ++ sh5-*media) sh_cpu_target=${sh_cpu_target}-nofpu ;; ++ sh4al | sh1) ;; ++ sh4a* ) sh_cpu_target=sh4a-nofpu ;; ++ sh4*) sh_cpu_target=sh4-nofpu ;; ++ sh3*) sh_cpu_target=sh3 ;; ++ sh2a*) sh_cpu_target=sh2a-nofpu ;; ++ sh2*) sh_cpu_target=sh2 ;; ++ *) echo --without-fp not available for $target: ignored ++ esac ++ tm_defines="$tm_defines STRICT_NOFPU=1" ++ fi ++ sh_cpu_default="`echo $with_cpu|sed s/^m/sh/|tr A-Z_ a-z-`" ++ case $sh_cpu_default in ++ sh5-64media-nofpu | sh5-64media | \ ++ sh5-32media-nofpu | sh5-32media | sh5-compact-nofpu | sh5-compact | \ ++ sh2a-single-only | sh2a-single | sh2a-nofpu | sh2a | \ ++ sh4a-single-only | sh4a-single | sh4a-nofpu | sh4a | sh4al | \ ++ sh4-single-only | sh4-single | sh4-nofpu | sh4 | sh4-300 | \ ++ sh3e | sh3 | sh2e | sh2 | sh1) ;; ++ "") sh_cpu_default=${sh_cpu_target} ;; ++ *) echo "with_cpu=$with_cpu not supported"; exit 1 ;; ++ esac ++ sh_multilibs=${with_multilib_list} ++ if test x${sh_multilibs} = x ; then ++ case ${target} in ++ sh64-superh-linux* | \ ++ sh[1234]*) sh_multilibs=${sh_cpu_target} ;; ++ sh64* | sh5*) sh_multilibs=m5-32media,m5-32media-nofpu,m5-compact,m5-compact-nofpu,m5-64media,m5-64media-nofpu ;; ++ sh-superh-*) sh_multilibs=m4,m4-single,m4-single-only,m4-nofpu ;; ++ sh*-*-linux*) sh_multilibs=m1,m3e,m4 ;; ++ sh*-*-netbsd*) sh_multilibs=m3,m3e,m4 ;; ++ *) sh_multilibs=m1,m2,m2e,m4,m4-single,m4-single-only,m2a,m2a-single ;; ++ esac ++ if test x$with_fp = xno; then ++ sh_multilibs="`echo $sh_multilibs|sed -e s/m4/sh4-nofpu/ -e s/,m4-[^,]*//g -e s/,m[23]e// -e s/m2a,m2a-single/m2a-nofpu/ -e s/m5-..m....,//g`" ++ fi ++ fi ++ target_cpu_default=SELECT_`echo ${sh_cpu_default}|tr abcdefghijklmnopqrstuvwxyz- ABCDEFGHIJKLMNOPQRSTUVWXYZ_` ++ tm_defines=${tm_defines}' SH_MULTILIB_CPU_DEFAULT=\"'`echo $sh_cpu_default|sed s/sh/m/`'\"' ++ sh_multilibs=`echo $sh_multilibs,$sh_cpu_default | sed -e 's/[ ,/][ ,]*/ /g' -e 's/ $//' -e 's/^m/sh/' -e 's/ m/ sh/g' | tr ABCDEFGHIJKLMNOPQRSTUVWXYZ_ abcdefghijklmnopqrstuvwxyz-` ++ for sh_multilib in ${sh_multilibs}; do ++ case ${sh_multilib} in ++ sh1 | sh2 | sh2e | sh3 | sh3e | \ ++ sh4 | sh4-single | sh4-single-only | sh4-nofpu | sh4-300 |\ ++ sh4a | sh4a-single | sh4a-single-only | sh4a-nofpu | sh4al | \ ++ sh2a | sh2a-single | sh2a-single-only | sh2a-nofpu | \ ++ sh5-64media | sh5-64media-nofpu | \ ++ sh5-32media | sh5-32media-nofpu | \ ++ sh5-compact | sh5-compact-nofpu) ++ tmake_file="${tmake_file} sh/t-mlib-${sh_multilib}" ++ tm_defines="$tm_defines SUPPORT_`echo $sh_multilib|tr abcdefghijklmnopqrstuvwxyz- ABCDEFGHIJKLMNOPQRSTUVWXYZ_`=1" ++ ;; ++ *) ++ echo "with_multilib_list=${sh_multilib} not supported." ++ exit 1 ++ ;; ++ esac ++ done ++ if test x${enable_incomplete_targets} = xyes ; then ++ tm_defines="$tm_defines SUPPORT_SH1=1 SUPPORT_SH2E=1 SUPPORT_SH4=1 SUPPORT_SH4_SINGLE=1 SUPPORT_SH2A=1 SUPPORT_SH2A_SINGLE=1 SUPPORT_SH5_32MEDIA=1 SUPPORT_SH5_32MEDIA_NOFPU=1 SUPPORT_SH5_64MEDIA=1 SUPPORT_SH5_64MEDIA_NOFPU=1" ++ fi ++ ;; ++sh-*-rtems*) ++ tmake_file="sh/t-sh sh/t-elf t-rtems sh/t-rtems" ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sh/elf.h sh/embed-elf.h sh/rtemself.h rtems.h" ++ ;; ++sh-wrs-vxworks) ++ tmake_file="$tmake_file sh/t-sh sh/t-elf sh/t-vxworks" ++ tm_file="${tm_file} elfos.h svr4.h sh/elf.h sh/embed-elf.h vx-common.h vxworks.h sh/vxworks.h" ++ ;; ++sh-*-*) ++ tm_file="${tm_file} dbxcoff.h sh/coff.h" ++ ;; ++sparc-*-netbsdelf*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h netbsd.h netbsd-elf.h sparc/netbsd-elf.h" ++ extra_options="${extra_options} sparc/long-double-switch.opt" ++ ;; ++sparc64-*-openbsd*) ++ tm_file="sparc/openbsd1-64.h ${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sparc/sp64-elf.h openbsd.h sparc/openbsd64.h" ++ extra_options="${extra_options} sparc/little-endian.opt" ++ gas=yes gnu_ld=yes ++ with_cpu=ultrasparc ++ ;; ++sparc-*-elf*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sparc/sp-elf.h" ++ tmake_file="sparc/t-elf sparc/t-crtfm" ++ extra_parts="crti.o crtn.o crtbegin.o crtend.o" ++ ;; ++sparc-*-linux*) # SPARC's running GNU/Linux, libc6 ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sparc/gas.h linux.h" ++ extra_options="${extra_options} sparc/long-double-switch.opt" ++ tmake_file="${tmake_file} sparc/t-linux" ++ if test x$enable_targets = xall; then ++ tm_file="sparc/biarch64.h ${tm_file} sparc/linux64.h" ++ tmake_file="${tmake_file} sparc/t-linux64" ++ else ++ tm_file="${tm_file} sparc/linux.h" ++ fi ++ tmake_file="${tmake_file} sparc/t-crtfm" ++ ;; ++sparc-*-rtems*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sparc/sp-elf.h sparc/rtemself.h rtems.h" ++ tmake_file="sparc/t-elf sparc/t-crtfm t-rtems" ++ extra_parts="crti.o crtn.o crtbegin.o crtend.o" ++ ;; ++sparc64-*-solaris2* | sparcv9-*-solaris2*) ++ tm_file="sparc/biarch64.h ${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sol2.h" ++ case ${target} in ++ *-*-solaris2.1[0-9]*) ++ tm_file="${tm_file} sol2-10.h" ++ ;; ++ esac ++ tm_file="${tm_file} sparc/sol2.h sparc/sol2-64.h sparc/sol2-bi.h" ++ if test x$gnu_ld = xyes; then ++ tm_file="${tm_file} sol2-gld.h sparc/sol2-gld-bi.h" ++ fi ++ if test x$gas = xyes; then ++ tm_file="${tm_file} sparc/sol2-gas.h sparc/sol2-gas-bi.h" ++ fi ++ tm_file="${tm_file} tm-dwarf2.h" ++ tmake_file="t-sol2 sparc/t-sol2 sparc/t-sol2-64 sparc/t-crtfm" ++ if test x$gnu_ld = xyes; then ++ tmake_file="$tmake_file t-slibgcc-elf-ver" ++ else ++ tmake_file="$tmake_file t-slibgcc-sld" ++ fi ++ if test x$gas = xyes; then ++ tm_file="usegas.h ${tm_file}" ++ fi ++ c_target_objs="sol2-c.o" ++ cxx_target_objs="sol2-c.o" ++ extra_objs="sol2.o" ++ tm_p_file="${tm_p_file} sol2-protos.h" ++ extra_parts="crt1.o crti.o crtn.o gcrt1.o crtbegin.o crtend.o" ++ case ${enable_threads}:${have_pthread_h}:${have_thread_h} in ++ "":yes:* | yes:yes:* ) thread_file=posix ;; ++ "":*:yes | yes:*:yes ) thread_file=solaris ;; ++ esac ++ ;; ++sparc-*-solaris2*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sol2.h" ++ case ${target} in ++ *-*-solaris2.1[0-9]*) ++ tm_file="${tm_file} sol2-10.h" ++ ;; ++ esac ++ tm_file="${tm_file} sparc/sol2.h" ++ if test x$gnu_ld = xyes; then ++ tm_file="${tm_file} sol2-gld.h" ++ fi ++ if test x$gas = xyes; then ++ tm_file="${tm_file} sparc/sol2-gas.h" ++ fi ++ tmake_file="t-sol2 sparc/t-sol2 sparc/t-crtfm" ++ if test x$gnu_ld = xyes; then ++ tmake_file="$tmake_file t-slibgcc-elf-ver" ++ else ++ tmake_file="$tmake_file t-slibgcc-sld" ++ fi ++ tm_file="sparc/biarch64.h ${tm_file} sparc/sol2-bi.h" ++ if test x$gnu_ld = xyes; then ++ tm_file="${tm_file} sparc/sol2-gld-bi.h" ++ fi ++ if test x$gas = xyes; then ++ tm_file="${tm_file} sparc/sol2-gas-bi.h" ++ fi ++ if test x$gas = xyes; then ++ tm_file="usegas.h ${tm_file}" ++ fi ++ tm_file="${tm_file} tm-dwarf2.h" ++ tmake_file="$tmake_file sparc/t-sol2-64" ++ test x$with_cpu != x || with_cpu=v9 ++ c_target_objs="sol2-c.o" ++ cxx_target_objs="sol2-c.o" ++ extra_objs="sol2.o" ++ tm_p_file="${tm_p_file} sol2-protos.h" ++ extra_parts="crt1.o crti.o crtn.o gcrt1.o gmon.o crtbegin.o crtend.o" ++ case ${enable_threads}:${have_pthread_h}:${have_thread_h} in ++ "":yes:* | yes:yes:* ) ++ thread_file=posix ++ ;; ++ "":*:yes | yes:*:yes ) ++ thread_file=solaris ++ ;; ++ esac ++ ;; ++sparc-wrs-vxworks) ++ tm_file="${tm_file} elfos.h svr4.h sparc/sysv4.h vx-common.h vxworks.h sparc/vxworks.h" ++ tmake_file="${tmake_file} sparc/t-vxworks" ++ ;; ++sparc64-*-elf*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sparc/sp64-elf.h" ++ extra_options="${extra_options} sparc/little-endian.opt" ++ tmake_file="${tmake_file} sparc/t-crtfm" ++ extra_parts="crtbegin.o crtend.o" ++ ;; ++sparc64-*-freebsd*|ultrasparc-*-freebsd*) ++ tm_file="${tm_file} ${fbsd_tm_file} dbxelf.h elfos.h sparc/sysv4.h sparc/freebsd.h" ++ extra_options="${extra_options} sparc/long-double-switch.opt" ++ tmake_file="${tmake_file} sparc/t-crtfm" ++ case "x$with_cpu" in ++ xultrasparc) ;; ++ x) with_cpu=ultrasparc ;; ++ *) echo "$with_cpu not supported for freebsd target"; exit 1 ;; ++ esac ++ ;; ++sparc64-*-linux*) # 64-bit SPARC's running GNU/Linux ++ tm_file="sparc/biarch64.h ${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h sparc/gas.h linux.h sparc/linux64.h" ++ extra_options="${extra_options} sparc/long-double-switch.opt" ++ tmake_file="${tmake_file} sparc/t-linux sparc/t-linux64 sparc/t-crtfm" ++ ;; ++sparc64-*-netbsd*) ++ tm_file="sparc/biarch64.h ${tm_file}" ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h sparc/sysv4.h netbsd.h netbsd-elf.h sparc/netbsd-elf.h" ++ extra_options="${extra_options} sparc/long-double-switch.opt" ++ tmake_file="${tmake_file} sparc/t-netbsd64" ++ ;; ++spu-*-elf*) ++ tm_file="dbxelf.h elfos.h spu/spu-elf.h spu/spu.h" ++ tmake_file="spu/t-spu-elf" ++ extra_headers="spu_intrinsics.h spu_internals.h vmx2spu.h spu_mfcio.h vec_types.h" ++ extra_modes=spu/spu-modes.def ++ c_target_objs="${c_target_objs} spu-c.o" ++ cxx_target_objs="${cxx_target_objs} spu-c.o" ++ ;; ++v850e1-*-*) ++ target_cpu_default="TARGET_CPU_v850e1" ++ tm_file="dbxelf.h elfos.h svr4.h v850/v850.h" ++ tm_p_file=v850/v850-protos.h ++ tmake_file=v850/t-v850e ++ md_file=v850/v850.md ++ out_file=v850/v850.c ++ extra_options="${extra_options} v850/v850.opt" ++ if test x$stabs = xyes ++ then ++ tm_file="${tm_file} dbx.h" ++ fi ++ use_collect2=no ++ c_target_objs="v850-c.o" ++ cxx_target_objs="v850-c.o" ++ ;; ++v850e-*-*) ++ target_cpu_default="TARGET_CPU_v850e" ++ tm_file="dbxelf.h elfos.h svr4.h v850/v850.h" ++ tm_p_file=v850/v850-protos.h ++ tmake_file=v850/t-v850e ++ md_file=v850/v850.md ++ out_file=v850/v850.c ++ extra_options="${extra_options} v850/v850.opt" ++ if test x$stabs = xyes ++ then ++ tm_file="${tm_file} dbx.h" ++ fi ++ use_collect2=no ++ c_target_objs="v850-c.o" ++ cxx_target_objs="v850-c.o" ++ ;; ++v850-*-*) ++ target_cpu_default="TARGET_CPU_generic" ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file}" ++ tmake_file=v850/t-v850 ++ if test x$stabs = xyes ++ then ++ tm_file="${tm_file} dbx.h" ++ fi ++ use_collect2=no ++ c_target_objs="v850-c.o" ++ cxx_target_objs="v850-c.o" ++ ;; ++vax-*-netbsdelf*) ++ tm_file="${tm_file} elfos.h netbsd.h netbsd-elf.h vax/elf.h vax/netbsd-elf.h" ++ ;; ++vax-*-netbsd*) ++ tm_file="${tm_file} netbsd.h netbsd-aout.h vax/netbsd.h" ++ tmake_file=t-netbsd ++ extra_parts="" ++ use_collect2=yes ++ ;; ++vax-*-openbsd*) ++ tm_file="vax/vax.h vax/openbsd1.h openbsd.h vax/openbsd.h" ++ use_collect2=yes ++ ;; ++xstormy16-*-elf) ++ # For historical reasons, the target files omit the 'x'. ++ tm_file="dbxelf.h elfos.h svr4.h stormy16/stormy16.h" ++ tm_p_file=stormy16/stormy16-protos.h ++ md_file=stormy16/stormy16.md ++ out_file=stormy16/stormy16.c ++ extra_options=stormy16/stormy16.opt ++ tmake_file="stormy16/t-stormy16" ++ extra_parts="crtbegin.o crtend.o" ++ ;; ++xtensa*-*-elf*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h xtensa/elf.h" ++ tmake_file="xtensa/t-xtensa xtensa/t-elf" ++ ;; ++xtensa*-*-linux*) ++ tm_file="${tm_file} dbxelf.h elfos.h svr4.h linux.h xtensa/linux.h" ++ tmake_file="${tmake_file} xtensa/t-xtensa xtensa/t-linux" ++ ;; ++am33_2.0-*-linux*) ++ tm_file="mn10300/mn10300.h dbxelf.h elfos.h linux.h mn10300/linux.h" ++ tmake_file="${tmake_file} mn10300/t-linux" ++ gas=yes gnu_ld=yes ++ extra_parts="crtbegin.o crtend.o crtbeginS.o crtendS.o" ++ use_collect2=no ++ ;; ++m32c-*-rtems*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file} m32c/rtems.h rtems.h" ++ tmake_file="${tmake_file} t-rtems" ++ c_target_objs="m32c-pragma.o" ++ cxx_target_objs="m32c-pragma.o" ++ ;; ++m32c-*-elf*) ++ tm_file="dbxelf.h elfos.h svr4.h ${tm_file}" ++ c_target_objs="m32c-pragma.o" ++ cxx_target_objs="m32c-pragma.o" ++ ;; ++*) ++ echo "*** Configuration ${target} not supported" 1>&2 ++ exit 1 ++ ;; ++esac ++ ++case ${target} in ++i[34567]86-*-linux* | x86_64-*-linux*) ++ tmake_file="${tmake_file} i386/t-pmm_malloc i386/t-i386" ++ ;; ++i[34567]86-*-* | x86_64-*-*) ++ tmake_file="${tmake_file} i386/t-gmm_malloc i386/t-i386" ++ ;; ++esac ++ ++# Support for --with-cpu and related options (and a few unrelated options, ++# too). ++case ${with_cpu} in ++ yes | no) ++ echo "--with-cpu must be passed a value" 1>&2 ++ exit 1 ++ ;; ++esac ++ ++# If there is no $with_cpu option, try to infer one from ${target}. ++# This block sets nothing except for with_cpu. ++if test x$with_cpu = x ; then ++ case ${target} in ++ i386-*-*) ++ with_cpu=i386 ++ ;; ++ i486-*-*) ++ with_cpu=i486 ++ ;; ++ i586-*-*) ++ case ${target_noncanonical} in ++ k6_2-*) ++ with_cpu=k6-2 ++ ;; ++ k6_3-*) ++ with_cpu=k6-3 ++ ;; ++ k6-*) ++ with_cpu=k6 ++ ;; ++ pentium_mmx-*|winchip_c6-*|winchip2-*|c3-*) ++ with_cpu=pentium-mmx ++ ;; ++ *) ++ with_cpu=pentium ++ ;; ++ esac ++ ;; ++ i686-*-* | i786-*-*) ++ case ${target_noncanonical} in ++ amdfam10-*|barcelona-*) ++ with_cpu=amdfam10 ++ ;; ++ k8_sse3-*|opteron_sse3-*|athlon64_sse3-*) ++ with_cpu=k8-sse3 ++ ;; ++ k8-*|opteron-*|athlon64-*|athlon_fx-*) ++ with_cpu=k8 ++ ;; ++ athlon_xp-*|athlon_mp-*|athlon_4-*) ++ with_cpu=athlon-4 ++ ;; ++ athlon_tbird-*|athlon-*) ++ with_cpu=athlon ++ ;; ++ geode-*) ++ with_cpu=geode ++ ;; ++ pentium2-*) ++ with_cpu=pentium2 ++ ;; ++ pentium3-*|pentium3m-*) ++ with_cpu=pentium3 ++ ;; ++ pentium4-*|pentium4m-*) ++ with_cpu=pentium4 ++ ;; ++ prescott-*) ++ with_cpu=prescott ++ ;; ++ nocona-*) ++ with_cpu=nocona ++ ;; ++ core2-*) ++ with_cpu=core2 ++ ;; ++ pentium_m-*) ++ with_cpu=pentium-m ++ ;; ++ pentiumpro-*) ++ with_cpu=pentiumpro ++ ;; ++ *) ++ with_cpu=generic ++ ;; ++ esac ++ ;; ++ x86_64-*-*) ++ case ${target_noncanonical} in ++ amdfam10-*|barcelona-*) ++ with_cpu=amdfam10 ++ ;; ++ k8_sse3-*|opteron_sse3-*|athlon64_sse3-*) ++ with_cpu=k8-sse3 ++ ;; ++ k8-*|opteron-*|athlon64-*|athlon_fx-*) ++ with_cpu=k8 ++ ;; ++ nocona-*) ++ with_cpu=nocona ++ ;; ++ core2-*) ++ with_cpu=core2 ++ ;; ++ *) ++ with_cpu=generic ++ ;; ++ esac ++ ;; ++ alphaev6[78]*-*-*) ++ with_cpu=ev67 ++ ;; ++ alphaev6*-*-*) ++ with_cpu=ev6 ++ ;; ++ alphapca56*-*-*) ++ with_cpu=pca56 ++ ;; ++ alphaev56*-*-*) ++ with_cpu=ev56 ++ ;; ++ alphaev5*-*-*) ++ with_cpu=ev5 ++ ;; ++ frv-*-*linux* | frv400-*-*linux*) ++ with_cpu=fr400 ++ ;; ++ frv550-*-*linux*) ++ with_cpu=fr550 ++ ;; ++ m68k*-*-*) ++ case "$with_arch" in ++ "cf") ++ with_cpu=${default_cf_cpu} ++ ;; ++ "" | "m68k") ++ with_cpu=m${default_m68k_cpu} ++ ;; ++ esac ++ ;; ++ mips*-*-vxworks) ++ with_arch=mips2 ++ ;; ++ sparc*-*-*) ++ with_cpu="`echo ${target} | sed 's/-.*$//'`" ++ ;; ++ esac ++ ++ # Avoid overriding --with-cpu-32 and --with-cpu-64 values. ++ case ${target} in ++ i[34567]86-*-*|x86_64-*-*) ++ if test x$with_cpu != x; then ++ if test x$with_cpu_32 != x || test x$with_cpu_64 != x; then ++ if test x$with_cpu_32 = x; then ++ with_cpu_32=$with_cpu ++ fi ++ if test x$with_cpu_64 = x; then ++ with_cpu_64=$with_cpu ++ fi ++ with_cpu= ++ fi ++ fi ++ ;; ++ esac ++fi ++ ++# Similarly for --with-schedule. ++if test x$with_schedule = x; then ++ case ${target} in ++ hppa1*) ++ # Override default PA8000 scheduling model. ++ with_schedule=7100LC ++ ;; ++ esac ++fi ++ ++# Validate and mark as valid any --with options supported ++# by this target. In order to use a particular --with option ++# you must list it in supported_defaults; validating the value ++# is optional. This case statement should set nothing besides ++# supported_defaults. ++ ++supported_defaults= ++case "${target}" in ++ alpha*-*-*) ++ supported_defaults="cpu tune" ++ for which in cpu tune; do ++ eval "val=\$with_$which" ++ case "$val" in ++ "" \ ++ | ev4 | ev45 | 21064 | ev5 | 21164 | ev56 | 21164a \ ++ | pca56 | 21164PC | 21164pc | ev6 | 21264 | ev67 \ ++ | 21264a) ++ ;; ++ *) ++ echo "Unknown CPU used in --with-$which=$val" 1>&2 ++ exit 1 ++ ;; ++ esac ++ done ++ ;; ++ ++ arm*-*-*) ++ supported_defaults="arch cpu float tune fpu abi mode" ++ for which in cpu tune; do ++ # See if it matches any of the entries in arm-cores.def ++ eval "val=\$with_$which" ++ if [ x"$val" = x ] \ ++ || grep "^ARM_CORE(\"$val\"," \ ++ ${srcdir}/config/arm/arm-cores.def \ ++ > /dev/null; then ++ # Ok ++ new_val=`grep "^ARM_CORE(\"$val\"," \ ++ ${srcdir}/config/arm/arm-cores.def | \ ++ sed -e 's/^[^,]*,[ ]*//' | \ ++ sed -e 's/,.*$//'` ++ eval "target_${which}_cname=$new_val" ++ echo "For $val real value is $new_val" ++ true ++ else ++ echo "Unknown CPU used in --with-$which=$val" 1>&2 ++ exit 1 ++ fi ++ done ++ ++ case "$with_arch" in ++ "" \ ++ | armv[23456] | armv2a | armv3m | armv4t | armv5t \ ++ | armv5te | armv6j |armv6k | armv6z | armv6zk | armv6-m \ ++ | armv7 | armv7-a | armv7-r | armv7-m \ ++ | iwmmxt | ep9312) ++ # OK ++ ;; ++ *) ++ echo "Unknown arch used in --with-arch=$with_arch" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_float" in ++ "" \ ++ | soft | hard | softfp) ++ # OK ++ ;; ++ *) ++ echo "Unknown floating point type used in --with-float=$with_float" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_fpu" in ++ "" \ ++ | fpa | fpe2 | fpe3 | maverick | vfp | vfp3 | vfpv3 | vfpv3-d16 | neon ) ++ # OK ++ ;; ++ *) ++ echo "Unknown fpu used in --with-fpu=$with_fpu" 2>&1 ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_abi" in ++ "" \ ++ | apcs-gnu | atpcs | aapcs | iwmmxt | aapcs-linux ) ++ #OK ++ ;; ++ *) ++ echo "Unknown ABI used in --with-abi=$with_abi" ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_mode" in ++ "" \ ++ | arm | thumb ) ++ #OK ++ ;; ++ *) ++ echo "Unknown mode used in --with-mode=$with_mode" ++ exit 1 ++ ;; ++ esac ++ ++ if test "x$with_arch" != x && test "x$with_cpu" != x; then ++ echo "Warning: --with-arch overrides --with-cpu=$with_cpu" 1>&2 ++ fi ++ ;; ++ ++ fr*-*-*linux*) ++ supported_defaults=cpu ++ case "$with_cpu" in ++ fr400) ;; ++ fr550) ;; ++ *) ++ echo "Unknown cpu used in --with-cpu=$with_cpu" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ ++ fido-*-* | m68k*-*-*) ++ supported_defaults="arch cpu" ++ case "$with_arch" in ++ "" | "m68k"| "cf") ++ m68k_arch_family="$with_arch" ++ ;; ++ *) ++ echo "Invalid --with-arch=$with_arch" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ # We always have a $with_cpu setting here. ++ case "$with_cpu" in ++ "m68000" | "m68010" | "m68020" | "m68030" | "m68040" | "m68060") ++ m68k_cpu_ident=$with_cpu ++ ;; ++ "m68020-40") ++ m68k_cpu_ident=m68020 ++ tm_defines="$tm_defines M68K_DEFAULT_TUNE=u68020_40" ++ ;; ++ "m68020-60") ++ m68k_cpu_ident=m68020 ++ tm_defines="$tm_defines M68K_DEFAULT_TUNE=u68020_60" ++ ;; ++ *) ++ # We need the C identifier rather than the string. ++ m68k_cpu_ident=`awk -v arg="\"$with_cpu\"" \ ++ 'BEGIN { FS="[ \t]*[,()][ \t]*" }; \ ++ $1 == "M68K_DEVICE" && $2 == arg { print $3 }' \ ++ ${srcdir}/config/m68k/m68k-devices.def` ++ if [ x"$m68k_cpu_ident" = x ] ; then ++ echo "Unknown CPU used in --with-cpu=$with_cpu" 1>&2 ++ exit 1 ++ fi ++ with_cpu="mcpu=$with_cpu" ++ ;; ++ esac ++ ;; ++ ++ hppa*-*-*) ++ supported_defaults="arch schedule" ++ ++ case "$with_arch" in ++ "" | 1.0 | 1.1 | 2.0) ++ # OK ++ ;; ++ *) ++ echo "Unknown architecture used in --with-arch=$with_arch" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case "$with_schedule" in ++ "" | 700 | 7100 | 7100LC | 7200 | 7300 | 8000) ++ # OK ++ ;; ++ *) ++ echo "Unknown processor used in --with-schedule=$with_schedule." 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ ++ i[34567]86-*-* | x86_64-*-*) ++ supported_defaults="arch arch_32 arch_64 cpu cpu_32 cpu_64 tune tune_32 tune_64" ++ for which in arch arch_32 arch_64 cpu cpu_32 cpu_64 tune tune_32 tune_64; do ++ eval "val=\$with_$which" ++ case ${val} in ++ i386 | i486 \ ++ | i586 | pentium | pentium-mmx | winchip-c6 | winchip2 \ ++ | c3 | c3-2 | i686 | pentiumpro | pentium2 | pentium3 \ ++ | pentium4 | k6 | k6-2 | k6-3 | athlon | athlon-tbird \ ++ | athlon-4 | athlon-xp | athlon-mp | geode \ ++ | prescott | pentium-m | pentium4m | pentium3m) ++ case "${target}" in ++ x86_64-*-*) ++ case "x$which" in ++ *_32) ++ ;; ++ *) ++ echo "CPU given in --with-$which=$val doesn't support 64bit mode." 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ esac ++ # OK ++ ;; ++ "" | amdfam10 | barcelona | k8-sse3 | opteron-sse3 | athlon64-sse3 | k8 | opteron | athlon64 | athlon-fx | nocona | core2 | generic) ++ # OK ++ ;; ++ *) ++ echo "Unknown CPU given in --with-$which=$val." 1>&2 ++ exit 1 ++ ;; ++ esac ++ done ++ ;; ++ ++ mips*-*-*) ++ supported_defaults="abi arch float tune divide llsc mips-plt" ++ ++ case ${with_float} in ++ "" | soft | hard) ++ # OK ++ ;; ++ *) ++ echo "Unknown floating point type used in --with-float=$with_float" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case ${with_abi} in ++ "" | 32 | o64 | n32 | 64 | eabi) ++ # OK ++ ;; ++ *) ++ echo "Unknown ABI used in --with-abi=$with_abi" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case ${with_divide} in ++ "" | breaks | traps) ++ # OK ++ ;; ++ *) ++ echo "Unknown division check type use in --with-divide=$with_divide" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case ${with_llsc} in ++ yes) ++ with_llsc=llsc ++ ;; ++ no) ++ with_llsc="no-llsc" ++ ;; ++ "") ++ # OK ++ ;; ++ *) ++ echo "Unknown llsc type used in --with-llsc" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ++ case ${with_mips_plt} in ++ yes) ++ with_mips_plt=plt ++ ;; ++ no) ++ with_mips_plt=no-plt ++ ;; ++ "") ++ ;; ++ *) ++ echo "Unknown --with-mips-plt argument: $with_mips_plt" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ ++ powerpc*-*-* | rs6000-*-*) ++ supported_defaults="cpu float tune" ++ ++ for which in cpu tune; do ++ eval "val=\$with_$which" ++ case ${val} in ++ default32 | default64) ++ with_which="with_$which" ++ eval $with_which= ++ ;; ++ 405cr) ++ tm_defines="${tm_defines} CONFIG_PPC405CR" ++ eval "with_$which=405" ++ ;; ++ "" | common \ ++ | power | power[234567] | power6x | powerpc | powerpc64 \ ++ | rios | rios1 | rios2 | rsc | rsc1 | rs64a \ ++ | 401 | 403 | 405 | 405fp | 440 | 440fp | 464 | 464fp \ ++ | 505 | 601 | 602 | 603 | 603e | ec603e | 604 \ ++ | 604e | 620 | 630 | 740 | 750 | 7400 | 7450 \ ++ | e300c[23] | 854[08] | e500mc \ ++ | 801 | 821 | 823 | 860 | 970 | G3 | G4 | G5 | cell) ++ # OK ++ ;; ++ *) ++ echo "Unknown cpu used in --with-$which=$val." 1>&2 ++ exit 1 ++ ;; ++ esac ++ done ++ ;; ++ ++ s390*-*-*) ++ supported_defaults="arch mode tune" ++ ++ for which in arch tune; do ++ eval "val=\$with_$which" ++ case ${val} in ++ "" | g5 | g6 | z900 | z990 | z9-109 | z9-ec | z10) ++ # OK ++ ;; ++ *) ++ echo "Unknown cpu used in --with-$which=$val." 1>&2 ++ exit 1 ++ ;; ++ esac ++ done ++ ++ case ${with_mode} in ++ "" | esa | zarch) ++ # OK ++ ;; ++ *) ++ echo "Unknown architecture mode used in --with-mode=$with_mode." 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ ++ sh[123456ble]-*-* | sh-*-*) ++ supported_defaults="cpu" ++ case "`echo $with_cpu | tr ABCDEFGHIJKLMNOPQRSTUVWXYZ_ abcdefghijklmnopqrstuvwxyz- | sed s/sh/m/`" in ++ "" | m1 | m2 | m2e | m3 | m3e | m4 | m4-single | m4-single-only | m4-nofpu ) ++ # OK ++ ;; ++ m2a | m2a-single | m2a-single-only | m2a-nofpu) ++ ;; ++ m4a | m4a-single | m4a-single-only | m4a-nofpu | m4al) ++ ;; ++ *) ++ echo "Unknown CPU used in --with-cpu=$with_cpu, known values:" 1>&2 ++ echo "m1 m2 m2e m3 m3e m4 m4-single m4-single-only m4-nofpu" 1>&2 ++ echo "m4a m4a-single m4a-single-only m4a-nofpu m4al" 1>&2 ++ echo "m2a m2a-single m2a-single-only m2a-nofpu" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ sparc*-*-*) ++ supported_defaults="cpu float tune" ++ ++ for which in cpu tune; do ++ eval "val=\$with_$which" ++ case ${val} in ++ "" | sparc | sparcv9 | sparc64 | sparc86x \ ++ | v7 | cypress | v8 | supersparc | sparclite | f930 \ ++ | f934 | hypersparc | sparclite86x | sparclet | tsc701 \ ++ | v9 | ultrasparc | ultrasparc3 | niagara | niagara2) ++ # OK ++ ;; ++ *) ++ echo "Unknown cpu used in --with-$which=$val" 1>&2 ++ exit 1 ++ ;; ++ esac ++ done ++ ++ case ${with_float} in ++ "" | soft | hard) ++ # OK ++ ;; ++ *) ++ echo "Unknown floating point type used in --with-float=$with_float" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++ ++ spu-*-*) ++ supported_defaults="arch tune" ++ ++ for which in arch tune; do ++ eval "val=\$with_$which" ++ case ${val} in ++ "" | cell | celledp) ++ # OK ++ ;; ++ *) ++ echo "Unknown cpu used in --with-$which=$val." 1>&2 ++ exit 1 ++ ;; ++ esac ++ done ++ ;; ++ ++ v850*-*-*) ++ supported_defaults=cpu ++ case ${with_cpu} in ++ "" | v850e | v850e1) ++ # OK ++ ;; ++ *) ++ echo "Unknown cpu used in --with-cpu=$with_cpu" 1>&2 ++ exit 1 ++ ;; ++ esac ++ ;; ++esac ++ ++# Set some miscellaneous flags for particular targets. ++target_cpu_default2= ++case ${target} in ++ alpha*-*-*) ++ if test x$gas = xyes ++ then ++ target_cpu_default2="MASK_GAS" ++ fi ++ ;; ++ ++ arm*-*-*) ++ if test x$target_cpu_cname = x ++ then ++ target_cpu_default2=TARGET_CPU_generic ++ else ++ target_cpu_default2=TARGET_CPU_$target_cpu_cname ++ fi ++ ;; ++ ++ hppa*-*-*) ++ target_cpu_default2="MASK_BIG_SWITCH" ++ if test x$gas = xyes ++ then ++ target_cpu_default2="${target_cpu_default2}|MASK_GAS|MASK_JUMP_IN_DELAY" ++ fi ++ ;; ++ ++ fido*-*-* | m68k*-*-*) ++ target_cpu_default2=$m68k_cpu_ident ++ if [ x"$m68k_arch_family" != x ]; then ++ tmake_file="m68k/t-$m68k_arch_family $tmake_file" ++ fi ++ ;; ++ ++ i[34567]86-*-darwin* | x86_64-*-darwin*) ++ tmake_file="${tmake_file} i386/t-fprules-softfp soft-fp/t-softfp" ++ ;; ++ i[34567]86-*-linux* | x86_64-*-linux* | i[34567]86-*-kfreebsd*-gnu | x86_64-*-kfreebsd*-gnu) ++ tmake_file="${tmake_file} i386/t-fprules-softfp soft-fp/t-softfp i386/t-linux" ++ ;; ++ ia64*-*-linux*) ++ tmake_file="${tmake_file} ia64/t-fprules-softfp soft-fp/t-softfp" ++ ;; ++ ++ mips*-*-*) ++ if test x$gnu_ld = xyes ++ then ++ target_cpu_default2="MASK_SPLIT_ADDRESSES" ++ fi ++ case ${target} in ++ mips*el-*-*) ++ tm_defines="TARGET_ENDIAN_DEFAULT=0 $tm_defines" ++ ;; ++ esac ++ if test "x$enable_gofast" = xyes ++ then ++ tm_defines="US_SOFTWARE_GOFAST $tm_defines" ++ tmake_file="mips/t-gofast $tmake_file" ++ else ++ tmake_file="mips/t-mips $tmake_file" ++ fi ++ ;; ++ ++ powerpc*-*-* | rs6000-*-*) ++ # FIXME: The PowerPC port uses the value set at compile time, ++ # although it's only cosmetic. ++ if test "x$with_cpu" != x ++ then ++ target_cpu_default2="\\\"$with_cpu\\\"" ++ fi ++ out_file=rs6000/rs6000.c ++ c_target_objs="${c_target_objs} rs6000-c.o" ++ cxx_target_objs="${cxx_target_objs} rs6000-c.o" ++ tmake_file="rs6000/t-rs6000 ${tmake_file}" ++ ++ if test x$enable_e500_double = xyes ++ then ++ tm_file="$tm_file rs6000/e500-double.h" ++ fi ++ ;; ++ ++ sh[123456ble]*-*-* | sh-*-*) ++ c_target_objs="${c_target_objs} sh-c.o" ++ cxx_target_objs="${cxx_target_objs} sh-c.o" ++ ;; ++ ++ sparc*-*-*) ++ # Some standard aliases. ++ case x$with_cpu in ++ xsparc) ++ with_cpu=v7 ++ ;; ++ xsparcv9 | xsparc64) ++ with_cpu=v9 ++ ;; ++ esac ++ ++ # The SPARC port checks this value at compile-time. ++ target_cpu_default2="TARGET_CPU_$with_cpu" ++ ;; ++ v850*-*-*) ++ # FIXME: The v850 is "special" in that it does not support ++ # runtime CPU selection, only --with-cpu. ++ case "x$with_cpu" in ++ x) ++ ;; ++ xv850e) ++ target_cpu_default2="TARGET_CPU_$with_cpu" ++ ;; ++ esac ++ ;; ++esac ++ ++t= ++all_defaults="abi cpu cpu_32 cpu_64 arch arch_32 arch_64 tune tune_32 tune_64 schedule float mode fpu divide llsc mips-plt" ++for option in $all_defaults ++do ++ eval "val=\$with_"`echo $option | sed s/-/_/g` ++ if test -n "$val"; then ++ case " $supported_defaults " in ++ *" $option "*) ++ ;; ++ *) ++ echo "This target does not support --with-$option." 2>&1 ++ echo "Valid --with options are: $supported_defaults" 2>&1 ++ exit 1 ++ ;; ++ esac ++ ++ if test "x$t" = x ++ then ++ t="{ \"$option\", \"$val\" }" ++ else ++ t="${t}, { \"$option\", \"$val\" }" ++ fi ++ fi ++done ++ ++if test "x$t" = x ++then ++ configure_default_options="{ { NULL, NULL} }" ++else ++ configure_default_options="{ ${t} }" ++fi ++ ++if test "$target_cpu_default2" != "" ++then ++ if test "$target_cpu_default" != "" ++ then ++ target_cpu_default="(${target_cpu_default}|${target_cpu_default2})" ++ else ++ target_cpu_default=$target_cpu_default2 ++ fi ++fi +diff -Nur gcc-4.4.6.orig/gcc/configure.ac gcc-4.4.6/gcc/configure.ac +--- gcc-4.4.6.orig/gcc/configure.ac 2010-12-13 19:19:43.000000000 +0100 ++++ gcc-4.4.6/gcc/configure.ac 2011-08-27 19:45:43.687987316 +0200 +@@ -2240,10 +2240,9 @@ + as_ver=`$gcc_cv_as --version 2>/dev/null | sed 1q` + if echo "$as_ver" | grep GNU > /dev/null; then + changequote(,)dnl +- as_vers=`echo $as_ver | sed -n \ +- -e 's,^.*[ ]\([0-9][0-9]*\.[0-9][0-9]*.*\)$,\1,p'` +- as_major=`expr "$as_vers" : '\([0-9]*\)'` +- as_minor=`expr "$as_vers" : '[0-9]*\.\([0-9]*\)'` ++ as_ver=`echo $as_ver | sed -e 's/GNU assembler\( (GNU Binutils)\)\? \([0-9.][0-9.]*\).*/\2/'` ++ as_major=`echo $as_ver | sed 's/\..*//'` ++ as_minor=`echo $as_ver | sed 's/[^.]*\.\([0-9]*\).*/\1/'` + changequote([,])dnl + if test $as_major -eq 2 && test $as_minor -lt 11 + then : +@@ -3308,7 +3307,7 @@ + i?86*-*-* | mips*-*-* | alpha*-*-* | powerpc*-*-* | sparc*-*-* | m68*-*-* \ + | x86_64*-*-* | hppa*-*-* | arm*-*-* \ + | xstormy16*-*-* | cris-*-* | crisv32-*-* | xtensa*-*-* | bfin-*-* | score*-*-* \ +- | spu-*-* | fido*-*-* | m32c-*-*) ++ | spu-*-* | fido*-*-* | m32c-*-* | avr32-*-*) + insn="nop" + ;; + ia64*-*-* | s390*-*-*) +diff -Nur gcc-4.4.6.orig/gcc/doc/extend.texi gcc-4.4.6/gcc/doc/extend.texi +--- gcc-4.4.6.orig/gcc/doc/extend.texi 2011-03-23 22:45:18.000000000 +0100 ++++ gcc-4.4.6/gcc/doc/extend.texi 2011-08-27 19:45:43.717990492 +0200 +@@ -2397,7 +2397,7 @@ + + @item interrupt + @cindex interrupt handler functions +-Use this attribute on the ARM, AVR, CRX, M32C, M32R/D, m68k, ++Use this attribute on the ARM, AVR, AVR32, CRX, M32C, M32R/D, m68k, + and Xstormy16 ports to indicate that the specified function is an + interrupt handler. The compiler will generate function entry and exit + sequences suitable for use in an interrupt handler when this attribute +@@ -2417,6 +2417,15 @@ + + Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@. + ++Note, for the AVR32, you can specify which banking scheme is used for ++the interrupt mode this interrupt handler is used in like this: ++ ++@smallexample ++void f () __attribute__ ((interrupt ("FULL"))); ++@end smallexample ++ ++Permissible values for this parameter are: FULL, HALF, NONE and UNDEF. ++ + On ARMv7-M the interrupt type is ignored, and the attribute means the function + may be called with a word aligned stack pointer. + +@@ -4188,6 +4197,23 @@ + + @end table + ++@subsection AVR32 Variable Attributes ++ ++One attribute is currently defined for AVR32 configurations: ++@code{rmw_addressable} ++ ++@table @code ++@item rmw_addressable ++@cindex @code{rmw_addressable} attribute ++ ++This attribute can be used to signal that a variable can be accessed ++with the addressing mode of the AVR32 Atomic Read-Modify-Write memory ++instructions and hence make it possible for gcc to generate these ++instructions without using built-in functions or inline assembly statements. ++Variables used within the AVR32 Atomic Read-Modify-Write built-in ++functions will automatically get the @code{rmw_addressable} attribute. ++@end table ++ + @subsection AVR Variable Attributes + + @table @code +@@ -7042,6 +7068,7 @@ + * Alpha Built-in Functions:: + * ARM iWMMXt Built-in Functions:: + * ARM NEON Intrinsics:: ++* AVR32 Built-in Functions:: + * Blackfin Built-in Functions:: + * FR-V Built-in Functions:: + * X86 Built-in Functions:: +@@ -7284,6 +7311,7 @@ + long long __builtin_arm_wzero () + @end smallexample + ++ + @node ARM NEON Intrinsics + @subsection ARM NEON Intrinsics + +@@ -7292,6 +7320,74 @@ + + @include arm-neon-intrinsics.texi + ++@node AVR32 Built-in Functions ++@subsection AVR32 Built-in Functions ++ ++Built-in functions for atomic memory (RMW) instructions. Note that these ++built-ins will fail for targets where the RMW instructions are not ++implemented. Also note that these instructions only that a Ks15 << 2 ++memory address and will therefor not work with any runtime computed ++memory addresses. The user is responsible for making sure that any ++pointers used within these functions points to a valid memory address. ++ ++@smallexample ++void __builtin_mems(int */*ptr*/, int /*bit*/) ++void __builtin_memc(int */*ptr*/, int /*bit*/) ++void __builtin_memt(int */*ptr*/, int /*bit*/) ++@end smallexample ++ ++Built-in functions for DSP instructions. Note that these built-ins will ++fail for targets where the DSP instructions are not implemented. ++ ++@smallexample ++int __builtin_sats (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satu (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satrnds (int /*Rd*/,int /*sa*/, int /*bn*/) ++int __builtin_satrndu (int /*Rd*/,int /*sa*/, int /*bn*/) ++short __builtin_mulsathh_h (short, short) ++int __builtin_mulsathh_w (short, short) ++short __builtin_mulsatrndhh_h (short, short) ++int __builtin_mulsatrndwh_w (int, short) ++int __builtin_mulsatwh_w (int, short) ++int __builtin_macsathh_w (int, short, short) ++short __builtin_satadd_h (short, short) ++short __builtin_satsub_h (short, short) ++int __builtin_satadd_w (int, int) ++int __builtin_satsub_w (int, int) ++long long __builtin_mulwh_d(int, short) ++long long __builtin_mulnwh_d(int, short) ++long long __builtin_macwh_d(long long, int, short) ++long long __builtin_machh_d(long long, short, short) ++@end smallexample ++ ++Other built-in functions for instructions that cannot easily be ++generated by the compiler. ++ ++@smallexample ++void __builtin_ssrf(int); ++void __builtin_csrf(int); ++void __builtin_musfr(int); ++int __builtin_mustr(void); ++int __builtin_mfsr(int /*Status Register Address*/) ++void __builtin_mtsr(int /*Status Register Address*/, int /*Value*/) ++int __builtin_mfdr(int /*Debug Register Address*/) ++void __builtin_mtdr(int /*Debug Register Address*/, int /*Value*/) ++void __builtin_cache(void * /*Address*/, int /*Cache Operation*/) ++void __builtin_sync(int /*Sync Operation*/) ++void __builtin_tlbr(void) ++void __builtin_tlbs(void) ++void __builtin_tlbw(void) ++void __builtin_breakpoint(void) ++int __builtin_xchg(void * /*Address*/, int /*Value*/ ) ++short __builtin_bswap_16(short) ++int __builtin_bswap_32(int) ++void __builtin_cop(int/*cpnr*/, int/*crd*/, int/*crx*/, int/*cry*/, int/*op*/) ++int __builtin_mvcr_w(int/*cpnr*/, int/*crs*/) ++void __builtin_mvrc_w(int/*cpnr*/, int/*crd*/, int/*value*/) ++long long __builtin_mvcr_d(int/*cpnr*/, int/*crs*/) ++void __builtin_mvrc_d(int/*cpnr*/, int/*crd*/, long long/*value*/) ++@end smallexample ++ + @node Blackfin Built-in Functions + @subsection Blackfin Built-in Functions + +diff -Nur gcc-4.4.6.orig/gcc/doc/invoke.texi gcc-4.4.6/gcc/doc/invoke.texi +--- gcc-4.4.6.orig/gcc/doc/invoke.texi 2011-03-23 23:02:12.000000000 +0100 ++++ gcc-4.4.6/gcc/doc/invoke.texi 2011-08-27 19:45:43.767989627 +0200 +@@ -195,7 +195,7 @@ + -fvisibility-ms-compat @gol + -Wabi -Wctor-dtor-privacy @gol + -Wnon-virtual-dtor -Wreorder @gol +--Weffc++ -Wstrict-null-sentinel @gol ++-Weffc++ -Wno-deprecated @gol + -Wno-non-template-friend -Wold-style-cast @gol + -Woverloaded-virtual -Wno-pmf-conversions @gol + -Wsign-promo} +@@ -641,6 +641,12 @@ + -mauto-incdec -minmax -mlong-calls -mshort @gol + -msoft-reg-count=@var{count}} + ++@emph{AVR32 Options} ++@gccoptlist{-muse-rodata-section -mhard-float -msoft-float -mrelax @gol ++-mforce-double-align -mno-init-got -mrelax -mmd-reorg-opt -masm-addr-pseudos @gol ++-mpart=@var{part} -mcpu=@var{cpu} -march=@var{arch} @gol ++-mfast-float -mimm-in-const-pool} ++ + @emph{MCore Options} + @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol + -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol +@@ -3256,13 +3262,11 @@ + If you want to warn about code which uses the uninitialized value of the + variable in its own initializer, use the @option{-Winit-self} option. + +-These warnings occur for individual uninitialized or clobbered +-elements of structure, union or array variables as well as for +-variables which are uninitialized or clobbered as a whole. They do +-not occur for variables or elements declared @code{volatile}. Because +-these warnings depend on optimization, the exact variables or elements +-for which there are warnings will depend on the precise optimization +-options and version of GCC used. ++These warnings occur only for variables that are candidates for ++register allocation. Therefore, they do not occur for a variable that ++is declared @code{volatile}, or whose address is taken, or whose size ++is other than 1, 2, 4 or 8 bytes. Also, they do not occur for ++structures, unions or arrays, even when they are in registers. + + Note that there may be no warning about a variable that is used only + to compute a value that itself is never used, because such +@@ -7445,10 +7449,6 @@ + we always try to remove unnecessary ivs from the set during its + optimization when a new iv is added to the set. + +-@item scev-max-expr-size +-Bound on size of expressions used in the scalar evolutions analyzer. +-Large expressions slow the analyzer. +- + @item omega-max-vars + The maximum number of variables in an Omega constraint system. + The default value is 128. +@@ -8844,6 +8844,7 @@ + * ARC Options:: + * ARM Options:: + * AVR Options:: ++* AVR32 Options:: + * Blackfin Options:: + * CRIS Options:: + * CRX Options:: +@@ -9332,6 +9333,145 @@ + size. + @end table + ++@node AVR32 Options ++@subsection AVR32 Options ++@cindex AVR32 Options ++ ++These options are defined for AVR32 implementations: ++ ++@table @gcctabopt ++@item -muse-rodata-section ++@opindex muse-rodata-section ++Use section @samp{.rodata} for read-only data instead of @samp{.text}. ++ ++@item -mhard-float ++@opindex mhard-float ++Use floating point coprocessor instructions. ++ ++@item -msoft-float ++@opindex msoft-float ++Use software floating-point library for floating-point operations. ++ ++@item -mforce-double-align ++@opindex mforce-double-align ++Force double-word alignment for double-word memory accesses. ++ ++@item -masm-addr-pseudos ++@opindex masm-addr-pseudos ++Use assembler pseudo-instructions lda.w and call for handling direct ++addresses. (Enabled by default) ++ ++@item -mno-init-got ++@opindex mno-init-got ++Do not initialize the GOT register before using it when compiling PIC ++code. ++ ++@item -mrelax ++@opindex mrelax ++Let invoked assembler and linker do relaxing ++(Enabled by default when optimization level is >1). ++This means that when the address of symbols are known at link time, ++the linker can optimize @samp{icall} and @samp{mcall} ++instructions into a @samp{rcall} instruction if possible. ++Loading the address of a symbol can also be optimized. ++ ++@item -mmd-reorg-opt ++@opindex mmd-reorg-opt ++Perform machine dependent optimizations in reorg stage. ++ ++@item -mpart=@var{part} ++@opindex mpart ++Generate code for the specified part. Permissible parts are: ++@samp{ap7000}, ++@samp{ap7001}, ++@samp{ap7002}, ++@samp{ap7200}, ++@samp{uc3a0128}, ++@samp{uc3a0256}, ++@samp{uc3a0512}, ++@samp{uc3a0512es}, ++@samp{uc3a1128}, ++@samp{uc3a1256}, ++@samp{uc3a1512}, ++@samp{uc3a1512es}, ++@samp{uc3a3revd}, ++@samp{uc3a364}, ++@samp{uc3a364s}, ++@samp{uc3a3128}, ++@samp{uc3a3128s}, ++@samp{uc3a3256}, ++@samp{uc3a3256s}, ++@samp{uc3a464}, ++@samp{uc3a464s}, ++@samp{uc3a4128}, ++@samp{uc3a4128s}, ++@samp{uc3a4256}, ++@samp{uc3a4256s}, ++@samp{uc3b064}, ++@samp{uc3b0128}, ++@samp{uc3b0256}, ++@samp{uc3b0256es}, ++@samp{uc3b0512}, ++@samp{uc3b0512revc}, ++@samp{uc3b164}, ++@samp{uc3b1128}, ++@samp{uc3b1256}, ++@samp{uc3b1256es}, ++@samp{uc3b1512}, ++@samp{uc3b1512revc} ++@samp{uc64d3}, ++@samp{uc128d3}, ++@samp{uc64d4}, ++@samp{uc128d4}, ++@samp{uc3c0512crevc}, ++@samp{uc3c1512crevc}, ++@samp{uc3c2512crevc}, ++@samp{uc3l0256}, ++@samp{uc3l0128}, ++@samp{uc3l064}, ++@samp{uc3l032}, ++@samp{uc3l016}, ++@samp{uc3l064revb}, ++@samp{uc64l3u}, ++@samp{uc128l3u}, ++@samp{uc256l3u}, ++@samp{uc64l4u}, ++@samp{uc128l4u}, ++@samp{uc256l4u}, ++@samp{uc3c064c}, ++@samp{uc3c0128c}, ++@samp{uc3c0256c}, ++@samp{uc3c0512c}, ++@samp{uc3c164c}, ++@samp{uc3c1128c}, ++@samp{uc3c1256c}, ++@samp{uc3c1512c}, ++@samp{uc3c264c}, ++@samp{uc3c2128c}, ++@samp{uc3c2256c}, ++@samp{uc3c2512c}, ++@samp{mxt768e}. ++ ++@item -mcpu=@var{cpu-type} ++@opindex mcpu ++Same as -mpart. Obsolete. ++ ++@item -march=@var{arch} ++@opindex march ++Generate code for the specified architecture. Permissible architectures are: ++@samp{ap}, @samp{uc} and @samp{ucr2}. ++ ++@item -mfast-float ++@opindex mfast-float ++Enable fast floating-point library that does not conform to IEEE-754 but is still good enough ++for most applications. The fast floating-point library does not round to the nearest even ++but away from zero. Enabled by default if the -funsafe-math-optimizations switch is specified. ++ ++@item -mimm-in-const-pool ++@opindex mimm-in-const-pool ++Put large immediates in constant pool. This is enabled by default for archs with insn-cache. ++@end table ++ + @node Blackfin Options + @subsection Blackfin Options + @cindex Blackfin Options +@@ -9387,29 +9527,12 @@ + contain speculative loads after jump instructions. If this option is used, + @code{__WORKAROUND_SPECULATIVE_LOADS} is defined. + +-@item -mno-specld-anomaly +-@opindex mno-specld-anomaly +-Don't generate extra code to prevent speculative loads from occurring. +- + @item -mcsync-anomaly + @opindex mcsync-anomaly + When enabled, the compiler will ensure that the generated code does not + contain CSYNC or SSYNC instructions too soon after conditional branches. + If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined. + +-@item -mno-csync-anomaly +-@opindex mno-csync-anomaly +-Don't generate extra code to prevent CSYNC or SSYNC instructions from +-occurring too soon after a conditional branch. +- +-@item -mlow-64k +-@opindex mlow-64k +-When enabled, the compiler is free to take advantage of the knowledge that +-the entire program fits into the low 64k of memory. +- +-@item -mno-low-64k +-@opindex mno-low-64k +-Assume that the program is arbitrarily large. This is the default. + + @item -mstack-check-l1 + @opindex mstack-check-l1 +@@ -9423,11 +9546,6 @@ + without virtual memory management. This option implies @option{-fPIC}. + With a @samp{bfin-elf} target, this option implies @option{-msim}. + +-@item -mno-id-shared-library +-@opindex mno-id-shared-library +-Generate code that doesn't assume ID based shared libraries are being used. +-This is the default. +- + @item -mleaf-id-shared-library + @opindex mleaf-id-shared-library + Generate code that supports shared libraries via the library ID method, +@@ -9469,11 +9587,6 @@ + will lie outside of the 24 bit addressing range of the offset based + version of subroutine call instruction. + +-This feature is not enabled by default. Specifying +-@option{-mno-long-calls} will restore the default behavior. Note these +-switches have no effect on how the compiler generates code to handle +-function calls via function pointers. +- + @item -mfast-fp + @opindex mfast-fp + Link with the fast floating-point library. This library relaxes some of +diff -Nur gcc-4.4.6.orig/gcc/doc/invoke.texi.orig gcc-4.4.6/gcc/doc/invoke.texi.orig +--- gcc-4.4.6.orig/gcc/doc/invoke.texi.orig 1970-01-01 01:00:00.000000000 +0100 ++++ gcc-4.4.6/gcc/doc/invoke.texi.orig 2011-03-23 23:02:12.000000000 +0100 +@@ -0,0 +1,16654 @@ ++@c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, ++@c 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 ++@c Free Software Foundation, Inc. ++@c This is part of the GCC manual. ++@c For copying conditions, see the file gcc.texi. ++ ++@ignore ++@c man begin INCLUDE ++@include gcc-vers.texi ++@c man end ++ ++@c man begin COPYRIGHT ++Copyright @copyright{} 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, ++1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 ++Free Software Foundation, Inc. ++ ++Permission is granted to copy, distribute and/or modify this document ++under the terms of the GNU Free Documentation License, Version 1.2 or ++any later version published by the Free Software Foundation; with the ++Invariant Sections being ``GNU General Public License'' and ``Funding ++Free Software'', the Front-Cover texts being (a) (see below), and with ++the Back-Cover Texts being (b) (see below). A copy of the license is ++included in the gfdl(7) man page. ++ ++(a) The FSF's Front-Cover Text is: ++ ++ A GNU Manual ++ ++(b) The FSF's Back-Cover Text is: ++ ++ You have freedom to copy and modify this GNU Manual, like GNU ++ software. Copies published by the Free Software Foundation raise ++ funds for GNU development. ++@c man end ++@c Set file name and title for the man page. ++@setfilename gcc ++@settitle GNU project C and C++ compiler ++@c man begin SYNOPSIS ++gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}] ++ [@option{-g}] [@option{-pg}] [@option{-O}@var{level}] ++ [@option{-W}@var{warn}@dots{}] [@option{-pedantic}] ++ [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}] ++ [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}] ++ [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}] ++ [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{} ++ ++Only the most useful options are listed here; see below for the ++remainder. @samp{g++} accepts mostly the same options as @samp{gcc}. ++@c man end ++@c man begin SEEALSO ++gpl(7), gfdl(7), fsf-funding(7), ++cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1) ++and the Info entries for @file{gcc}, @file{cpp}, @file{as}, ++@file{ld}, @file{binutils} and @file{gdb}. ++@c man end ++@c man begin BUGS ++For instructions on reporting bugs, see ++@w{@value{BUGURL}}. ++@c man end ++@c man begin AUTHOR ++See the Info entry for @command{gcc}, or ++@w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}}, ++for contributors to GCC@. ++@c man end ++@end ignore ++ ++@node Invoking GCC ++@chapter GCC Command Options ++@cindex GCC command options ++@cindex command options ++@cindex options, GCC command ++ ++@c man begin DESCRIPTION ++When you invoke GCC, it normally does preprocessing, compilation, ++assembly and linking. The ``overall options'' allow you to stop this ++process at an intermediate stage. For example, the @option{-c} option ++says not to run the linker. Then the output consists of object files ++output by the assembler. ++ ++Other options are passed on to one stage of processing. Some options ++control the preprocessor and others the compiler itself. Yet other ++options control the assembler and linker; most of these are not ++documented here, since you rarely need to use any of them. ++ ++@cindex C compilation options ++Most of the command line options that you can use with GCC are useful ++for C programs; when an option is only useful with another language ++(usually C++), the explanation says so explicitly. If the description ++for a particular option does not mention a source language, you can use ++that option with all supported languages. ++ ++@cindex C++ compilation options ++@xref{Invoking G++,,Compiling C++ Programs}, for a summary of special ++options for compiling C++ programs. ++ ++@cindex grouping options ++@cindex options, grouping ++The @command{gcc} program accepts options and file names as operands. Many ++options have multi-letter names; therefore multiple single-letter options ++may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d ++-v}}. ++ ++@cindex order of options ++@cindex options, order ++You can mix options and other arguments. For the most part, the order ++you use doesn't matter. Order does matter when you use several ++options of the same kind; for example, if you specify @option{-L} more ++than once, the directories are searched in the order specified. Also, ++the placement of the @option{-l} option is significant. ++ ++Many options have long names starting with @samp{-f} or with ++@samp{-W}---for example, ++@option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of ++these have both positive and negative forms; the negative form of ++@option{-ffoo} would be @option{-fno-foo}. This manual documents ++only one of these two forms, whichever one is not the default. ++ ++@c man end ++ ++@xref{Option Index}, for an index to GCC's options. ++ ++@menu ++* Option Summary:: Brief list of all options, without explanations. ++* Overall Options:: Controlling the kind of output: ++ an executable, object files, assembler files, ++ or preprocessed source. ++* Invoking G++:: Compiling C++ programs. ++* C Dialect Options:: Controlling the variant of C language compiled. ++* C++ Dialect Options:: Variations on C++. ++* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C ++ and Objective-C++. ++* Language Independent Options:: Controlling how diagnostics should be ++ formatted. ++* Warning Options:: How picky should the compiler be? ++* Debugging Options:: Symbol tables, measurements, and debugging dumps. ++* Optimize Options:: How much optimization? ++* Preprocessor Options:: Controlling header files and macro definitions. ++ Also, getting dependency information for Make. ++* Assembler Options:: Passing options to the assembler. ++* Link Options:: Specifying libraries and so on. ++* Directory Options:: Where to find header files and libraries. ++ Where to find the compiler executable files. ++* Spec Files:: How to pass switches to sub-processes. ++* Target Options:: Running a cross-compiler, or an old version of GCC. ++* Submodel Options:: Specifying minor hardware or convention variations, ++ such as 68010 vs 68020. ++* Code Gen Options:: Specifying conventions for function calls, data layout ++ and register usage. ++* Environment Variables:: Env vars that affect GCC. ++* Precompiled Headers:: Compiling a header once, and using it many times. ++* Running Protoize:: Automatically adding or removing function prototypes. ++@end menu ++ ++@c man begin OPTIONS ++ ++@node Option Summary ++@section Option Summary ++ ++Here is a summary of all the options, grouped by type. Explanations are ++in the following sections. ++ ++@table @emph ++@item Overall Options ++@xref{Overall Options,,Options Controlling the Kind of Output}. ++@gccoptlist{-c -S -E -o @var{file} -combine -pipe -pass-exit-codes @gol ++-x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol ++--version -wrapper@@@var{file}} ++ ++@item C Language Options ++@xref{C Dialect Options,,Options Controlling C Dialect}. ++@gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol ++-aux-info @var{filename} @gol ++-fno-asm -fno-builtin -fno-builtin-@var{function} @gol ++-fhosted -ffreestanding -fopenmp -fms-extensions @gol ++-trigraphs -no-integrated-cpp -traditional -traditional-cpp @gol ++-fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol ++-fsigned-bitfields -fsigned-char @gol ++-funsigned-bitfields -funsigned-char} ++ ++@item C++ Language Options ++@xref{C++ Dialect Options,,Options Controlling C++ Dialect}. ++@gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol ++-fconserve-space -ffriend-injection @gol ++-fno-elide-constructors @gol ++-fno-enforce-eh-specs @gol ++-ffor-scope -fno-for-scope -fno-gnu-keywords @gol ++-fno-implicit-templates @gol ++-fno-implicit-inline-templates @gol ++-fno-implement-inlines -fms-extensions @gol ++-fno-nonansi-builtins -fno-operator-names @gol ++-fno-optional-diags -fpermissive @gol ++-frepo -fno-rtti -fstats -ftemplate-depth-@var{n} @gol ++-fno-threadsafe-statics -fuse-cxa-atexit -fno-weak -nostdinc++ @gol ++-fno-default-inline -fvisibility-inlines-hidden @gol ++-fvisibility-ms-compat @gol ++-Wabi -Wctor-dtor-privacy @gol ++-Wnon-virtual-dtor -Wreorder @gol ++-Weffc++ -Wstrict-null-sentinel @gol ++-Wno-non-template-friend -Wold-style-cast @gol ++-Woverloaded-virtual -Wno-pmf-conversions @gol ++-Wsign-promo} ++ ++@item Objective-C and Objective-C++ Language Options ++@xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling ++Objective-C and Objective-C++ Dialects}. ++@gccoptlist{-fconstant-string-class=@var{class-name} @gol ++-fgnu-runtime -fnext-runtime @gol ++-fno-nil-receivers @gol ++-fobjc-call-cxx-cdtors @gol ++-fobjc-direct-dispatch @gol ++-fobjc-exceptions @gol ++-fobjc-gc @gol ++-freplace-objc-classes @gol ++-fzero-link @gol ++-gen-decls @gol ++-Wassign-intercept @gol ++-Wno-protocol -Wselector @gol ++-Wstrict-selector-match @gol ++-Wundeclared-selector} ++ ++@item Language Independent Options ++@xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}. ++@gccoptlist{-fmessage-length=@var{n} @gol ++-fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol ++-fdiagnostics-show-option} ++ ++@item Warning Options ++@xref{Warning Options,,Options to Request or Suppress Warnings}. ++@gccoptlist{-fsyntax-only -pedantic -pedantic-errors @gol ++-w -Wextra -Wall -Waddress -Waggregate-return -Warray-bounds @gol ++-Wno-attributes -Wno-builtin-macro-redefined @gol ++-Wc++-compat -Wc++0x-compat -Wcast-align -Wcast-qual @gol ++-Wchar-subscripts -Wclobbered -Wcomment @gol ++-Wconversion -Wcoverage-mismatch -Wno-deprecated @gol ++-Wno-deprecated-declarations -Wdisabled-optimization @gol ++-Wno-div-by-zero -Wempty-body -Wenum-compare -Wno-endif-labels @gol ++-Werror -Werror=* @gol ++-Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol ++-Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol ++-Wformat-security -Wformat-y2k @gol ++-Wframe-larger-than=@var{len} -Wignored-qualifiers @gol ++-Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol ++-Winit-self -Winline @gol ++-Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol ++-Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol ++-Wlogical-op -Wlong-long @gol ++-Wmain -Wmissing-braces -Wmissing-field-initializers @gol ++-Wmissing-format-attribute -Wmissing-include-dirs @gol ++-Wmissing-noreturn -Wno-mudflap @gol ++-Wno-multichar -Wnonnull -Wno-overflow @gol ++-Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol ++-Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol ++-Wpointer-arith -Wno-pointer-to-int-cast @gol ++-Wredundant-decls @gol ++-Wreturn-type -Wsequence-point -Wshadow @gol ++-Wsign-compare -Wsign-conversion -Wstack-protector @gol ++-Wstrict-aliasing -Wstrict-aliasing=n @gol ++-Wstrict-overflow -Wstrict-overflow=@var{n} @gol ++-Wswitch -Wswitch-default -Wswitch-enum -Wsync-nand @gol ++-Wsystem-headers -Wtrigraphs -Wtype-limits -Wundef -Wuninitialized @gol ++-Wunknown-pragmas -Wno-pragmas -Wunreachable-code @gol ++-Wunused -Wunused-function -Wunused-label -Wunused-parameter @gol ++-Wunused-value -Wunused-variable @gol ++-Wvariadic-macros -Wvla @gol ++-Wvolatile-register-var -Wwrite-strings} ++ ++@item C and Objective-C-only Warning Options ++@gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol ++-Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol ++-Wold-style-declaration -Wold-style-definition @gol ++-Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol ++-Wdeclaration-after-statement -Wpointer-sign} ++ ++@item Debugging Options ++@xref{Debugging Options,,Options for Debugging Your Program or GCC}. ++@gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol ++-fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol ++-fdump-noaddr -fdump-unnumbered @gol ++-fdump-translation-unit@r{[}-@var{n}@r{]} @gol ++-fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol ++-fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol ++-fdump-statistics @gol ++-fdump-tree-all @gol ++-fdump-tree-original@r{[}-@var{n}@r{]} @gol ++-fdump-tree-optimized@r{[}-@var{n}@r{]} @gol ++-fdump-tree-cfg -fdump-tree-vcg -fdump-tree-alias @gol ++-fdump-tree-ch @gol ++-fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol ++-fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol ++-fdump-tree-gimple@r{[}-raw@r{]} -fdump-tree-mudflap@r{[}-@var{n}@r{]} @gol ++-fdump-tree-dom@r{[}-@var{n}@r{]} @gol ++-fdump-tree-dse@r{[}-@var{n}@r{]} @gol ++-fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol ++-fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol ++-fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol ++-fdump-tree-nrv -fdump-tree-vect @gol ++-fdump-tree-sink @gol ++-fdump-tree-sra@r{[}-@var{n}@r{]} @gol ++-fdump-tree-fre@r{[}-@var{n}@r{]} @gol ++-fdump-tree-vrp@r{[}-@var{n}@r{]} @gol ++-ftree-vectorizer-verbose=@var{n} @gol ++-fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol ++-feliminate-dwarf2-dups -feliminate-unused-debug-types @gol ++-feliminate-unused-debug-symbols -femit-class-debug-always @gol ++-fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol ++-frandom-seed=@var{string} -fsched-verbose=@var{n} @gol ++-fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol ++-ftest-coverage -ftime-report -fvar-tracking @gol ++-g -g@var{level} -gcoff -gdwarf-2 @gol ++-ggdb -gstabs -gstabs+ -gvms -gxcoff -gxcoff+ @gol ++-fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol ++-fdebug-prefix-map=@var{old}=@var{new} @gol ++-femit-struct-debug-baseonly -femit-struct-debug-reduced @gol ++-femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol ++-p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol ++-print-multi-directory -print-multi-lib @gol ++-print-prog-name=@var{program} -print-search-dirs -Q @gol ++-print-sysroot -print-sysroot-headers-suffix @gol ++-save-temps -time} ++ ++@item Optimization Options ++@xref{Optimize Options,,Options that Control Optimization}. ++@gccoptlist{ ++-falign-functions[=@var{n}] -falign-jumps[=@var{n}] @gol ++-falign-labels[=@var{n}] -falign-loops[=@var{n}] -fassociative-math @gol ++-fauto-inc-dec -fbranch-probabilities -fbranch-target-load-optimize @gol ++-fbranch-target-load-optimize2 -fbtr-bb-exclusive -fcaller-saves @gol ++-fcheck-data-deps -fconserve-stack -fcprop-registers -fcrossjumping @gol ++-fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules -fcx-limited-range @gol ++-fdata-sections -fdce -fdce @gol ++-fdelayed-branch -fdelete-null-pointer-checks -fdse -fdse @gol ++-fearly-inlining -fexpensive-optimizations -ffast-math @gol ++-ffinite-math-only -ffloat-store -fforward-propagate @gol ++-ffunction-sections -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm @gol ++-fgcse-sm -fif-conversion -fif-conversion2 -findirect-inlining @gol ++-finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol ++-finline-small-functions -fipa-cp -fipa-cp-clone -fipa-matrix-reorg -fipa-pta @gol ++-fipa-pure-const -fipa-reference -fipa-struct-reorg @gol ++-fipa-type-escape -fira-algorithm=@var{algorithm} @gol ++-fira-region=@var{region} -fira-coalesce -fno-ira-share-save-slots @gol ++-fno-ira-share-spill-slots -fira-verbose=@var{n} @gol ++-fivopts -fkeep-inline-functions -fkeep-static-consts @gol ++-floop-block -floop-interchange -floop-strip-mine @gol ++-fmerge-all-constants -fmerge-constants -fmodulo-sched @gol ++-fmodulo-sched-allow-regmoves -fmove-loop-invariants -fmudflap @gol ++-fmudflapir -fmudflapth -fno-branch-count-reg -fno-default-inline @gol ++-fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol ++-fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol ++-fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol ++-fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol ++-fomit-frame-pointer -foptimize-register-move -foptimize-sibling-calls @gol ++-fpeel-loops -fpredictive-commoning -fprefetch-loop-arrays @gol ++-fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol ++-fprofile-generate=@var{path} @gol ++-fprofile-use -fprofile-use=@var{path} -fprofile-values @gol ++-freciprocal-math -fregmove -frename-registers -freorder-blocks @gol ++-freorder-blocks-and-partition -freorder-functions @gol ++-frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol ++-frounding-math -frtl-abstract-sequences -fsched2-use-superblocks @gol ++-fsched2-use-traces -fsched-spec-load -fsched-spec-load-dangerous @gol ++-fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol ++-fschedule-insns -fschedule-insns2 -fsection-anchors -fsee @gol ++-fselective-scheduling -fselective-scheduling2 @gol ++-fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol ++-fsignaling-nans -fsingle-precision-constant -fsplit-ivs-in-unroller @gol ++-fsplit-wide-types -fstack-protector -fstack-protector-all @gol ++-fstrict-aliasing -fstrict-overflow -fthread-jumps -ftracer @gol ++-ftree-builtin-call-dce -ftree-ccp -ftree-ch -ftree-copy-prop @gol ++-ftree-copyrename -ftree-dce @gol ++-ftree-dominator-opts -ftree-dse -ftree-fre -ftree-loop-im @gol ++-ftree-loop-distribution @gol ++-ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol ++-ftree-parallelize-loops=@var{n} -ftree-pre -ftree-reassoc @gol ++-ftree-sink -ftree-sra -ftree-switch-conversion @gol ++-ftree-ter -ftree-vect-loop-version -ftree-vectorize -ftree-vrp @gol ++-funit-at-a-time -funroll-all-loops -funroll-loops @gol ++-funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol ++-fvariable-expansion-in-unroller -fvect-cost-model -fvpt -fweb @gol ++-fwhole-program @gol ++--param @var{name}=@var{value} ++-O -O0 -O1 -O2 -O3 -Os} ++ ++@item Preprocessor Options ++@xref{Preprocessor Options,,Options Controlling the Preprocessor}. ++@gccoptlist{-A@var{question}=@var{answer} @gol ++-A-@var{question}@r{[}=@var{answer}@r{]} @gol ++-C -dD -dI -dM -dN @gol ++-D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol ++-idirafter @var{dir} @gol ++-include @var{file} -imacros @var{file} @gol ++-iprefix @var{file} -iwithprefix @var{dir} @gol ++-iwithprefixbefore @var{dir} -isystem @var{dir} @gol ++-imultilib @var{dir} -isysroot @var{dir} @gol ++-M -MM -MF -MG -MP -MQ -MT -nostdinc @gol ++-P -fworking-directory -remap @gol ++-trigraphs -undef -U@var{macro} -Wp,@var{option} @gol ++-Xpreprocessor @var{option}} ++ ++@item Assembler Option ++@xref{Assembler Options,,Passing Options to the Assembler}. ++@gccoptlist{-Wa,@var{option} -Xassembler @var{option}} ++ ++@item Linker Options ++@xref{Link Options,,Options for Linking}. ++@gccoptlist{@var{object-file-name} -l@var{library} @gol ++-nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol ++-s -static -static-libgcc -shared -shared-libgcc -symbolic @gol ++-T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol ++-u @var{symbol}} ++ ++@item Directory Options ++@xref{Directory Options,,Options for Directory Search}. ++@gccoptlist{-B@var{prefix} -I@var{dir} -iquote@var{dir} -L@var{dir} ++-specs=@var{file} -I- --sysroot=@var{dir}} ++ ++@item Target Options ++@c I wrote this xref this way to avoid overfull hbox. -- rms ++@xref{Target Options}. ++@gccoptlist{-V @var{version} -b @var{machine}} ++ ++@item Machine Dependent Options ++@xref{Submodel Options,,Hardware Models and Configurations}. ++@c This list is ordered alphanumerically by subsection name. ++@c Try and put the significant identifier (CPU or system) first, ++@c so users have a clue at guessing where the ones they want will be. ++ ++@emph{ARC Options} ++@gccoptlist{-EB -EL @gol ++-mmangle-cpu -mcpu=@var{cpu} -mtext=@var{text-section} @gol ++-mdata=@var{data-section} -mrodata=@var{readonly-data-section}} ++ ++@emph{ARM Options} ++@gccoptlist{-mapcs-frame -mno-apcs-frame @gol ++-mabi=@var{name} @gol ++-mapcs-stack-check -mno-apcs-stack-check @gol ++-mapcs-float -mno-apcs-float @gol ++-mapcs-reentrant -mno-apcs-reentrant @gol ++-msched-prolog -mno-sched-prolog @gol ++-mlittle-endian -mbig-endian -mwords-little-endian @gol ++-mfloat-abi=@var{name} -msoft-float -mhard-float -mfpe @gol ++-mthumb-interwork -mno-thumb-interwork @gol ++-mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol ++-mstructure-size-boundary=@var{n} @gol ++-mabort-on-noreturn @gol ++-mlong-calls -mno-long-calls @gol ++-msingle-pic-base -mno-single-pic-base @gol ++-mpic-register=@var{reg} @gol ++-mnop-fun-dllimport @gol ++-mcirrus-fix-invalid-insns -mno-cirrus-fix-invalid-insns @gol ++-mpoke-function-name @gol ++-mthumb -marm @gol ++-mtpcs-frame -mtpcs-leaf-frame @gol ++-mcaller-super-interworking -mcallee-super-interworking @gol ++-mtp=@var{name} @gol ++-mword-relocations @gol ++-mfix-cortex-m3-ldrd} ++ ++@emph{AVR Options} ++@gccoptlist{-mmcu=@var{mcu} -msize -mno-interrupts @gol ++-mcall-prologues -mno-tablejump -mtiny-stack -mint8} ++ ++@emph{Blackfin Options} ++@gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol ++-msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol ++-mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol ++-mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol ++-mno-id-shared-library -mshared-library-id=@var{n} @gol ++-mleaf-id-shared-library -mno-leaf-id-shared-library @gol ++-msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol ++-mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol ++-micplb} ++ ++@emph{CRIS Options} ++@gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol ++-mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol ++-metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol ++-mstack-align -mdata-align -mconst-align @gol ++-m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol ++-melf -maout -melinux -mlinux -sim -sim2 @gol ++-mmul-bug-workaround -mno-mul-bug-workaround} ++ ++@emph{CRX Options} ++@gccoptlist{-mmac -mpush-args} ++ ++@emph{Darwin Options} ++@gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol ++-arch_only -bind_at_load -bundle -bundle_loader @gol ++-client_name -compatibility_version -current_version @gol ++-dead_strip @gol ++-dependency-file -dylib_file -dylinker_install_name @gol ++-dynamic -dynamiclib -exported_symbols_list @gol ++-filelist -flat_namespace -force_cpusubtype_ALL @gol ++-force_flat_namespace -headerpad_max_install_names @gol ++-iframework @gol ++-image_base -init -install_name -keep_private_externs @gol ++-multi_module -multiply_defined -multiply_defined_unused @gol ++-noall_load -no_dead_strip_inits_and_terms @gol ++-nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol ++-pagezero_size -prebind -prebind_all_twolevel_modules @gol ++-private_bundle -read_only_relocs -sectalign @gol ++-sectobjectsymbols -whyload -seg1addr @gol ++-sectcreate -sectobjectsymbols -sectorder @gol ++-segaddr -segs_read_only_addr -segs_read_write_addr @gol ++-seg_addr_table -seg_addr_table_filename -seglinkedit @gol ++-segprot -segs_read_only_addr -segs_read_write_addr @gol ++-single_module -static -sub_library -sub_umbrella @gol ++-twolevel_namespace -umbrella -undefined @gol ++-unexported_symbols_list -weak_reference_mismatches @gol ++-whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol ++-mkernel -mone-byte-bool} ++ ++@emph{DEC Alpha Options} ++@gccoptlist{-mno-fp-regs -msoft-float -malpha-as -mgas @gol ++-mieee -mieee-with-inexact -mieee-conformant @gol ++-mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol ++-mtrap-precision=@var{mode} -mbuild-constants @gol ++-mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol ++-mbwx -mmax -mfix -mcix @gol ++-mfloat-vax -mfloat-ieee @gol ++-mexplicit-relocs -msmall-data -mlarge-data @gol ++-msmall-text -mlarge-text @gol ++-mmemory-latency=@var{time}} ++ ++@emph{DEC Alpha/VMS Options} ++@gccoptlist{-mvms-return-codes} ++ ++@emph{FR30 Options} ++@gccoptlist{-msmall-model -mno-lsim} ++ ++@emph{FRV Options} ++@gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol ++-mhard-float -msoft-float @gol ++-malloc-cc -mfixed-cc -mdword -mno-dword @gol ++-mdouble -mno-double @gol ++-mmedia -mno-media -mmuladd -mno-muladd @gol ++-mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol ++-mlinked-fp -mlong-calls -malign-labels @gol ++-mlibrary-pic -macc-4 -macc-8 @gol ++-mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol ++-moptimize-membar -mno-optimize-membar @gol ++-mscc -mno-scc -mcond-exec -mno-cond-exec @gol ++-mvliw-branch -mno-vliw-branch @gol ++-mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol ++-mno-nested-cond-exec -mtomcat-stats @gol ++-mTLS -mtls @gol ++-mcpu=@var{cpu}} ++ ++@emph{GNU/Linux Options} ++@gccoptlist{-muclibc} ++ ++@emph{H8/300 Options} ++@gccoptlist{-mrelax -mh -ms -mn -mint32 -malign-300} ++ ++@emph{HPPA Options} ++@gccoptlist{-march=@var{architecture-type} @gol ++-mbig-switch -mdisable-fpregs -mdisable-indexing @gol ++-mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol ++-mfixed-range=@var{register-range} @gol ++-mjump-in-delay -mlinker-opt -mlong-calls @gol ++-mlong-load-store -mno-big-switch -mno-disable-fpregs @gol ++-mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol ++-mno-jump-in-delay -mno-long-load-store @gol ++-mno-portable-runtime -mno-soft-float @gol ++-mno-space-regs -msoft-float -mpa-risc-1-0 @gol ++-mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol ++-mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol ++-munix=@var{unix-std} -nolibdld -static -threads} ++ ++@emph{i386 and x86-64 Options} ++@gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol ++-mfpmath=@var{unit} @gol ++-masm=@var{dialect} -mno-fancy-math-387 @gol ++-mno-fp-ret-in-387 -msoft-float @gol ++-mno-wide-multiply -mrtd -malign-double @gol ++-mpreferred-stack-boundary=@var{num} ++-mincoming-stack-boundary=@var{num} ++-mcld -mcx16 -msahf -mrecip @gol ++-mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol ++-maes -mpclmul @gol ++-msse4a -m3dnow -mpopcnt -mabm -msse5 @gol ++-mthreads -mno-align-stringops -minline-all-stringops @gol ++-minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol ++-mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol ++-m96bit-long-double -mregparm=@var{num} -msseregparm @gol ++-mveclibabi=@var{type} -mpc32 -mpc64 -mpc80 -mstackrealign @gol ++-momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol ++-mcmodel=@var{code-model} @gol ++-m32 -m64 -mlarge-data-threshold=@var{num} @gol ++-mfused-madd -mno-fused-madd -msse2avx} ++ ++@emph{i386 and x86-64 Windows Options} ++@gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll ++-mnop-fun-dllimport -mthread -mwin32 -mwindows} ++ ++@emph{IA-64 Options} ++@gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol ++-mvolatile-asm-stop -mregister-names -mno-sdata @gol ++-mconstant-gp -mauto-pic -minline-float-divide-min-latency @gol ++-minline-float-divide-max-throughput @gol ++-minline-int-divide-min-latency @gol ++-minline-int-divide-max-throughput @gol ++-minline-sqrt-min-latency -minline-sqrt-max-throughput @gol ++-mno-dwarf2-asm -mearly-stop-bits @gol ++-mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol ++-mtune=@var{cpu-type} -mt -pthread -milp32 -mlp64 @gol ++-mno-sched-br-data-spec -msched-ar-data-spec -mno-sched-control-spec @gol ++-msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol ++-msched-ldc -mno-sched-control-ldc -mno-sched-spec-verbose @gol ++-mno-sched-prefer-non-data-spec-insns @gol ++-mno-sched-prefer-non-control-spec-insns @gol ++-mno-sched-count-spec-in-critical-path} ++ ++@emph{M32R/D Options} ++@gccoptlist{-m32r2 -m32rx -m32r @gol ++-mdebug @gol ++-malign-loops -mno-align-loops @gol ++-missue-rate=@var{number} @gol ++-mbranch-cost=@var{number} @gol ++-mmodel=@var{code-size-model-type} @gol ++-msdata=@var{sdata-type} @gol ++-mno-flush-func -mflush-func=@var{name} @gol ++-mno-flush-trap -mflush-trap=@var{number} @gol ++-G @var{num}} ++ ++@emph{M32C Options} ++@gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}} ++ ++@emph{M680x0 Options} ++@gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} ++-m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol ++-m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol ++-mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol ++-mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol ++-mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol ++-malign-int -mstrict-align -msep-data -mno-sep-data @gol ++-mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol ++-mxgot -mno-xgot} ++ ++@emph{M68hc1x Options} ++@gccoptlist{-m6811 -m6812 -m68hc11 -m68hc12 -m68hcs12 @gol ++-mauto-incdec -minmax -mlong-calls -mshort @gol ++-msoft-reg-count=@var{count}} ++ ++@emph{MCore Options} ++@gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol ++-mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol ++-m4byte-functions -mno-4byte-functions -mcallgraph-data @gol ++-mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol ++-mlittle-endian -mbig-endian -m210 -m340 -mstack-increment} ++ ++@emph{MIPS Options} ++@gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol ++-mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 @gol ++-mips64 -mips64r2 @gol ++-mips16 -mno-mips16 -mflip-mips16 @gol ++-minterlink-mips16 -mno-interlink-mips16 @gol ++-mabi=@var{abi} -mabicalls -mno-abicalls @gol ++-mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol ++-mgp32 -mgp64 -mfp32 -mfp64 -mhard-float -msoft-float @gol ++-msingle-float -mdouble-float -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol ++-mfpu=@var{fpu-type} @gol ++-msmartmips -mno-smartmips @gol ++-mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol ++-mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol ++-mlong64 -mlong32 -msym32 -mno-sym32 @gol ++-G@var{num} -mlocal-sdata -mno-local-sdata @gol ++-mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol ++-membedded-data -mno-embedded-data @gol ++-muninit-const-in-rodata -mno-uninit-const-in-rodata @gol ++-mcode-readable=@var{setting} @gol ++-msplit-addresses -mno-split-addresses @gol ++-mexplicit-relocs -mno-explicit-relocs @gol ++-mcheck-zero-division -mno-check-zero-division @gol ++-mdivide-traps -mdivide-breaks @gol ++-mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol ++-mmad -mno-mad -mfused-madd -mno-fused-madd -nocpp @gol ++-mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol ++-mfix-r10000 -mno-fix-r10000 -mfix-vr4120 -mno-fix-vr4120 @gol ++-mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol ++-mflush-func=@var{func} -mno-flush-func @gol ++-mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol ++-mfp-exceptions -mno-fp-exceptions @gol ++-mvr4130-align -mno-vr4130-align} ++ ++@emph{MMIX Options} ++@gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol ++-mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol ++-melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol ++-mno-base-addresses -msingle-exit -mno-single-exit} ++ ++@emph{MN10300 Options} ++@gccoptlist{-mmult-bug -mno-mult-bug @gol ++-mam33 -mno-am33 @gol ++-mam33-2 -mno-am33-2 @gol ++-mreturn-pointer-on-d0 @gol ++-mno-crt0 -mrelax} ++ ++@emph{PDP-11 Options} ++@gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol ++-mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol ++-mint16 -mno-int32 -mfloat32 -mno-float64 @gol ++-mfloat64 -mno-float32 -mabshi -mno-abshi @gol ++-mbranch-expensive -mbranch-cheap @gol ++-msplit -mno-split -munix-asm -mdec-asm} ++ ++@emph{picoChip Options} ++@gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} ++-msymbol-as-address -mno-inefficient-warnings} ++ ++@emph{PowerPC Options} ++See RS/6000 and PowerPC Options. ++ ++@emph{RS/6000 and PowerPC Options} ++@gccoptlist{-mcpu=@var{cpu-type} @gol ++-mtune=@var{cpu-type} @gol ++-mpower -mno-power -mpower2 -mno-power2 @gol ++-mpowerpc -mpowerpc64 -mno-powerpc @gol ++-maltivec -mno-altivec @gol ++-mpowerpc-gpopt -mno-powerpc-gpopt @gol ++-mpowerpc-gfxopt -mno-powerpc-gfxopt @gol ++-mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mfprnd -mno-fprnd @gol ++-mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol ++-mnew-mnemonics -mold-mnemonics @gol ++-mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol ++-m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol ++-malign-power -malign-natural @gol ++-msoft-float -mhard-float -mmultiple -mno-multiple @gol ++-msingle-float -mdouble-float -msimple-fpu @gol ++-mstring -mno-string -mupdate -mno-update @gol ++-mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol ++-mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol ++-mstrict-align -mno-strict-align -mrelocatable @gol ++-mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol ++-mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol ++-mdynamic-no-pic -maltivec -mswdiv @gol ++-mprioritize-restricted-insns=@var{priority} @gol ++-msched-costly-dep=@var{dependence_type} @gol ++-minsert-sched-nops=@var{scheme} @gol ++-mcall-sysv -mcall-netbsd @gol ++-maix-struct-return -msvr4-struct-return @gol ++-mabi=@var{abi-type} -msecure-plt -mbss-plt @gol ++-misel -mno-isel @gol ++-misel=yes -misel=no @gol ++-mspe -mno-spe @gol ++-mspe=yes -mspe=no @gol ++-mpaired @gol ++-mgen-cell-microcode -mwarn-cell-microcode @gol ++-mvrsave -mno-vrsave @gol ++-mmulhw -mno-mulhw @gol ++-mdlmzb -mno-dlmzb @gol ++-mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol ++-mprototype -mno-prototype @gol ++-msim -mmvme -mads -myellowknife -memb -msdata @gol ++-msdata=@var{opt} -mvxworks -G @var{num} -pthread} ++ ++@emph{S/390 and zSeries Options} ++@gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol ++-mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol ++-mlong-double-64 -mlong-double-128 @gol ++-mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol ++-msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol ++-m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol ++-mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol ++-mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard} ++ ++@emph{Score Options} ++@gccoptlist{-meb -mel @gol ++-mnhwloop @gol ++-muls @gol ++-mmac @gol ++-mscore5 -mscore5u -mscore7 -mscore7d} ++ ++@emph{SH Options} ++@gccoptlist{-m1 -m2 -m2e -m3 -m3e @gol ++-m4-nofpu -m4-single-only -m4-single -m4 @gol ++-m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol ++-m5-64media -m5-64media-nofpu @gol ++-m5-32media -m5-32media-nofpu @gol ++-m5-compact -m5-compact-nofpu @gol ++-mb -ml -mdalign -mrelax @gol ++-mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol ++-mieee -mbitops -misize -minline-ic_invalidate -mpadstruct -mspace @gol ++-mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol ++-mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol ++-madjust-unroll -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol ++-minvalid-symbols} ++ ++@emph{SPARC Options} ++@gccoptlist{-mcpu=@var{cpu-type} @gol ++-mtune=@var{cpu-type} @gol ++-mcmodel=@var{code-model} @gol ++-m32 -m64 -mapp-regs -mno-app-regs @gol ++-mfaster-structs -mno-faster-structs @gol ++-mfpu -mno-fpu -mhard-float -msoft-float @gol ++-mhard-quad-float -msoft-quad-float @gol ++-mimpure-text -mno-impure-text -mlittle-endian @gol ++-mstack-bias -mno-stack-bias @gol ++-munaligned-doubles -mno-unaligned-doubles @gol ++-mv8plus -mno-v8plus -mvis -mno-vis ++-threads -pthreads -pthread} ++ ++@emph{SPU Options} ++@gccoptlist{-mwarn-reloc -merror-reloc @gol ++-msafe-dma -munsafe-dma @gol ++-mbranch-hints @gol ++-msmall-mem -mlarge-mem -mstdmain @gol ++-mfixed-range=@var{register-range}} ++ ++@emph{System V Options} ++@gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}} ++ ++@emph{V850 Options} ++@gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol ++-mprolog-function -mno-prolog-function -mspace @gol ++-mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol ++-mapp-regs -mno-app-regs @gol ++-mdisable-callt -mno-disable-callt @gol ++-mv850e1 @gol ++-mv850e @gol ++-mv850 -mbig-switch} ++ ++@emph{VAX Options} ++@gccoptlist{-mg -mgnu -munix} ++ ++@emph{VxWorks Options} ++@gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol ++-Xbind-lazy -Xbind-now} ++ ++@emph{x86-64 Options} ++See i386 and x86-64 Options. ++ ++@emph{Xstormy16 Options} ++@gccoptlist{-msim} ++ ++@emph{Xtensa Options} ++@gccoptlist{-mconst16 -mno-const16 @gol ++-mfused-madd -mno-fused-madd @gol ++-mserialize-volatile -mno-serialize-volatile @gol ++-mtext-section-literals -mno-text-section-literals @gol ++-mtarget-align -mno-target-align @gol ++-mlongcalls -mno-longcalls} ++ ++@emph{zSeries Options} ++See S/390 and zSeries Options. ++ ++@item Code Generation Options ++@xref{Code Gen Options,,Options for Code Generation Conventions}. ++@gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol ++-ffixed-@var{reg} -fexceptions @gol ++-fnon-call-exceptions -funwind-tables @gol ++-fasynchronous-unwind-tables @gol ++-finhibit-size-directive -finstrument-functions @gol ++-finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol ++-finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol ++-fno-common -fno-ident @gol ++-fpcc-struct-return -fpic -fPIC -fpie -fPIE @gol ++-fno-jump-tables @gol ++-frecord-gcc-switches @gol ++-freg-struct-return -fshort-enums @gol ++-fshort-double -fshort-wchar @gol ++-fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol ++-fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol ++-fno-stack-limit -fargument-alias -fargument-noalias @gol ++-fargument-noalias-global -fargument-noalias-anything @gol ++-fleading-underscore -ftls-model=@var{model} @gol ++-ftrapv -fwrapv -fbounds-check @gol ++-fvisibility} ++@end table ++ ++@menu ++* Overall Options:: Controlling the kind of output: ++ an executable, object files, assembler files, ++ or preprocessed source. ++* C Dialect Options:: Controlling the variant of C language compiled. ++* C++ Dialect Options:: Variations on C++. ++* Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C ++ and Objective-C++. ++* Language Independent Options:: Controlling how diagnostics should be ++ formatted. ++* Warning Options:: How picky should the compiler be? ++* Debugging Options:: Symbol tables, measurements, and debugging dumps. ++* Optimize Options:: How much optimization? ++* Preprocessor Options:: Controlling header files and macro definitions. ++ Also, getting dependency information for Make. ++* Assembler Options:: Passing options to the assembler. ++* Link Options:: Specifying libraries and so on. ++* Directory Options:: Where to find header files and libraries. ++ Where to find the compiler executable files. ++* Spec Files:: How to pass switches to sub-processes. ++* Target Options:: Running a cross-compiler, or an old version of GCC. ++@end menu ++ ++@node Overall Options ++@section Options Controlling the Kind of Output ++ ++Compilation can involve up to four stages: preprocessing, compilation ++proper, assembly and linking, always in that order. GCC is capable of ++preprocessing and compiling several files either into several ++assembler input files, or into one assembler input file; then each ++assembler input file produces an object file, and linking combines all ++the object files (those newly compiled, and those specified as input) ++into an executable file. ++ ++@cindex file name suffix ++For any given input file, the file name suffix determines what kind of ++compilation is done: ++ ++@table @gcctabopt ++@item @var{file}.c ++C source code which must be preprocessed. ++ ++@item @var{file}.i ++C source code which should not be preprocessed. ++ ++@item @var{file}.ii ++C++ source code which should not be preprocessed. ++ ++@item @var{file}.m ++Objective-C source code. Note that you must link with the @file{libobjc} ++library to make an Objective-C program work. ++ ++@item @var{file}.mi ++Objective-C source code which should not be preprocessed. ++ ++@item @var{file}.mm ++@itemx @var{file}.M ++Objective-C++ source code. Note that you must link with the @file{libobjc} ++library to make an Objective-C++ program work. Note that @samp{.M} refers ++to a literal capital M@. ++ ++@item @var{file}.mii ++Objective-C++ source code which should not be preprocessed. ++ ++@item @var{file}.h ++C, C++, Objective-C or Objective-C++ header file to be turned into a ++precompiled header. ++ ++@item @var{file}.cc ++@itemx @var{file}.cp ++@itemx @var{file}.cxx ++@itemx @var{file}.cpp ++@itemx @var{file}.CPP ++@itemx @var{file}.c++ ++@itemx @var{file}.C ++C++ source code which must be preprocessed. Note that in @samp{.cxx}, ++the last two letters must both be literally @samp{x}. Likewise, ++@samp{.C} refers to a literal capital C@. ++ ++@item @var{file}.mm ++@itemx @var{file}.M ++Objective-C++ source code which must be preprocessed. ++ ++@item @var{file}.mii ++Objective-C++ source code which should not be preprocessed. ++ ++@item @var{file}.hh ++@itemx @var{file}.H ++@itemx @var{file}.hp ++@itemx @var{file}.hxx ++@itemx @var{file}.hpp ++@itemx @var{file}.HPP ++@itemx @var{file}.h++ ++@itemx @var{file}.tcc ++C++ header file to be turned into a precompiled header. ++ ++@item @var{file}.f ++@itemx @var{file}.for ++@itemx @var{file}.ftn ++Fixed form Fortran source code which should not be preprocessed. ++ ++@item @var{file}.F ++@itemx @var{file}.FOR ++@itemx @var{file}.fpp ++@itemx @var{file}.FPP ++@itemx @var{file}.FTN ++Fixed form Fortran source code which must be preprocessed (with the traditional ++preprocessor). ++ ++@item @var{file}.f90 ++@itemx @var{file}.f95 ++@itemx @var{file}.f03 ++@itemx @var{file}.f08 ++Free form Fortran source code which should not be preprocessed. ++ ++@item @var{file}.F90 ++@itemx @var{file}.F95 ++@itemx @var{file}.F03 ++@itemx @var{file}.F08 ++Free form Fortran source code which must be preprocessed (with the ++traditional preprocessor). ++ ++@c FIXME: Descriptions of Java file types. ++@c @var{file}.java ++@c @var{file}.class ++@c @var{file}.zip ++@c @var{file}.jar ++ ++@item @var{file}.ads ++Ada source code file which contains a library unit declaration (a ++declaration of a package, subprogram, or generic, or a generic ++instantiation), or a library unit renaming declaration (a package, ++generic, or subprogram renaming declaration). Such files are also ++called @dfn{specs}. ++ ++@item @var{file}.adb ++Ada source code file containing a library unit body (a subprogram or ++package body). Such files are also called @dfn{bodies}. ++ ++@c GCC also knows about some suffixes for languages not yet included: ++@c Pascal: ++@c @var{file}.p ++@c @var{file}.pas ++@c Ratfor: ++@c @var{file}.r ++ ++@item @var{file}.s ++Assembler code. ++ ++@item @var{file}.S ++@itemx @var{file}.sx ++Assembler code which must be preprocessed. ++ ++@item @var{other} ++An object file to be fed straight into linking. ++Any file name with no recognized suffix is treated this way. ++@end table ++ ++@opindex x ++You can specify the input language explicitly with the @option{-x} option: ++ ++@table @gcctabopt ++@item -x @var{language} ++Specify explicitly the @var{language} for the following input files ++(rather than letting the compiler choose a default based on the file ++name suffix). This option applies to all following input files until ++the next @option{-x} option. Possible values for @var{language} are: ++@smallexample ++c c-header c-cpp-output ++c++ c++-header c++-cpp-output ++objective-c objective-c-header objective-c-cpp-output ++objective-c++ objective-c++-header objective-c++-cpp-output ++assembler assembler-with-cpp ++ada ++f77 f77-cpp-input f95 f95-cpp-input ++java ++@end smallexample ++ ++@item -x none ++Turn off any specification of a language, so that subsequent files are ++handled according to their file name suffixes (as they are if @option{-x} ++has not been used at all). ++ ++@item -pass-exit-codes ++@opindex pass-exit-codes ++Normally the @command{gcc} program will exit with the code of 1 if any ++phase of the compiler returns a non-success return code. If you specify ++@option{-pass-exit-codes}, the @command{gcc} program will instead return with ++numerically highest error produced by any phase that returned an error ++indication. The C, C++, and Fortran frontends return 4, if an internal ++compiler error is encountered. ++@end table ++ ++If you only want some of the stages of compilation, you can use ++@option{-x} (or filename suffixes) to tell @command{gcc} where to start, and ++one of the options @option{-c}, @option{-S}, or @option{-E} to say where ++@command{gcc} is to stop. Note that some combinations (for example, ++@samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all. ++ ++@table @gcctabopt ++@item -c ++@opindex c ++Compile or assemble the source files, but do not link. The linking ++stage simply is not done. The ultimate output is in the form of an ++object file for each source file. ++ ++By default, the object file name for a source file is made by replacing ++the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}. ++ ++Unrecognized input files, not requiring compilation or assembly, are ++ignored. ++ ++@item -S ++@opindex S ++Stop after the stage of compilation proper; do not assemble. The output ++is in the form of an assembler code file for each non-assembler input ++file specified. ++ ++By default, the assembler file name for a source file is made by ++replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}. ++ ++Input files that don't require compilation are ignored. ++ ++@item -E ++@opindex E ++Stop after the preprocessing stage; do not run the compiler proper. The ++output is in the form of preprocessed source code, which is sent to the ++standard output. ++ ++Input files which don't require preprocessing are ignored. ++ ++@cindex output file option ++@item -o @var{file} ++@opindex o ++Place output in file @var{file}. This applies regardless to whatever ++sort of output is being produced, whether it be an executable file, ++an object file, an assembler file or preprocessed C code. ++ ++If @option{-o} is not specified, the default is to put an executable ++file in @file{a.out}, the object file for ++@file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its ++assembler file in @file{@var{source}.s}, a precompiled header file in ++@file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on ++standard output. ++ ++@item -v ++@opindex v ++Print (on standard error output) the commands executed to run the stages ++of compilation. Also print the version number of the compiler driver ++program and of the preprocessor and the compiler proper. ++ ++@item -### ++@opindex ### ++Like @option{-v} except the commands are not executed and all command ++arguments are quoted. This is useful for shell scripts to capture the ++driver-generated command lines. ++ ++@item -pipe ++@opindex pipe ++Use pipes rather than temporary files for communication between the ++various stages of compilation. This fails to work on some systems where ++the assembler is unable to read from a pipe; but the GNU assembler has ++no trouble. ++ ++@item -combine ++@opindex combine ++If you are compiling multiple source files, this option tells the driver ++to pass all the source files to the compiler at once (for those ++languages for which the compiler can handle this). This will allow ++intermodule analysis (IMA) to be performed by the compiler. Currently the only ++language for which this is supported is C@. If you pass source files for ++multiple languages to the driver, using this option, the driver will invoke ++the compiler(s) that support IMA once each, passing each compiler all the ++source files appropriate for it. For those languages that do not support ++IMA this option will be ignored, and the compiler will be invoked once for ++each source file in that language. If you use this option in conjunction ++with @option{-save-temps}, the compiler will generate multiple ++pre-processed files ++(one for each source file), but only one (combined) @file{.o} or ++@file{.s} file. ++ ++@item --help ++@opindex help ++Print (on the standard output) a description of the command line options ++understood by @command{gcc}. If the @option{-v} option is also specified ++then @option{--help} will also be passed on to the various processes ++invoked by @command{gcc}, so that they can display the command line options ++they accept. If the @option{-Wextra} option has also been specified ++(prior to the @option{--help} option), then command line options which ++have no documentation associated with them will also be displayed. ++ ++@item --target-help ++@opindex target-help ++Print (on the standard output) a description of target-specific command ++line options for each tool. For some targets extra target-specific ++information may also be printed. ++ ++@item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]} ++Print (on the standard output) a description of the command line ++options understood by the compiler that fit into all specified classes ++and qualifiers. These are the supported classes: ++ ++@table @asis ++@item @samp{optimizers} ++This will display all of the optimization options supported by the ++compiler. ++ ++@item @samp{warnings} ++This will display all of the options controlling warning messages ++produced by the compiler. ++ ++@item @samp{target} ++This will display target-specific options. Unlike the ++@option{--target-help} option however, target-specific options of the ++linker and assembler will not be displayed. This is because those ++tools do not currently support the extended @option{--help=} syntax. ++ ++@item @samp{params} ++This will display the values recognized by the @option{--param} ++option. ++ ++@item @var{language} ++This will display the options supported for @var{language}, where ++@var{language} is the name of one of the languages supported in this ++version of GCC. ++ ++@item @samp{common} ++This will display the options that are common to all languages. ++@end table ++ ++These are the supported qualifiers: ++ ++@table @asis ++@item @samp{undocumented} ++Display only those options which are undocumented. ++ ++@item @samp{joined} ++Display options which take an argument that appears after an equal ++sign in the same continuous piece of text, such as: ++@samp{--help=target}. ++ ++@item @samp{separate} ++Display options which take an argument that appears as a separate word ++following the original option, such as: @samp{-o output-file}. ++@end table ++ ++Thus for example to display all the undocumented target-specific ++switches supported by the compiler the following can be used: ++ ++@smallexample ++--help=target,undocumented ++@end smallexample ++ ++The sense of a qualifier can be inverted by prefixing it with the ++@samp{^} character, so for example to display all binary warning ++options (i.e., ones that are either on or off and that do not take an ++argument), which have a description the following can be used: ++ ++@smallexample ++--help=warnings,^joined,^undocumented ++@end smallexample ++ ++The argument to @option{--help=} should not consist solely of inverted ++qualifiers. ++ ++Combining several classes is possible, although this usually ++restricts the output by so much that there is nothing to display. One ++case where it does work however is when one of the classes is ++@var{target}. So for example to display all the target-specific ++optimization options the following can be used: ++ ++@smallexample ++--help=target,optimizers ++@end smallexample ++ ++The @option{--help=} option can be repeated on the command line. Each ++successive use will display its requested class of options, skipping ++those that have already been displayed. ++ ++If the @option{-Q} option appears on the command line before the ++@option{--help=} option, then the descriptive text displayed by ++@option{--help=} is changed. Instead of describing the displayed ++options, an indication is given as to whether the option is enabled, ++disabled or set to a specific value (assuming that the compiler ++knows this at the point where the @option{--help=} option is used). ++ ++Here is a truncated example from the ARM port of @command{gcc}: ++ ++@smallexample ++ % gcc -Q -mabi=2 --help=target -c ++ The following options are target specific: ++ -mabi= 2 ++ -mabort-on-noreturn [disabled] ++ -mapcs [disabled] ++@end smallexample ++ ++The output is sensitive to the effects of previous command line ++options, so for example it is possible to find out which optimizations ++are enabled at @option{-O2} by using: ++ ++@smallexample ++-Q -O2 --help=optimizers ++@end smallexample ++ ++Alternatively you can discover which binary optimizations are enabled ++by @option{-O3} by using: ++ ++@smallexample ++gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts ++gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts ++diff /tmp/O2-opts /tmp/O3-opts | grep enabled ++@end smallexample ++ ++@item --version ++@opindex version ++Display the version number and copyrights of the invoked GCC@. ++ ++@item -wrapper ++@opindex wrapper ++Invoke all subcommands under a wrapper program. It takes a single ++comma separated list as an argument, which will be used to invoke ++the wrapper: ++ ++@smallexample ++gcc -c t.c -wrapper gdb,--args ++@end smallexample ++ ++This will invoke all subprograms of gcc under "gdb --args", ++thus cc1 invocation will be "gdb --args cc1 ...". ++ ++@include @value{srcdir}/../libiberty/at-file.texi ++@end table ++ ++@node Invoking G++ ++@section Compiling C++ Programs ++ ++@cindex suffixes for C++ source ++@cindex C++ source file suffixes ++C++ source files conventionally use one of the suffixes @samp{.C}, ++@samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or ++@samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp}, ++@samp{.H}, or (for shared template code) @samp{.tcc}; and ++preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes ++files with these names and compiles them as C++ programs even if you ++call the compiler the same way as for compiling C programs (usually ++with the name @command{gcc}). ++ ++@findex g++ ++@findex c++ ++However, the use of @command{gcc} does not add the C++ library. ++@command{g++} is a program that calls GCC and treats @samp{.c}, ++@samp{.h} and @samp{.i} files as C++ source files instead of C source ++files unless @option{-x} is used, and automatically specifies linking ++against the C++ library. This program is also useful when ++precompiling a C header file with a @samp{.h} extension for use in C++ ++compilations. On many systems, @command{g++} is also installed with ++the name @command{c++}. ++ ++@cindex invoking @command{g++} ++When you compile C++ programs, you may specify many of the same ++command-line options that you use for compiling programs in any ++language; or command-line options meaningful for C and related ++languages; or options that are meaningful only for C++ programs. ++@xref{C Dialect Options,,Options Controlling C Dialect}, for ++explanations of options for languages related to C@. ++@xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for ++explanations of options that are meaningful only for C++ programs. ++ ++@node C Dialect Options ++@section Options Controlling C Dialect ++@cindex dialect options ++@cindex language dialect options ++@cindex options, dialect ++ ++The following options control the dialect of C (or languages derived ++from C, such as C++, Objective-C and Objective-C++) that the compiler ++accepts: ++ ++@table @gcctabopt ++@cindex ANSI support ++@cindex ISO support ++@item -ansi ++@opindex ansi ++In C mode, this is equivalent to @samp{-std=c89}. In C++ mode, it is ++equivalent to @samp{-std=c++98}. ++ ++This turns off certain features of GCC that are incompatible with ISO ++C90 (when compiling C code), or of standard C++ (when compiling C++ code), ++such as the @code{asm} and @code{typeof} keywords, and ++predefined macros such as @code{unix} and @code{vax} that identify the ++type of system you are using. It also enables the undesirable and ++rarely used ISO trigraph feature. For the C compiler, ++it disables recognition of C++ style @samp{//} comments as well as ++the @code{inline} keyword. ++ ++The alternate keywords @code{__asm__}, @code{__extension__}, ++@code{__inline__} and @code{__typeof__} continue to work despite ++@option{-ansi}. You would not want to use them in an ISO C program, of ++course, but it is useful to put them in header files that might be included ++in compilations done with @option{-ansi}. Alternate predefined macros ++such as @code{__unix__} and @code{__vax__} are also available, with or ++without @option{-ansi}. ++ ++The @option{-ansi} option does not cause non-ISO programs to be ++rejected gratuitously. For that, @option{-pedantic} is required in ++addition to @option{-ansi}. @xref{Warning Options}. ++ ++The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi} ++option is used. Some header files may notice this macro and refrain ++from declaring certain functions or defining certain macros that the ++ISO standard doesn't call for; this is to avoid interfering with any ++programs that might use these names for other things. ++ ++Functions that would normally be built in but do not have semantics ++defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in ++functions when @option{-ansi} is used. @xref{Other Builtins,,Other ++built-in functions provided by GCC}, for details of the functions ++affected. ++ ++@item -std= ++@opindex std ++Determine the language standard. @xref{Standards,,Language Standards ++Supported by GCC}, for details of these standard versions. This option ++is currently only supported when compiling C or C++. ++ ++The compiler can accept several base standards, such as @samp{c89} or ++@samp{c++98}, and GNU dialects of those standards, such as ++@samp{gnu89} or @samp{gnu++98}. By specifying a base standard, the ++compiler will accept all programs following that standard and those ++using GNU extensions that do not contradict it. For example, ++@samp{-std=c89} turns off certain features of GCC that are ++incompatible with ISO C90, such as the @code{asm} and @code{typeof} ++keywords, but not other GNU extensions that do not have a meaning in ++ISO C90, such as omitting the middle term of a @code{?:} ++expression. On the other hand, by specifying a GNU dialect of a ++standard, all features the compiler support are enabled, even when ++those features change the meaning of the base standard and some ++strict-conforming programs may be rejected. The particular standard ++is used by @option{-pedantic} to identify which features are GNU ++extensions given that version of the standard. For example ++@samp{-std=gnu89 -pedantic} would warn about C++ style @samp{//} ++comments, while @samp{-std=gnu99 -pedantic} would not. ++ ++A value for this option must be provided; possible values are ++ ++@table @samp ++@item c89 ++@itemx iso9899:1990 ++Support all ISO C90 programs (certain GNU extensions that conflict ++with ISO C90 are disabled). Same as @option{-ansi} for C code. ++ ++@item iso9899:199409 ++ISO C90 as modified in amendment 1. ++ ++@item c99 ++@itemx c9x ++@itemx iso9899:1999 ++@itemx iso9899:199x ++ISO C99. Note that this standard is not yet fully supported; see ++@w{@uref{http://gcc.gnu.org/gcc-4.4/c99status.html}} for more information. The ++names @samp{c9x} and @samp{iso9899:199x} are deprecated. ++ ++@item gnu89 ++GNU dialect of ISO C90 (including some C99 features). This ++is the default for C code. ++ ++@item gnu99 ++@itemx gnu9x ++GNU dialect of ISO C99. When ISO C99 is fully implemented in GCC, ++this will become the default. The name @samp{gnu9x} is deprecated. ++ ++@item c++98 ++The 1998 ISO C++ standard plus amendments. Same as @option{-ansi} for ++C++ code. ++ ++@item gnu++98 ++GNU dialect of @option{-std=c++98}. This is the default for ++C++ code. ++ ++@item c++0x ++The working draft of the upcoming ISO C++0x standard. This option ++enables experimental features that are likely to be included in ++C++0x. The working draft is constantly changing, and any feature that is ++enabled by this flag may be removed from future versions of GCC if it is ++not part of the C++0x standard. ++ ++@item gnu++0x ++GNU dialect of @option{-std=c++0x}. This option enables ++experimental features that may be removed in future versions of GCC. ++@end table ++ ++@item -fgnu89-inline ++@opindex fgnu89-inline ++The option @option{-fgnu89-inline} tells GCC to use the traditional ++GNU semantics for @code{inline} functions when in C99 mode. ++@xref{Inline,,An Inline Function is As Fast As a Macro}. This option ++is accepted and ignored by GCC versions 4.1.3 up to but not including ++4.3. In GCC versions 4.3 and later it changes the behavior of GCC in ++C99 mode. Using this option is roughly equivalent to adding the ++@code{gnu_inline} function attribute to all inline functions ++(@pxref{Function Attributes}). ++ ++The option @option{-fno-gnu89-inline} explicitly tells GCC to use the ++C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it ++specifies the default behavior). This option was first supported in ++GCC 4.3. This option is not supported in C89 or gnu89 mode. ++ ++The preprocessor macros @code{__GNUC_GNU_INLINE__} and ++@code{__GNUC_STDC_INLINE__} may be used to check which semantics are ++in effect for @code{inline} functions. @xref{Common Predefined ++Macros,,,cpp,The C Preprocessor}. ++ ++@item -aux-info @var{filename} ++@opindex aux-info ++Output to the given filename prototyped declarations for all functions ++declared and/or defined in a translation unit, including those in header ++files. This option is silently ignored in any language other than C@. ++ ++Besides declarations, the file indicates, in comments, the origin of ++each declaration (source file and line), whether the declaration was ++implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or ++@samp{O} for old, respectively, in the first character after the line ++number and the colon), and whether it came from a declaration or a ++definition (@samp{C} or @samp{F}, respectively, in the following ++character). In the case of function definitions, a K&R-style list of ++arguments followed by their declarations is also provided, inside ++comments, after the declaration. ++ ++@item -fno-asm ++@opindex fno-asm ++Do not recognize @code{asm}, @code{inline} or @code{typeof} as a ++keyword, so that code can use these words as identifiers. You can use ++the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__} ++instead. @option{-ansi} implies @option{-fno-asm}. ++ ++In C++, this switch only affects the @code{typeof} keyword, since ++@code{asm} and @code{inline} are standard keywords. You may want to ++use the @option{-fno-gnu-keywords} flag instead, which has the same ++effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this ++switch only affects the @code{asm} and @code{typeof} keywords, since ++@code{inline} is a standard keyword in ISO C99. ++ ++@item -fno-builtin ++@itemx -fno-builtin-@var{function} ++@opindex fno-builtin ++@cindex built-in functions ++Don't recognize built-in functions that do not begin with ++@samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in ++functions provided by GCC}, for details of the functions affected, ++including those which are not built-in functions when @option{-ansi} or ++@option{-std} options for strict ISO C conformance are used because they ++do not have an ISO standard meaning. ++ ++GCC normally generates special code to handle certain built-in functions ++more efficiently; for instance, calls to @code{alloca} may become single ++instructions that adjust the stack directly, and calls to @code{memcpy} ++may become inline copy loops. The resulting code is often both smaller ++and faster, but since the function calls no longer appear as such, you ++cannot set a breakpoint on those calls, nor can you change the behavior ++of the functions by linking with a different library. In addition, ++when a function is recognized as a built-in function, GCC may use ++information about that function to warn about problems with calls to ++that function, or to generate more efficient code, even if the ++resulting code still contains calls to that function. For example, ++warnings are given with @option{-Wformat} for bad calls to ++@code{printf}, when @code{printf} is built in, and @code{strlen} is ++known not to modify global memory. ++ ++With the @option{-fno-builtin-@var{function}} option ++only the built-in function @var{function} is ++disabled. @var{function} must not begin with @samp{__builtin_}. If a ++function is named that is not built-in in this version of GCC, this ++option is ignored. There is no corresponding ++@option{-fbuiltin-@var{function}} option; if you wish to enable ++built-in functions selectively when using @option{-fno-builtin} or ++@option{-ffreestanding}, you may define macros such as: ++ ++@smallexample ++#define abs(n) __builtin_abs ((n)) ++#define strcpy(d, s) __builtin_strcpy ((d), (s)) ++@end smallexample ++ ++@item -fhosted ++@opindex fhosted ++@cindex hosted environment ++ ++Assert that compilation takes place in a hosted environment. This implies ++@option{-fbuiltin}. A hosted environment is one in which the ++entire standard library is available, and in which @code{main} has a return ++type of @code{int}. Examples are nearly everything except a kernel. ++This is equivalent to @option{-fno-freestanding}. ++ ++@item -ffreestanding ++@opindex ffreestanding ++@cindex hosted environment ++ ++Assert that compilation takes place in a freestanding environment. This ++implies @option{-fno-builtin}. A freestanding environment ++is one in which the standard library may not exist, and program startup may ++not necessarily be at @code{main}. The most obvious example is an OS kernel. ++This is equivalent to @option{-fno-hosted}. ++ ++@xref{Standards,,Language Standards Supported by GCC}, for details of ++freestanding and hosted environments. ++ ++@item -fopenmp ++@opindex fopenmp ++@cindex openmp parallel ++Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and ++@code{!$omp} in Fortran. When @option{-fopenmp} is specified, the ++compiler generates parallel code according to the OpenMP Application ++Program Interface v2.5 @w{@uref{http://www.openmp.org/}}. This option ++implies @option{-pthread}, and thus is only supported on targets that ++have support for @option{-pthread}. ++ ++@item -fms-extensions ++@opindex fms-extensions ++Accept some non-standard constructs used in Microsoft header files. ++ ++Some cases of unnamed fields in structures and unions are only ++accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union ++fields within structs/unions}, for details. ++ ++@item -trigraphs ++@opindex trigraphs ++Support ISO C trigraphs. The @option{-ansi} option (and @option{-std} ++options for strict ISO C conformance) implies @option{-trigraphs}. ++ ++@item -no-integrated-cpp ++@opindex no-integrated-cpp ++Performs a compilation in two passes: preprocessing and compiling. This ++option allows a user supplied "cc1", "cc1plus", or "cc1obj" via the ++@option{-B} option. The user supplied compilation step can then add in ++an additional preprocessing step after normal preprocessing but before ++compiling. The default is to use the integrated cpp (internal cpp) ++ ++The semantics of this option will change if "cc1", "cc1plus", and ++"cc1obj" are merged. ++ ++@cindex traditional C language ++@cindex C language, traditional ++@item -traditional ++@itemx -traditional-cpp ++@opindex traditional-cpp ++@opindex traditional ++Formerly, these options caused GCC to attempt to emulate a pre-standard ++C compiler. They are now only supported with the @option{-E} switch. ++The preprocessor continues to support a pre-standard mode. See the GNU ++CPP manual for details. ++ ++@item -fcond-mismatch ++@opindex fcond-mismatch ++Allow conditional expressions with mismatched types in the second and ++third arguments. The value of such an expression is void. This option ++is not supported for C++. ++ ++@item -flax-vector-conversions ++@opindex flax-vector-conversions ++Allow implicit conversions between vectors with differing numbers of ++elements and/or incompatible element types. This option should not be ++used for new code. ++ ++@item -funsigned-char ++@opindex funsigned-char ++Let the type @code{char} be unsigned, like @code{unsigned char}. ++ ++Each kind of machine has a default for what @code{char} should ++be. It is either like @code{unsigned char} by default or like ++@code{signed char} by default. ++ ++Ideally, a portable program should always use @code{signed char} or ++@code{unsigned char} when it depends on the signedness of an object. ++But many programs have been written to use plain @code{char} and ++expect it to be signed, or expect it to be unsigned, depending on the ++machines they were written for. This option, and its inverse, let you ++make such a program work with the opposite default. ++ ++The type @code{char} is always a distinct type from each of ++@code{signed char} or @code{unsigned char}, even though its behavior ++is always just like one of those two. ++ ++@item -fsigned-char ++@opindex fsigned-char ++Let the type @code{char} be signed, like @code{signed char}. ++ ++Note that this is equivalent to @option{-fno-unsigned-char}, which is ++the negative form of @option{-funsigned-char}. Likewise, the option ++@option{-fno-signed-char} is equivalent to @option{-funsigned-char}. ++ ++@item -fsigned-bitfields ++@itemx -funsigned-bitfields ++@itemx -fno-signed-bitfields ++@itemx -fno-unsigned-bitfields ++@opindex fsigned-bitfields ++@opindex funsigned-bitfields ++@opindex fno-signed-bitfields ++@opindex fno-unsigned-bitfields ++These options control whether a bit-field is signed or unsigned, when the ++declaration does not use either @code{signed} or @code{unsigned}. By ++default, such a bit-field is signed, because this is consistent: the ++basic integer types such as @code{int} are signed types. ++@end table ++ ++@node C++ Dialect Options ++@section Options Controlling C++ Dialect ++ ++@cindex compiler options, C++ ++@cindex C++ options, command line ++@cindex options, C++ ++This section describes the command-line options that are only meaningful ++for C++ programs; but you can also use most of the GNU compiler options ++regardless of what language your program is in. For example, you ++might compile a file @code{firstClass.C} like this: ++ ++@smallexample ++g++ -g -frepo -O -c firstClass.C ++@end smallexample ++ ++@noindent ++In this example, only @option{-frepo} is an option meant ++only for C++ programs; you can use the other options with any ++language supported by GCC@. ++ ++Here is a list of options that are @emph{only} for compiling C++ programs: ++ ++@table @gcctabopt ++ ++@item -fabi-version=@var{n} ++@opindex fabi-version ++Use version @var{n} of the C++ ABI@. Version 2 is the version of the ++C++ ABI that first appeared in G++ 3.4. Version 1 is the version of ++the C++ ABI that first appeared in G++ 3.2. Version 0 will always be ++the version that conforms most closely to the C++ ABI specification. ++Therefore, the ABI obtained using version 0 will change as ABI bugs ++are fixed. ++ ++The default is version 2. ++ ++@item -fno-access-control ++@opindex fno-access-control ++Turn off all access checking. This switch is mainly useful for working ++around bugs in the access control code. ++ ++@item -fcheck-new ++@opindex fcheck-new ++Check that the pointer returned by @code{operator new} is non-null ++before attempting to modify the storage allocated. This check is ++normally unnecessary because the C++ standard specifies that ++@code{operator new} will only return @code{0} if it is declared ++@samp{throw()}, in which case the compiler will always check the ++return value even without this option. In all other cases, when ++@code{operator new} has a non-empty exception specification, memory ++exhaustion is signalled by throwing @code{std::bad_alloc}. See also ++@samp{new (nothrow)}. ++ ++@item -fconserve-space ++@opindex fconserve-space ++Put uninitialized or runtime-initialized global variables into the ++common segment, as C does. This saves space in the executable at the ++cost of not diagnosing duplicate definitions. If you compile with this ++flag and your program mysteriously crashes after @code{main()} has ++completed, you may have an object that is being destroyed twice because ++two definitions were merged. ++ ++This option is no longer useful on most targets, now that support has ++been added for putting variables into BSS without making them common. ++ ++@item -fno-deduce-init-list ++@opindex fno-deduce-init-list ++Disable deduction of a template type parameter as ++std::initializer_list from a brace-enclosed initializer list, i.e. ++ ++@smallexample ++template <class T> auto forward(T t) -> decltype (realfn (t)) ++@{ ++ return realfn (t); ++@} ++ ++void f() ++@{ ++ forward(@{1,2@}); // call forward<std::initializer_list<int>> ++@} ++@end smallexample ++ ++This option is present because this deduction is an extension to the ++current specification in the C++0x working draft, and there was ++some concern about potential overload resolution problems. ++ ++@item -ffriend-injection ++@opindex ffriend-injection ++Inject friend functions into the enclosing namespace, so that they are ++visible outside the scope of the class in which they are declared. ++Friend functions were documented to work this way in the old Annotated ++C++ Reference Manual, and versions of G++ before 4.1 always worked ++that way. However, in ISO C++ a friend function which is not declared ++in an enclosing scope can only be found using argument dependent ++lookup. This option causes friends to be injected as they were in ++earlier releases. ++ ++This option is for compatibility, and may be removed in a future ++release of G++. ++ ++@item -fno-elide-constructors ++@opindex fno-elide-constructors ++The C++ standard allows an implementation to omit creating a temporary ++which is only used to initialize another object of the same type. ++Specifying this option disables that optimization, and forces G++ to ++call the copy constructor in all cases. ++ ++@item -fno-enforce-eh-specs ++@opindex fno-enforce-eh-specs ++Don't generate code to check for violation of exception specifications ++at runtime. This option violates the C++ standard, but may be useful ++for reducing code size in production builds, much like defining ++@samp{NDEBUG}. This does not give user code permission to throw ++exceptions in violation of the exception specifications; the compiler ++will still optimize based on the specifications, so throwing an ++unexpected exception will result in undefined behavior. ++ ++@item -ffor-scope ++@itemx -fno-for-scope ++@opindex ffor-scope ++@opindex fno-for-scope ++If @option{-ffor-scope} is specified, the scope of variables declared in ++a @i{for-init-statement} is limited to the @samp{for} loop itself, ++as specified by the C++ standard. ++If @option{-fno-for-scope} is specified, the scope of variables declared in ++a @i{for-init-statement} extends to the end of the enclosing scope, ++as was the case in old versions of G++, and other (traditional) ++implementations of C++. ++ ++The default if neither flag is given to follow the standard, ++but to allow and give a warning for old-style code that would ++otherwise be invalid, or have different behavior. ++ ++@item -fno-gnu-keywords ++@opindex fno-gnu-keywords ++Do not recognize @code{typeof} as a keyword, so that code can use this ++word as an identifier. You can use the keyword @code{__typeof__} instead. ++@option{-ansi} implies @option{-fno-gnu-keywords}. ++ ++@item -fno-implicit-templates ++@opindex fno-implicit-templates ++Never emit code for non-inline templates which are instantiated ++implicitly (i.e.@: by use); only emit code for explicit instantiations. ++@xref{Template Instantiation}, for more information. ++ ++@item -fno-implicit-inline-templates ++@opindex fno-implicit-inline-templates ++Don't emit code for implicit instantiations of inline templates, either. ++The default is to handle inlines differently so that compiles with and ++without optimization will need the same set of explicit instantiations. ++ ++@item -fno-implement-inlines ++@opindex fno-implement-inlines ++To save space, do not emit out-of-line copies of inline functions ++controlled by @samp{#pragma implementation}. This will cause linker ++errors if these functions are not inlined everywhere they are called. ++ ++@item -fms-extensions ++@opindex fms-extensions ++Disable pedantic warnings about constructs used in MFC, such as implicit ++int and getting a pointer to member function via non-standard syntax. ++ ++@item -fno-nonansi-builtins ++@opindex fno-nonansi-builtins ++Disable built-in declarations of functions that are not mandated by ++ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit}, ++@code{index}, @code{bzero}, @code{conjf}, and other related functions. ++ ++@item -fno-operator-names ++@opindex fno-operator-names ++Do not treat the operator name keywords @code{and}, @code{bitand}, ++@code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as ++synonyms as keywords. ++ ++@item -fno-optional-diags ++@opindex fno-optional-diags ++Disable diagnostics that the standard says a compiler does not need to ++issue. Currently, the only such diagnostic issued by G++ is the one for ++a name having multiple meanings within a class. ++ ++@item -fpermissive ++@opindex fpermissive ++Downgrade some diagnostics about nonconformant code from errors to ++warnings. Thus, using @option{-fpermissive} will allow some ++nonconforming code to compile. ++ ++@item -frepo ++@opindex frepo ++Enable automatic template instantiation at link time. This option also ++implies @option{-fno-implicit-templates}. @xref{Template ++Instantiation}, for more information. ++ ++@item -fno-rtti ++@opindex fno-rtti ++Disable generation of information about every class with virtual ++functions for use by the C++ runtime type identification features ++(@samp{dynamic_cast} and @samp{typeid}). If you don't use those parts ++of the language, you can save some space by using this flag. Note that ++exception handling uses the same information, but it will generate it as ++needed. The @samp{dynamic_cast} operator can still be used for casts that ++do not require runtime type information, i.e.@: casts to @code{void *} or to ++unambiguous base classes. ++ ++@item -fstats ++@opindex fstats ++Emit statistics about front-end processing at the end of the compilation. ++This information is generally only useful to the G++ development team. ++ ++@item -ftemplate-depth-@var{n} ++@opindex ftemplate-depth ++Set the maximum instantiation depth for template classes to @var{n}. ++A limit on the template instantiation depth is needed to detect ++endless recursions during template class instantiation. ANSI/ISO C++ ++conforming programs must not rely on a maximum depth greater than 17. ++ ++@item -fno-threadsafe-statics ++@opindex fno-threadsafe-statics ++Do not emit the extra code to use the routines specified in the C++ ++ABI for thread-safe initialization of local statics. You can use this ++option to reduce code size slightly in code that doesn't need to be ++thread-safe. ++ ++@item -fuse-cxa-atexit ++@opindex fuse-cxa-atexit ++Register destructors for objects with static storage duration with the ++@code{__cxa_atexit} function rather than the @code{atexit} function. ++This option is required for fully standards-compliant handling of static ++destructors, but will only work if your C library supports ++@code{__cxa_atexit}. ++ ++@item -fno-use-cxa-get-exception-ptr ++@opindex fno-use-cxa-get-exception-ptr ++Don't use the @code{__cxa_get_exception_ptr} runtime routine. This ++will cause @code{std::uncaught_exception} to be incorrect, but is necessary ++if the runtime routine is not available. ++ ++@item -fvisibility-inlines-hidden ++@opindex fvisibility-inlines-hidden ++This switch declares that the user does not attempt to compare ++pointers to inline methods where the addresses of the two functions ++were taken in different shared objects. ++ ++The effect of this is that GCC may, effectively, mark inline methods with ++@code{__attribute__ ((visibility ("hidden")))} so that they do not ++appear in the export table of a DSO and do not require a PLT indirection ++when used within the DSO@. Enabling this option can have a dramatic effect ++on load and link times of a DSO as it massively reduces the size of the ++dynamic export table when the library makes heavy use of templates. ++ ++The behavior of this switch is not quite the same as marking the ++methods as hidden directly, because it does not affect static variables ++local to the function or cause the compiler to deduce that ++the function is defined in only one shared object. ++ ++You may mark a method as having a visibility explicitly to negate the ++effect of the switch for that method. For example, if you do want to ++compare pointers to a particular inline method, you might mark it as ++having default visibility. Marking the enclosing class with explicit ++visibility will have no effect. ++ ++Explicitly instantiated inline methods are unaffected by this option ++as their linkage might otherwise cross a shared library boundary. ++@xref{Template Instantiation}. ++ ++@item -fvisibility-ms-compat ++@opindex fvisibility-ms-compat ++This flag attempts to use visibility settings to make GCC's C++ ++linkage model compatible with that of Microsoft Visual Studio. ++ ++The flag makes these changes to GCC's linkage model: ++ ++@enumerate ++@item ++It sets the default visibility to @code{hidden}, like ++@option{-fvisibility=hidden}. ++ ++@item ++Types, but not their members, are not hidden by default. ++ ++@item ++The One Definition Rule is relaxed for types without explicit ++visibility specifications which are defined in more than one different ++shared object: those declarations are permitted if they would have ++been permitted when this option was not used. ++@end enumerate ++ ++In new code it is better to use @option{-fvisibility=hidden} and ++export those classes which are intended to be externally visible. ++Unfortunately it is possible for code to rely, perhaps accidentally, ++on the Visual Studio behavior. ++ ++Among the consequences of these changes are that static data members ++of the same type with the same name but defined in different shared ++objects will be different, so changing one will not change the other; ++and that pointers to function members defined in different shared ++objects may not compare equal. When this flag is given, it is a ++violation of the ODR to define types with the same name differently. ++ ++@item -fno-weak ++@opindex fno-weak ++Do not use weak symbol support, even if it is provided by the linker. ++By default, G++ will use weak symbols if they are available. This ++option exists only for testing, and should not be used by end-users; ++it will result in inferior code and has no benefits. This option may ++be removed in a future release of G++. ++ ++@item -nostdinc++ ++@opindex nostdinc++ ++Do not search for header files in the standard directories specific to ++C++, but do still search the other standard directories. (This option ++is used when building the C++ library.) ++@end table ++ ++In addition, these optimization, warning, and code generation options ++have meanings only for C++ programs: ++ ++@table @gcctabopt ++@item -fno-default-inline ++@opindex fno-default-inline ++Do not assume @samp{inline} for functions defined inside a class scope. ++@xref{Optimize Options,,Options That Control Optimization}. Note that these ++functions will have linkage like inline functions; they just won't be ++inlined by default. ++ ++@item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)} ++@opindex Wabi ++@opindex Wno-abi ++Warn when G++ generates code that is probably not compatible with the ++vendor-neutral C++ ABI@. Although an effort has been made to warn about ++all such cases, there are probably some cases that are not warned about, ++even though G++ is generating incompatible code. There may also be ++cases where warnings are emitted even though the code that is generated ++will be compatible. ++ ++You should rewrite your code to avoid these warnings if you are ++concerned about the fact that code generated by G++ may not be binary ++compatible with code generated by other compilers. ++ ++The known incompatibilities at this point include: ++ ++@itemize @bullet ++ ++@item ++Incorrect handling of tail-padding for bit-fields. G++ may attempt to ++pack data into the same byte as a base class. For example: ++ ++@smallexample ++struct A @{ virtual void f(); int f1 : 1; @}; ++struct B : public A @{ int f2 : 1; @}; ++@end smallexample ++ ++@noindent ++In this case, G++ will place @code{B::f2} into the same byte ++as@code{A::f1}; other compilers will not. You can avoid this problem ++by explicitly padding @code{A} so that its size is a multiple of the ++byte size on your platform; that will cause G++ and other compilers to ++layout @code{B} identically. ++ ++@item ++Incorrect handling of tail-padding for virtual bases. G++ does not use ++tail padding when laying out virtual bases. For example: ++ ++@smallexample ++struct A @{ virtual void f(); char c1; @}; ++struct B @{ B(); char c2; @}; ++struct C : public A, public virtual B @{@}; ++@end smallexample ++ ++@noindent ++In this case, G++ will not place @code{B} into the tail-padding for ++@code{A}; other compilers will. You can avoid this problem by ++explicitly padding @code{A} so that its size is a multiple of its ++alignment (ignoring virtual base classes); that will cause G++ and other ++compilers to layout @code{C} identically. ++ ++@item ++Incorrect handling of bit-fields with declared widths greater than that ++of their underlying types, when the bit-fields appear in a union. For ++example: ++ ++@smallexample ++union U @{ int i : 4096; @}; ++@end smallexample ++ ++@noindent ++Assuming that an @code{int} does not have 4096 bits, G++ will make the ++union too small by the number of bits in an @code{int}. ++ ++@item ++Empty classes can be placed at incorrect offsets. For example: ++ ++@smallexample ++struct A @{@}; ++ ++struct B @{ ++ A a; ++ virtual void f (); ++@}; ++ ++struct C : public B, public A @{@}; ++@end smallexample ++ ++@noindent ++G++ will place the @code{A} base class of @code{C} at a nonzero offset; ++it should be placed at offset zero. G++ mistakenly believes that the ++@code{A} data member of @code{B} is already at offset zero. ++ ++@item ++Names of template functions whose types involve @code{typename} or ++template template parameters can be mangled incorrectly. ++ ++@smallexample ++template <typename Q> ++void f(typename Q::X) @{@} ++ ++template <template <typename> class Q> ++void f(typename Q<int>::X) @{@} ++@end smallexample ++ ++@noindent ++Instantiations of these templates may be mangled incorrectly. ++ ++@end itemize ++ ++It also warns psABI related changes. The known psABI changes at this ++point include: ++ ++@itemize @bullet ++ ++@item ++For SYSV/x86-64, when passing union with long double, it is changed to ++pass in memory as specified in psABI. For example: ++ ++@smallexample ++union U @{ ++ long double ld; ++ int i; ++@}; ++@end smallexample ++ ++@noindent ++@code{union U} will always be passed in memory. ++ ++@end itemize ++ ++@item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)} ++@opindex Wctor-dtor-privacy ++@opindex Wno-ctor-dtor-privacy ++Warn when a class seems unusable because all the constructors or ++destructors in that class are private, and it has neither friends nor ++public static member functions. ++ ++@item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)} ++@opindex Wnon-virtual-dtor ++@opindex Wno-non-virtual-dtor ++Warn when a class has virtual functions and accessible non-virtual ++destructor, in which case it would be possible but unsafe to delete ++an instance of a derived class through a pointer to the base class. ++This warning is also enabled if -Weffc++ is specified. ++ ++@item -Wreorder @r{(C++ and Objective-C++ only)} ++@opindex Wreorder ++@opindex Wno-reorder ++@cindex reordering, warning ++@cindex warning for reordering of member initializers ++Warn when the order of member initializers given in the code does not ++match the order in which they must be executed. For instance: ++ ++@smallexample ++struct A @{ ++ int i; ++ int j; ++ A(): j (0), i (1) @{ @} ++@}; ++@end smallexample ++ ++The compiler will rearrange the member initializers for @samp{i} ++and @samp{j} to match the declaration order of the members, emitting ++a warning to that effect. This warning is enabled by @option{-Wall}. ++@end table ++ ++The following @option{-W@dots{}} options are not affected by @option{-Wall}. ++ ++@table @gcctabopt ++@item -Weffc++ @r{(C++ and Objective-C++ only)} ++@opindex Weffc++ ++@opindex Wno-effc++ ++Warn about violations of the following style guidelines from Scott Meyers' ++@cite{Effective C++} book: ++ ++@itemize @bullet ++@item ++Item 11: Define a copy constructor and an assignment operator for classes ++with dynamically allocated memory. ++ ++@item ++Item 12: Prefer initialization to assignment in constructors. ++ ++@item ++Item 14: Make destructors virtual in base classes. ++ ++@item ++Item 15: Have @code{operator=} return a reference to @code{*this}. ++ ++@item ++Item 23: Don't try to return a reference when you must return an object. ++ ++@end itemize ++ ++Also warn about violations of the following style guidelines from ++Scott Meyers' @cite{More Effective C++} book: ++ ++@itemize @bullet ++@item ++Item 6: Distinguish between prefix and postfix forms of increment and ++decrement operators. ++ ++@item ++Item 7: Never overload @code{&&}, @code{||}, or @code{,}. ++ ++@end itemize ++ ++When selecting this option, be aware that the standard library ++headers do not obey all of these guidelines; use @samp{grep -v} ++to filter out those warnings. ++ ++@item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)} ++@opindex Wstrict-null-sentinel ++@opindex Wno-strict-null-sentinel ++Warn also about the use of an uncasted @code{NULL} as sentinel. When ++compiling only with GCC this is a valid sentinel, as @code{NULL} is defined ++to @code{__null}. Although it is a null pointer constant not a null pointer, ++it is guaranteed to be of the same size as a pointer. But this use is ++not portable across different compilers. ++ ++@item -Wno-non-template-friend @r{(C++ and Objective-C++ only)} ++@opindex Wno-non-template-friend ++@opindex Wnon-template-friend ++Disable warnings when non-templatized friend functions are declared ++within a template. Since the advent of explicit template specification ++support in G++, if the name of the friend is an unqualified-id (i.e., ++@samp{friend foo(int)}), the C++ language specification demands that the ++friend declare or define an ordinary, nontemplate function. (Section ++14.5.3). Before G++ implemented explicit specification, unqualified-ids ++could be interpreted as a particular specialization of a templatized ++function. Because this non-conforming behavior is no longer the default ++behavior for G++, @option{-Wnon-template-friend} allows the compiler to ++check existing code for potential trouble spots and is on by default. ++This new compiler behavior can be turned off with ++@option{-Wno-non-template-friend} which keeps the conformant compiler code ++but disables the helpful warning. ++ ++@item -Wold-style-cast @r{(C++ and Objective-C++ only)} ++@opindex Wold-style-cast ++@opindex Wno-old-style-cast ++Warn if an old-style (C-style) cast to a non-void type is used within ++a C++ program. The new-style casts (@samp{dynamic_cast}, ++@samp{static_cast}, @samp{reinterpret_cast}, and @samp{const_cast}) are ++less vulnerable to unintended effects and much easier to search for. ++ ++@item -Woverloaded-virtual @r{(C++ and Objective-C++ only)} ++@opindex Woverloaded-virtual ++@opindex Wno-overloaded-virtual ++@cindex overloaded virtual fn, warning ++@cindex warning for overloaded virtual fn ++Warn when a function declaration hides virtual functions from a ++base class. For example, in: ++ ++@smallexample ++struct A @{ ++ virtual void f(); ++@}; ++ ++struct B: public A @{ ++ void f(int); ++@}; ++@end smallexample ++ ++the @code{A} class version of @code{f} is hidden in @code{B}, and code ++like: ++ ++@smallexample ++B* b; ++b->f(); ++@end smallexample ++ ++will fail to compile. ++ ++@item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)} ++@opindex Wno-pmf-conversions ++@opindex Wpmf-conversions ++Disable the diagnostic for converting a bound pointer to member function ++to a plain pointer. ++ ++@item -Wsign-promo @r{(C++ and Objective-C++ only)} ++@opindex Wsign-promo ++@opindex Wno-sign-promo ++Warn when overload resolution chooses a promotion from unsigned or ++enumerated type to a signed type, over a conversion to an unsigned type of ++the same size. Previous versions of G++ would try to preserve ++unsignedness, but the standard mandates the current behavior. ++ ++@smallexample ++struct A @{ ++ operator int (); ++ A& operator = (int); ++@}; ++ ++main () ++@{ ++ A a,b; ++ a = b; ++@} ++@end smallexample ++ ++In this example, G++ will synthesize a default @samp{A& operator = ++(const A&);}, while cfront will use the user-defined @samp{operator =}. ++@end table ++ ++@node Objective-C and Objective-C++ Dialect Options ++@section Options Controlling Objective-C and Objective-C++ Dialects ++ ++@cindex compiler options, Objective-C and Objective-C++ ++@cindex Objective-C and Objective-C++ options, command line ++@cindex options, Objective-C and Objective-C++ ++(NOTE: This manual does not describe the Objective-C and Objective-C++ ++languages themselves. See @xref{Standards,,Language Standards ++Supported by GCC}, for references.) ++ ++This section describes the command-line options that are only meaningful ++for Objective-C and Objective-C++ programs, but you can also use most of ++the language-independent GNU compiler options. ++For example, you might compile a file @code{some_class.m} like this: ++ ++@smallexample ++gcc -g -fgnu-runtime -O -c some_class.m ++@end smallexample ++ ++@noindent ++In this example, @option{-fgnu-runtime} is an option meant only for ++Objective-C and Objective-C++ programs; you can use the other options with ++any language supported by GCC@. ++ ++Note that since Objective-C is an extension of the C language, Objective-C ++compilations may also use options specific to the C front-end (e.g., ++@option{-Wtraditional}). Similarly, Objective-C++ compilations may use ++C++-specific options (e.g., @option{-Wabi}). ++ ++Here is a list of options that are @emph{only} for compiling Objective-C ++and Objective-C++ programs: ++ ++@table @gcctabopt ++@item -fconstant-string-class=@var{class-name} ++@opindex fconstant-string-class ++Use @var{class-name} as the name of the class to instantiate for each ++literal string specified with the syntax @code{@@"@dots{}"}. The default ++class name is @code{NXConstantString} if the GNU runtime is being used, and ++@code{NSConstantString} if the NeXT runtime is being used (see below). The ++@option{-fconstant-cfstrings} option, if also present, will override the ++@option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals ++to be laid out as constant CoreFoundation strings. ++ ++@item -fgnu-runtime ++@opindex fgnu-runtime ++Generate object code compatible with the standard GNU Objective-C ++runtime. This is the default for most types of systems. ++ ++@item -fnext-runtime ++@opindex fnext-runtime ++Generate output compatible with the NeXT runtime. This is the default ++for NeXT-based systems, including Darwin and Mac OS X@. The macro ++@code{__NEXT_RUNTIME__} is predefined if (and only if) this option is ++used. ++ ++@item -fno-nil-receivers ++@opindex fno-nil-receivers ++Assume that all Objective-C message dispatches (e.g., ++@code{[receiver message:arg]}) in this translation unit ensure that the receiver ++is not @code{nil}. This allows for more efficient entry points in the runtime ++to be used. Currently, this option is only available in conjunction with ++the NeXT runtime on Mac OS X 10.3 and later. ++ ++@item -fobjc-call-cxx-cdtors ++@opindex fobjc-call-cxx-cdtors ++For each Objective-C class, check if any of its instance variables is a ++C++ object with a non-trivial default constructor. If so, synthesize a ++special @code{- (id) .cxx_construct} instance method that will run ++non-trivial default constructors on any such instance variables, in order, ++and then return @code{self}. Similarly, check if any instance variable ++is a C++ object with a non-trivial destructor, and if so, synthesize a ++special @code{- (void) .cxx_destruct} method that will run ++all such default destructors, in reverse order. ++ ++The @code{- (id) .cxx_construct} and/or @code{- (void) .cxx_destruct} methods ++thusly generated will only operate on instance variables declared in the ++current Objective-C class, and not those inherited from superclasses. It ++is the responsibility of the Objective-C runtime to invoke all such methods ++in an object's inheritance hierarchy. The @code{- (id) .cxx_construct} methods ++will be invoked by the runtime immediately after a new object ++instance is allocated; the @code{- (void) .cxx_destruct} methods will ++be invoked immediately before the runtime deallocates an object instance. ++ ++As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has ++support for invoking the @code{- (id) .cxx_construct} and ++@code{- (void) .cxx_destruct} methods. ++ ++@item -fobjc-direct-dispatch ++@opindex fobjc-direct-dispatch ++Allow fast jumps to the message dispatcher. On Darwin this is ++accomplished via the comm page. ++ ++@item -fobjc-exceptions ++@opindex fobjc-exceptions ++Enable syntactic support for structured exception handling in Objective-C, ++similar to what is offered by C++ and Java. This option is ++unavailable in conjunction with the NeXT runtime on Mac OS X 10.2 and ++earlier. ++ ++@smallexample ++ @@try @{ ++ @dots{} ++ @@throw expr; ++ @dots{} ++ @} ++ @@catch (AnObjCClass *exc) @{ ++ @dots{} ++ @@throw expr; ++ @dots{} ++ @@throw; ++ @dots{} ++ @} ++ @@catch (AnotherClass *exc) @{ ++ @dots{} ++ @} ++ @@catch (id allOthers) @{ ++ @dots{} ++ @} ++ @@finally @{ ++ @dots{} ++ @@throw expr; ++ @dots{} ++ @} ++@end smallexample ++ ++The @code{@@throw} statement may appear anywhere in an Objective-C or ++Objective-C++ program; when used inside of a @code{@@catch} block, the ++@code{@@throw} may appear without an argument (as shown above), in which case ++the object caught by the @code{@@catch} will be rethrown. ++ ++Note that only (pointers to) Objective-C objects may be thrown and ++caught using this scheme. When an object is thrown, it will be caught ++by the nearest @code{@@catch} clause capable of handling objects of that type, ++analogously to how @code{catch} blocks work in C++ and Java. A ++@code{@@catch(id @dots{})} clause (as shown above) may also be provided to catch ++any and all Objective-C exceptions not caught by previous @code{@@catch} ++clauses (if any). ++ ++The @code{@@finally} clause, if present, will be executed upon exit from the ++immediately preceding @code{@@try @dots{} @@catch} section. This will happen ++regardless of whether any exceptions are thrown, caught or rethrown ++inside the @code{@@try @dots{} @@catch} section, analogously to the behavior ++of the @code{finally} clause in Java. ++ ++There are several caveats to using the new exception mechanism: ++ ++@itemize @bullet ++@item ++Although currently designed to be binary compatible with @code{NS_HANDLER}-style ++idioms provided by the @code{NSException} class, the new ++exceptions can only be used on Mac OS X 10.3 (Panther) and later ++systems, due to additional functionality needed in the (NeXT) Objective-C ++runtime. ++ ++@item ++As mentioned above, the new exceptions do not support handling ++types other than Objective-C objects. Furthermore, when used from ++Objective-C++, the Objective-C exception model does not interoperate with C++ ++exceptions at this time. This means you cannot @code{@@throw} an exception ++from Objective-C and @code{catch} it in C++, or vice versa ++(i.e., @code{throw @dots{} @@catch}). ++@end itemize ++ ++The @option{-fobjc-exceptions} switch also enables the use of synchronization ++blocks for thread-safe execution: ++ ++@smallexample ++ @@synchronized (ObjCClass *guard) @{ ++ @dots{} ++ @} ++@end smallexample ++ ++Upon entering the @code{@@synchronized} block, a thread of execution shall ++first check whether a lock has been placed on the corresponding @code{guard} ++object by another thread. If it has, the current thread shall wait until ++the other thread relinquishes its lock. Once @code{guard} becomes available, ++the current thread will place its own lock on it, execute the code contained in ++the @code{@@synchronized} block, and finally relinquish the lock (thereby ++making @code{guard} available to other threads). ++ ++Unlike Java, Objective-C does not allow for entire methods to be marked ++@code{@@synchronized}. Note that throwing exceptions out of ++@code{@@synchronized} blocks is allowed, and will cause the guarding object ++to be unlocked properly. ++ ++@item -fobjc-gc ++@opindex fobjc-gc ++Enable garbage collection (GC) in Objective-C and Objective-C++ programs. ++ ++@item -freplace-objc-classes ++@opindex freplace-objc-classes ++Emit a special marker instructing @command{ld(1)} not to statically link in ++the resulting object file, and allow @command{dyld(1)} to load it in at ++run time instead. This is used in conjunction with the Fix-and-Continue ++debugging mode, where the object file in question may be recompiled and ++dynamically reloaded in the course of program execution, without the need ++to restart the program itself. Currently, Fix-and-Continue functionality ++is only available in conjunction with the NeXT runtime on Mac OS X 10.3 ++and later. ++ ++@item -fzero-link ++@opindex fzero-link ++When compiling for the NeXT runtime, the compiler ordinarily replaces calls ++to @code{objc_getClass("@dots{}")} (when the name of the class is known at ++compile time) with static class references that get initialized at load time, ++which improves run-time performance. Specifying the @option{-fzero-link} flag ++suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")} ++to be retained. This is useful in Zero-Link debugging mode, since it allows ++for individual class implementations to be modified during program execution. ++ ++@item -gen-decls ++@opindex gen-decls ++Dump interface declarations for all classes seen in the source file to a ++file named @file{@var{sourcename}.decl}. ++ ++@item -Wassign-intercept @r{(Objective-C and Objective-C++ only)} ++@opindex Wassign-intercept ++@opindex Wno-assign-intercept ++Warn whenever an Objective-C assignment is being intercepted by the ++garbage collector. ++ ++@item -Wno-protocol @r{(Objective-C and Objective-C++ only)} ++@opindex Wno-protocol ++@opindex Wprotocol ++If a class is declared to implement a protocol, a warning is issued for ++every method in the protocol that is not implemented by the class. The ++default behavior is to issue a warning for every method not explicitly ++implemented in the class, even if a method implementation is inherited ++from the superclass. If you use the @option{-Wno-protocol} option, then ++methods inherited from the superclass are considered to be implemented, ++and no warning is issued for them. ++ ++@item -Wselector @r{(Objective-C and Objective-C++ only)} ++@opindex Wselector ++@opindex Wno-selector ++Warn if multiple methods of different types for the same selector are ++found during compilation. The check is performed on the list of methods ++in the final stage of compilation. Additionally, a check is performed ++for each selector appearing in a @code{@@selector(@dots{})} ++expression, and a corresponding method for that selector has been found ++during compilation. Because these checks scan the method table only at ++the end of compilation, these warnings are not produced if the final ++stage of compilation is not reached, for example because an error is ++found during compilation, or because the @option{-fsyntax-only} option is ++being used. ++ ++@item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)} ++@opindex Wstrict-selector-match ++@opindex Wno-strict-selector-match ++Warn if multiple methods with differing argument and/or return types are ++found for a given selector when attempting to send a message using this ++selector to a receiver of type @code{id} or @code{Class}. When this flag ++is off (which is the default behavior), the compiler will omit such warnings ++if any differences found are confined to types which share the same size ++and alignment. ++ ++@item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)} ++@opindex Wundeclared-selector ++@opindex Wno-undeclared-selector ++Warn if a @code{@@selector(@dots{})} expression referring to an ++undeclared selector is found. A selector is considered undeclared if no ++method with that name has been declared before the ++@code{@@selector(@dots{})} expression, either explicitly in an ++@code{@@interface} or @code{@@protocol} declaration, or implicitly in ++an @code{@@implementation} section. This option always performs its ++checks as soon as a @code{@@selector(@dots{})} expression is found, ++while @option{-Wselector} only performs its checks in the final stage of ++compilation. This also enforces the coding style convention ++that methods and selectors must be declared before being used. ++ ++@item -print-objc-runtime-info ++@opindex print-objc-runtime-info ++Generate C header describing the largest structure that is passed by ++value, if any. ++ ++@end table ++ ++@node Language Independent Options ++@section Options to Control Diagnostic Messages Formatting ++@cindex options to control diagnostics formatting ++@cindex diagnostic messages ++@cindex message formatting ++ ++Traditionally, diagnostic messages have been formatted irrespective of ++the output device's aspect (e.g.@: its width, @dots{}). The options described ++below can be used to control the diagnostic messages formatting ++algorithm, e.g.@: how many characters per line, how often source location ++information should be reported. Right now, only the C++ front end can ++honor these options. However it is expected, in the near future, that ++the remaining front ends would be able to digest them correctly. ++ ++@table @gcctabopt ++@item -fmessage-length=@var{n} ++@opindex fmessage-length ++Try to format error messages so that they fit on lines of about @var{n} ++characters. The default is 72 characters for @command{g++} and 0 for the rest of ++the front ends supported by GCC@. If @var{n} is zero, then no ++line-wrapping will be done; each error message will appear on a single ++line. ++ ++@opindex fdiagnostics-show-location ++@item -fdiagnostics-show-location=once ++Only meaningful in line-wrapping mode. Instructs the diagnostic messages ++reporter to emit @emph{once} source location information; that is, in ++case the message is too long to fit on a single physical line and has to ++be wrapped, the source location won't be emitted (as prefix) again, ++over and over, in subsequent continuation lines. This is the default ++behavior. ++ ++@item -fdiagnostics-show-location=every-line ++Only meaningful in line-wrapping mode. Instructs the diagnostic ++messages reporter to emit the same source location information (as ++prefix) for physical lines that result from the process of breaking ++a message which is too long to fit on a single line. ++ ++@item -fdiagnostics-show-option ++@opindex fdiagnostics-show-option ++This option instructs the diagnostic machinery to add text to each ++diagnostic emitted, which indicates which command line option directly ++controls that diagnostic, when such an option is known to the ++diagnostic machinery. ++ ++@item -Wcoverage-mismatch ++@opindex Wcoverage-mismatch ++Warn if feedback profiles do not match when using the ++@option{-fprofile-use} option. ++If a source file was changed between @option{-fprofile-gen} and ++@option{-fprofile-use}, the files with the profile feedback can fail ++to match the source file and GCC can not use the profile feedback ++information. By default, GCC emits an error message in this case. ++The option @option{-Wcoverage-mismatch} emits a warning instead of an ++error. GCC does not use appropriate feedback profiles, so using this ++option can result in poorly optimized code. This option is useful ++only in the case of very minor changes such as bug fixes to an ++existing code-base. ++ ++@end table ++ ++@node Warning Options ++@section Options to Request or Suppress Warnings ++@cindex options to control warnings ++@cindex warning messages ++@cindex messages, warning ++@cindex suppressing warnings ++ ++Warnings are diagnostic messages that report constructions which ++are not inherently erroneous but which are risky or suggest there ++may have been an error. ++ ++The following language-independent options do not enable specific ++warnings but control the kinds of diagnostics produced by GCC. ++ ++@table @gcctabopt ++@cindex syntax checking ++@item -fsyntax-only ++@opindex fsyntax-only ++Check the code for syntax errors, but don't do anything beyond that. ++ ++@item -w ++@opindex w ++Inhibit all warning messages. ++ ++@item -Werror ++@opindex Werror ++@opindex Wno-error ++Make all warnings into errors. ++ ++@item -Werror= ++@opindex Werror= ++@opindex Wno-error= ++Make the specified warning into an error. The specifier for a warning ++is appended, for example @option{-Werror=switch} turns the warnings ++controlled by @option{-Wswitch} into errors. This switch takes a ++negative form, to be used to negate @option{-Werror} for specific ++warnings, for example @option{-Wno-error=switch} makes ++@option{-Wswitch} warnings not be errors, even when @option{-Werror} ++is in effect. You can use the @option{-fdiagnostics-show-option} ++option to have each controllable warning amended with the option which ++controls it, to determine what to use with this option. ++ ++Note that specifying @option{-Werror=}@var{foo} automatically implies ++@option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not ++imply anything. ++ ++@item -Wfatal-errors ++@opindex Wfatal-errors ++@opindex Wno-fatal-errors ++This option causes the compiler to abort compilation on the first error ++occurred rather than trying to keep going and printing further error ++messages. ++ ++@end table ++ ++You can request many specific warnings with options beginning ++@samp{-W}, for example @option{-Wimplicit} to request warnings on ++implicit declarations. Each of these specific warning options also ++has a negative form beginning @samp{-Wno-} to turn off warnings; for ++example, @option{-Wno-implicit}. This manual lists only one of the ++two forms, whichever is not the default. For further, ++language-specific options also refer to @ref{C++ Dialect Options} and ++@ref{Objective-C and Objective-C++ Dialect Options}. ++ ++@table @gcctabopt ++@item -pedantic ++@opindex pedantic ++Issue all the warnings demanded by strict ISO C and ISO C++; ++reject all programs that use forbidden extensions, and some other ++programs that do not follow ISO C and ISO C++. For ISO C, follows the ++version of the ISO C standard specified by any @option{-std} option used. ++ ++Valid ISO C and ISO C++ programs should compile properly with or without ++this option (though a rare few will require @option{-ansi} or a ++@option{-std} option specifying the required version of ISO C)@. However, ++without this option, certain GNU extensions and traditional C and C++ ++features are supported as well. With this option, they are rejected. ++ ++@option{-pedantic} does not cause warning messages for use of the ++alternate keywords whose names begin and end with @samp{__}. Pedantic ++warnings are also disabled in the expression that follows ++@code{__extension__}. However, only system header files should use ++these escape routes; application programs should avoid them. ++@xref{Alternate Keywords}. ++ ++Some users try to use @option{-pedantic} to check programs for strict ISO ++C conformance. They soon find that it does not do quite what they want: ++it finds some non-ISO practices, but not all---only those for which ++ISO C @emph{requires} a diagnostic, and some others for which ++diagnostics have been added. ++ ++A feature to report any failure to conform to ISO C might be useful in ++some instances, but would require considerable additional work and would ++be quite different from @option{-pedantic}. We don't have plans to ++support such a feature in the near future. ++ ++Where the standard specified with @option{-std} represents a GNU ++extended dialect of C, such as @samp{gnu89} or @samp{gnu99}, there is a ++corresponding @dfn{base standard}, the version of ISO C on which the GNU ++extended dialect is based. Warnings from @option{-pedantic} are given ++where they are required by the base standard. (It would not make sense ++for such warnings to be given only for features not in the specified GNU ++C dialect, since by definition the GNU dialects of C include all ++features the compiler supports with the given option, and there would be ++nothing to warn about.) ++ ++@item -pedantic-errors ++@opindex pedantic-errors ++Like @option{-pedantic}, except that errors are produced rather than ++warnings. ++ ++@item -Wall ++@opindex Wall ++@opindex Wno-all ++This enables all the warnings about constructions that some users ++consider questionable, and that are easy to avoid (or modify to ++prevent the warning), even in conjunction with macros. This also ++enables some language-specific warnings described in @ref{C++ Dialect ++Options} and @ref{Objective-C and Objective-C++ Dialect Options}. ++ ++@option{-Wall} turns on the following warning flags: ++ ++@gccoptlist{-Waddress @gol ++-Warray-bounds @r{(only with} @option{-O2}@r{)} @gol ++-Wc++0x-compat @gol ++-Wchar-subscripts @gol ++-Wimplicit-int @gol ++-Wimplicit-function-declaration @gol ++-Wcomment @gol ++-Wformat @gol ++-Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol ++-Wmissing-braces @gol ++-Wnonnull @gol ++-Wparentheses @gol ++-Wpointer-sign @gol ++-Wreorder @gol ++-Wreturn-type @gol ++-Wsequence-point @gol ++-Wsign-compare @r{(only in C++)} @gol ++-Wstrict-aliasing @gol ++-Wstrict-overflow=1 @gol ++-Wswitch @gol ++-Wtrigraphs @gol ++-Wuninitialized @gol ++-Wunknown-pragmas @gol ++-Wunused-function @gol ++-Wunused-label @gol ++-Wunused-value @gol ++-Wunused-variable @gol ++-Wvolatile-register-var @gol ++} ++ ++Note that some warning flags are not implied by @option{-Wall}. Some of ++them warn about constructions that users generally do not consider ++questionable, but which occasionally you might wish to check for; ++others warn about constructions that are necessary or hard to avoid in ++some cases, and there is no simple way to modify the code to suppress ++the warning. Some of them are enabled by @option{-Wextra} but many of ++them must be enabled individually. ++ ++@item -Wextra ++@opindex W ++@opindex Wextra ++@opindex Wno-extra ++This enables some extra warning flags that are not enabled by ++@option{-Wall}. (This option used to be called @option{-W}. The older ++name is still supported, but the newer name is more descriptive.) ++ ++@gccoptlist{-Wclobbered @gol ++-Wempty-body @gol ++-Wignored-qualifiers @gol ++-Wmissing-field-initializers @gol ++-Wmissing-parameter-type @r{(C only)} @gol ++-Wold-style-declaration @r{(C only)} @gol ++-Woverride-init @gol ++-Wsign-compare @gol ++-Wtype-limits @gol ++-Wuninitialized @gol ++-Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol ++} ++ ++The option @option{-Wextra} also prints warning messages for the ++following cases: ++ ++@itemize @bullet ++ ++@item ++A pointer is compared against integer zero with @samp{<}, @samp{<=}, ++@samp{>}, or @samp{>=}. ++ ++@item ++(C++ only) An enumerator and a non-enumerator both appear in a ++conditional expression. ++ ++@item ++(C++ only) Ambiguous virtual bases. ++ ++@item ++(C++ only) Subscripting an array which has been declared @samp{register}. ++ ++@item ++(C++ only) Taking the address of a variable which has been declared ++@samp{register}. ++ ++@item ++(C++ only) A base class is not initialized in a derived class' copy ++constructor. ++ ++@end itemize ++ ++@item -Wchar-subscripts ++@opindex Wchar-subscripts ++@opindex Wno-char-subscripts ++Warn if an array subscript has type @code{char}. This is a common cause ++of error, as programmers often forget that this type is signed on some ++machines. ++This warning is enabled by @option{-Wall}. ++ ++@item -Wcomment ++@opindex Wcomment ++@opindex Wno-comment ++Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*} ++comment, or whenever a Backslash-Newline appears in a @samp{//} comment. ++This warning is enabled by @option{-Wall}. ++ ++@item -Wformat ++@opindex Wformat ++@opindex Wno-format ++@opindex ffreestanding ++@opindex fno-builtin ++Check calls to @code{printf} and @code{scanf}, etc., to make sure that ++the arguments supplied have types appropriate to the format string ++specified, and that the conversions specified in the format string make ++sense. This includes standard functions, and others specified by format ++attributes (@pxref{Function Attributes}), in the @code{printf}, ++@code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension, ++not in the C standard) families (or other target-specific families). ++Which functions are checked without format attributes having been ++specified depends on the standard version selected, and such checks of ++functions without the attribute specified are disabled by ++@option{-ffreestanding} or @option{-fno-builtin}. ++ ++The formats are checked against the format features supported by GNU ++libc version 2.2. These include all ISO C90 and C99 features, as well ++as features from the Single Unix Specification and some BSD and GNU ++extensions. Other library implementations may not support all these ++features; GCC does not support warning about features that go beyond a ++particular library's limitations. However, if @option{-pedantic} is used ++with @option{-Wformat}, warnings will be given about format features not ++in the selected standard version (but not for @code{strfmon} formats, ++since those are not in any version of the C standard). @xref{C Dialect ++Options,,Options Controlling C Dialect}. ++ ++Since @option{-Wformat} also checks for null format arguments for ++several functions, @option{-Wformat} also implies @option{-Wnonnull}. ++ ++@option{-Wformat} is included in @option{-Wall}. For more control over some ++aspects of format checking, the options @option{-Wformat-y2k}, ++@option{-Wno-format-extra-args}, @option{-Wno-format-zero-length}, ++@option{-Wformat-nonliteral}, @option{-Wformat-security}, and ++@option{-Wformat=2} are available, but are not included in @option{-Wall}. ++ ++@item -Wformat-y2k ++@opindex Wformat-y2k ++@opindex Wno-format-y2k ++If @option{-Wformat} is specified, also warn about @code{strftime} ++formats which may yield only a two-digit year. ++ ++@item -Wno-format-contains-nul ++@opindex Wno-format-contains-nul ++@opindex Wformat-contains-nul ++If @option{-Wformat} is specified, do not warn about format strings that ++contain NUL bytes. ++ ++@item -Wno-format-extra-args ++@opindex Wno-format-extra-args ++@opindex Wformat-extra-args ++If @option{-Wformat} is specified, do not warn about excess arguments to a ++@code{printf} or @code{scanf} format function. The C standard specifies ++that such arguments are ignored. ++ ++Where the unused arguments lie between used arguments that are ++specified with @samp{$} operand number specifications, normally ++warnings are still given, since the implementation could not know what ++type to pass to @code{va_arg} to skip the unused arguments. However, ++in the case of @code{scanf} formats, this option will suppress the ++warning if the unused arguments are all pointers, since the Single ++Unix Specification says that such unused arguments are allowed. ++ ++@item -Wno-format-zero-length @r{(C and Objective-C only)} ++@opindex Wno-format-zero-length ++@opindex Wformat-zero-length ++If @option{-Wformat} is specified, do not warn about zero-length formats. ++The C standard specifies that zero-length formats are allowed. ++ ++@item -Wformat-nonliteral ++@opindex Wformat-nonliteral ++@opindex Wno-format-nonliteral ++If @option{-Wformat} is specified, also warn if the format string is not a ++string literal and so cannot be checked, unless the format function ++takes its format arguments as a @code{va_list}. ++ ++@item -Wformat-security ++@opindex Wformat-security ++@opindex Wno-format-security ++If @option{-Wformat} is specified, also warn about uses of format ++functions that represent possible security problems. At present, this ++warns about calls to @code{printf} and @code{scanf} functions where the ++format string is not a string literal and there are no format arguments, ++as in @code{printf (foo);}. This may be a security hole if the format ++string came from untrusted input and contains @samp{%n}. (This is ++currently a subset of what @option{-Wformat-nonliteral} warns about, but ++in future warnings may be added to @option{-Wformat-security} that are not ++included in @option{-Wformat-nonliteral}.) ++ ++@item -Wformat=2 ++@opindex Wformat=2 ++@opindex Wno-format=2 ++Enable @option{-Wformat} plus format checks not included in ++@option{-Wformat}. Currently equivalent to @samp{-Wformat ++-Wformat-nonliteral -Wformat-security -Wformat-y2k}. ++ ++@item -Wnonnull @r{(C and Objective-C only)} ++@opindex Wnonnull ++@opindex Wno-nonnull ++Warn about passing a null pointer for arguments marked as ++requiring a non-null value by the @code{nonnull} function attribute. ++ ++@option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It ++can be disabled with the @option{-Wno-nonnull} option. ++ ++@item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)} ++@opindex Winit-self ++@opindex Wno-init-self ++Warn about uninitialized variables which are initialized with themselves. ++Note this option can only be used with the @option{-Wuninitialized} option. ++ ++For example, GCC will warn about @code{i} being uninitialized in the ++following snippet only when @option{-Winit-self} has been specified: ++@smallexample ++@group ++int f() ++@{ ++ int i = i; ++ return i; ++@} ++@end group ++@end smallexample ++ ++@item -Wimplicit-int @r{(C and Objective-C only)} ++@opindex Wimplicit-int ++@opindex Wno-implicit-int ++Warn when a declaration does not specify a type. ++This warning is enabled by @option{-Wall}. ++ ++@item -Wimplicit-function-declaration @r{(C and Objective-C only)} ++@opindex Wimplicit-function-declaration ++@opindex Wno-implicit-function-declaration ++Give a warning whenever a function is used before being declared. In ++C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is ++enabled by default and it is made into an error by ++@option{-pedantic-errors}. This warning is also enabled by ++@option{-Wall}. ++ ++@item -Wimplicit ++@opindex Wimplicit ++@opindex Wno-implicit ++Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}. ++This warning is enabled by @option{-Wall}. ++ ++@item -Wignored-qualifiers @r{(C and C++ only)} ++@opindex Wignored-qualifiers ++@opindex Wno-ignored-qualifiers ++Warn if the return type of a function has a type qualifier ++such as @code{const}. For ISO C such a type qualifier has no effect, ++since the value returned by a function is not an lvalue. ++For C++, the warning is only emitted for scalar types or @code{void}. ++ISO C prohibits qualified @code{void} return types on function ++definitions, so such return types always receive a warning ++even without this option. ++ ++This warning is also enabled by @option{-Wextra}. ++ ++@item -Wmain ++@opindex Wmain ++@opindex Wno-main ++Warn if the type of @samp{main} is suspicious. @samp{main} should be ++a function with external linkage, returning int, taking either zero ++arguments, two, or three arguments of appropriate types. This warning ++is enabled by default in C++ and is enabled by either @option{-Wall} ++or @option{-pedantic}. ++ ++@item -Wmissing-braces ++@opindex Wmissing-braces ++@opindex Wno-missing-braces ++Warn if an aggregate or union initializer is not fully bracketed. In ++the following example, the initializer for @samp{a} is not fully ++bracketed, but that for @samp{b} is fully bracketed. ++ ++@smallexample ++int a[2][2] = @{ 0, 1, 2, 3 @}; ++int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @}; ++@end smallexample ++ ++This warning is enabled by @option{-Wall}. ++ ++@item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)} ++@opindex Wmissing-include-dirs ++@opindex Wno-missing-include-dirs ++Warn if a user-supplied include directory does not exist. ++ ++@item -Wparentheses ++@opindex Wparentheses ++@opindex Wno-parentheses ++Warn if parentheses are omitted in certain contexts, such ++as when there is an assignment in a context where a truth value ++is expected, or when operators are nested whose precedence people ++often get confused about. ++ ++Also warn if a comparison like @samp{x<=y<=z} appears; this is ++equivalent to @samp{(x<=y ? 1 : 0) <= z}, which is a different ++interpretation from that of ordinary mathematical notation. ++ ++Also warn about constructions where there may be confusion to which ++@code{if} statement an @code{else} branch belongs. Here is an example of ++such a case: ++ ++@smallexample ++@group ++@{ ++ if (a) ++ if (b) ++ foo (); ++ else ++ bar (); ++@} ++@end group ++@end smallexample ++ ++In C/C++, every @code{else} branch belongs to the innermost possible ++@code{if} statement, which in this example is @code{if (b)}. This is ++often not what the programmer expected, as illustrated in the above ++example by indentation the programmer chose. When there is the ++potential for this confusion, GCC will issue a warning when this flag ++is specified. To eliminate the warning, add explicit braces around ++the innermost @code{if} statement so there is no way the @code{else} ++could belong to the enclosing @code{if}. The resulting code would ++look like this: ++ ++@smallexample ++@group ++@{ ++ if (a) ++ @{ ++ if (b) ++ foo (); ++ else ++ bar (); ++ @} ++@} ++@end group ++@end smallexample ++ ++This warning is enabled by @option{-Wall}. ++ ++@item -Wsequence-point ++@opindex Wsequence-point ++@opindex Wno-sequence-point ++Warn about code that may have undefined semantics because of violations ++of sequence point rules in the C and C++ standards. ++ ++The C and C++ standards defines the order in which expressions in a C/C++ ++program are evaluated in terms of @dfn{sequence points}, which represent ++a partial ordering between the execution of parts of the program: those ++executed before the sequence point, and those executed after it. These ++occur after the evaluation of a full expression (one which is not part ++of a larger expression), after the evaluation of the first operand of a ++@code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a ++function is called (but after the evaluation of its arguments and the ++expression denoting the called function), and in certain other places. ++Other than as expressed by the sequence point rules, the order of ++evaluation of subexpressions of an expression is not specified. All ++these rules describe only a partial order rather than a total order, ++since, for example, if two functions are called within one expression ++with no sequence point between them, the order in which the functions ++are called is not specified. However, the standards committee have ++ruled that function calls do not overlap. ++ ++It is not specified when between sequence points modifications to the ++values of objects take effect. Programs whose behavior depends on this ++have undefined behavior; the C and C++ standards specify that ``Between ++the previous and next sequence point an object shall have its stored ++value modified at most once by the evaluation of an expression. ++Furthermore, the prior value shall be read only to determine the value ++to be stored.''. If a program breaks these rules, the results on any ++particular implementation are entirely unpredictable. ++ ++Examples of code with undefined behavior are @code{a = a++;}, @code{a[n] ++= b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not ++diagnosed by this option, and it may give an occasional false positive ++result, but in general it has been found fairly effective at detecting ++this sort of problem in programs. ++ ++The standard is worded confusingly, therefore there is some debate ++over the precise meaning of the sequence point rules in subtle cases. ++Links to discussions of the problem, including proposed formal ++definitions, may be found on the GCC readings page, at ++@w{@uref{http://gcc.gnu.org/readings.html}}. ++ ++This warning is enabled by @option{-Wall} for C and C++. ++ ++@item -Wreturn-type ++@opindex Wreturn-type ++@opindex Wno-return-type ++Warn whenever a function is defined with a return-type that defaults ++to @code{int}. Also warn about any @code{return} statement with no ++return-value in a function whose return-type is not @code{void} ++(falling off the end of the function body is considered returning ++without a value), and about a @code{return} statement with a ++expression in a function whose return-type is @code{void}. ++ ++For C++, a function without return type always produces a diagnostic ++message, even when @option{-Wno-return-type} is specified. The only ++exceptions are @samp{main} and functions defined in system headers. ++ ++This warning is enabled by @option{-Wall}. ++ ++@item -Wswitch ++@opindex Wswitch ++@opindex Wno-switch ++Warn whenever a @code{switch} statement has an index of enumerated type ++and lacks a @code{case} for one or more of the named codes of that ++enumeration. (The presence of a @code{default} label prevents this ++warning.) @code{case} labels outside the enumeration range also ++provoke warnings when this option is used. ++This warning is enabled by @option{-Wall}. ++ ++@item -Wswitch-default ++@opindex Wswitch-default ++@opindex Wno-switch-default ++Warn whenever a @code{switch} statement does not have a @code{default} ++case. ++ ++@item -Wswitch-enum ++@opindex Wswitch-enum ++@opindex Wno-switch-enum ++Warn whenever a @code{switch} statement has an index of enumerated type ++and lacks a @code{case} for one or more of the named codes of that ++enumeration. @code{case} labels outside the enumeration range also ++provoke warnings when this option is used. ++ ++@item -Wsync-nand @r{(C and C++ only)} ++@opindex Wsync-nand ++@opindex Wno-sync-nand ++Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch} ++built-in functions are used. These functions changed semantics in GCC 4.4. ++ ++@item -Wtrigraphs ++@opindex Wtrigraphs ++@opindex Wno-trigraphs ++Warn if any trigraphs are encountered that might change the meaning of ++the program (trigraphs within comments are not warned about). ++This warning is enabled by @option{-Wall}. ++ ++@item -Wunused-function ++@opindex Wunused-function ++@opindex Wno-unused-function ++Warn whenever a static function is declared but not defined or a ++non-inline static function is unused. ++This warning is enabled by @option{-Wall}. ++ ++@item -Wunused-label ++@opindex Wunused-label ++@opindex Wno-unused-label ++Warn whenever a label is declared but not used. ++This warning is enabled by @option{-Wall}. ++ ++To suppress this warning use the @samp{unused} attribute ++(@pxref{Variable Attributes}). ++ ++@item -Wunused-parameter ++@opindex Wunused-parameter ++@opindex Wno-unused-parameter ++Warn whenever a function parameter is unused aside from its declaration. ++ ++To suppress this warning use the @samp{unused} attribute ++(@pxref{Variable Attributes}). ++ ++@item -Wunused-variable ++@opindex Wunused-variable ++@opindex Wno-unused-variable ++Warn whenever a local variable or non-constant static variable is unused ++aside from its declaration. ++This warning is enabled by @option{-Wall}. ++ ++To suppress this warning use the @samp{unused} attribute ++(@pxref{Variable Attributes}). ++ ++@item -Wunused-value ++@opindex Wunused-value ++@opindex Wno-unused-value ++Warn whenever a statement computes a result that is explicitly not ++used. To suppress this warning cast the unused expression to ++@samp{void}. This includes an expression-statement or the left-hand ++side of a comma expression that contains no side effects. For example, ++an expression such as @samp{x[i,j]} will cause a warning, while ++@samp{x[(void)i,j]} will not. ++ ++This warning is enabled by @option{-Wall}. ++ ++@item -Wunused ++@opindex Wunused ++@opindex Wno-unused ++All the above @option{-Wunused} options combined. ++ ++In order to get a warning about an unused function parameter, you must ++either specify @samp{-Wextra -Wunused} (note that @samp{-Wall} implies ++@samp{-Wunused}), or separately specify @option{-Wunused-parameter}. ++ ++@item -Wuninitialized ++@opindex Wuninitialized ++@opindex Wno-uninitialized ++Warn if an automatic variable is used without first being initialized ++or if a variable may be clobbered by a @code{setjmp} call. In C++, ++warn if a non-static reference or non-static @samp{const} member ++appears in a class without constructors. ++ ++If you want to warn about code which uses the uninitialized value of the ++variable in its own initializer, use the @option{-Winit-self} option. ++ ++These warnings occur for individual uninitialized or clobbered ++elements of structure, union or array variables as well as for ++variables which are uninitialized or clobbered as a whole. They do ++not occur for variables or elements declared @code{volatile}. Because ++these warnings depend on optimization, the exact variables or elements ++for which there are warnings will depend on the precise optimization ++options and version of GCC used. ++ ++Note that there may be no warning about a variable that is used only ++to compute a value that itself is never used, because such ++computations may be deleted by data flow analysis before the warnings ++are printed. ++ ++These warnings are made optional because GCC is not smart ++enough to see all the reasons why the code might be correct ++despite appearing to have an error. Here is one example of how ++this can happen: ++ ++@smallexample ++@group ++@{ ++ int x; ++ switch (y) ++ @{ ++ case 1: x = 1; ++ break; ++ case 2: x = 4; ++ break; ++ case 3: x = 5; ++ @} ++ foo (x); ++@} ++@end group ++@end smallexample ++ ++@noindent ++If the value of @code{y} is always 1, 2 or 3, then @code{x} is ++always initialized, but GCC doesn't know this. Here is ++another common case: ++ ++@smallexample ++@{ ++ int save_y; ++ if (change_y) save_y = y, y = new_y; ++ @dots{} ++ if (change_y) y = save_y; ++@} ++@end smallexample ++ ++@noindent ++This has no bug because @code{save_y} is used only if it is set. ++ ++@cindex @code{longjmp} warnings ++This option also warns when a non-volatile automatic variable might be ++changed by a call to @code{longjmp}. These warnings as well are possible ++only in optimizing compilation. ++ ++The compiler sees only the calls to @code{setjmp}. It cannot know ++where @code{longjmp} will be called; in fact, a signal handler could ++call it at any point in the code. As a result, you may get a warning ++even when there is in fact no problem because @code{longjmp} cannot ++in fact be called at the place which would cause a problem. ++ ++Some spurious warnings can be avoided if you declare all the functions ++you use that never return as @code{noreturn}. @xref{Function ++Attributes}. ++ ++This warning is enabled by @option{-Wall} or @option{-Wextra}. ++ ++@item -Wunknown-pragmas ++@opindex Wunknown-pragmas ++@opindex Wno-unknown-pragmas ++@cindex warning for unknown pragmas ++@cindex unknown pragmas, warning ++@cindex pragmas, warning of unknown ++Warn when a #pragma directive is encountered which is not understood by ++GCC@. If this command line option is used, warnings will even be issued ++for unknown pragmas in system header files. This is not the case if ++the warnings were only enabled by the @option{-Wall} command line option. ++ ++@item -Wno-pragmas ++@opindex Wno-pragmas ++@opindex Wpragmas ++Do not warn about misuses of pragmas, such as incorrect parameters, ++invalid syntax, or conflicts between pragmas. See also ++@samp{-Wunknown-pragmas}. ++ ++@item -Wstrict-aliasing ++@opindex Wstrict-aliasing ++@opindex Wno-strict-aliasing ++This option is only active when @option{-fstrict-aliasing} is active. ++It warns about code which might break the strict aliasing rules that the ++compiler is using for optimization. The warning does not catch all ++cases, but does attempt to catch the more common pitfalls. It is ++included in @option{-Wall}. ++It is equivalent to @option{-Wstrict-aliasing=3} ++ ++@item -Wstrict-aliasing=n ++@opindex Wstrict-aliasing=n ++@opindex Wno-strict-aliasing=n ++This option is only active when @option{-fstrict-aliasing} is active. ++It warns about code which might break the strict aliasing rules that the ++compiler is using for optimization. ++Higher levels correspond to higher accuracy (fewer false positives). ++Higher levels also correspond to more effort, similar to the way -O works. ++@option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=n}, ++with n=3. ++ ++Level 1: Most aggressive, quick, least accurate. ++Possibly useful when higher levels ++do not warn but -fstrict-aliasing still breaks the code, as it has very few ++false negatives. However, it has many false positives. ++Warns for all pointer conversions between possibly incompatible types, ++even if never dereferenced. Runs in the frontend only. ++ ++Level 2: Aggressive, quick, not too precise. ++May still have many false positives (not as many as level 1 though), ++and few false negatives (but possibly more than level 1). ++Unlike level 1, it only warns when an address is taken. Warns about ++incomplete types. Runs in the frontend only. ++ ++Level 3 (default for @option{-Wstrict-aliasing}): ++Should have very few false positives and few false ++negatives. Slightly slower than levels 1 or 2 when optimization is enabled. ++Takes care of the common punn+dereference pattern in the frontend: ++@code{*(int*)&some_float}. ++If optimization is enabled, it also runs in the backend, where it deals ++with multiple statement cases using flow-sensitive points-to information. ++Only warns when the converted pointer is dereferenced. ++Does not warn about incomplete types. ++ ++@item -Wstrict-overflow ++@itemx -Wstrict-overflow=@var{n} ++@opindex Wstrict-overflow ++@opindex Wno-strict-overflow ++This option is only active when @option{-fstrict-overflow} is active. ++It warns about cases where the compiler optimizes based on the ++assumption that signed overflow does not occur. Note that it does not ++warn about all cases where the code might overflow: it only warns ++about cases where the compiler implements some optimization. Thus ++this warning depends on the optimization level. ++ ++An optimization which assumes that signed overflow does not occur is ++perfectly safe if the values of the variables involved are such that ++overflow never does, in fact, occur. Therefore this warning can ++easily give a false positive: a warning about code which is not ++actually a problem. To help focus on important issues, several ++warning levels are defined. No warnings are issued for the use of ++undefined signed overflow when estimating how many iterations a loop ++will require, in particular when determining whether a loop will be ++executed at all. ++ ++@table @gcctabopt ++@item -Wstrict-overflow=1 ++Warn about cases which are both questionable and easy to avoid. For ++example: @code{x + 1 > x}; with @option{-fstrict-overflow}, the ++compiler will simplify this to @code{1}. This level of ++@option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels ++are not, and must be explicitly requested. ++ ++@item -Wstrict-overflow=2 ++Also warn about other cases where a comparison is simplified to a ++constant. For example: @code{abs (x) >= 0}. This can only be ++simplified when @option{-fstrict-overflow} is in effect, because ++@code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than ++zero. @option{-Wstrict-overflow} (with no level) is the same as ++@option{-Wstrict-overflow=2}. ++ ++@item -Wstrict-overflow=3 ++Also warn about other cases where a comparison is simplified. For ++example: @code{x + 1 > 1} will be simplified to @code{x > 0}. ++ ++@item -Wstrict-overflow=4 ++Also warn about other simplifications not covered by the above cases. ++For example: @code{(x * 10) / 5} will be simplified to @code{x * 2}. ++ ++@item -Wstrict-overflow=5 ++Also warn about cases where the compiler reduces the magnitude of a ++constant involved in a comparison. For example: @code{x + 2 > y} will ++be simplified to @code{x + 1 >= y}. This is reported only at the ++highest warning level because this simplification applies to many ++comparisons, so this warning level will give a very large number of ++false positives. ++@end table ++ ++@item -Warray-bounds ++@opindex Wno-array-bounds ++@opindex Warray-bounds ++This option is only active when @option{-ftree-vrp} is active ++(default for -O2 and above). It warns about subscripts to arrays ++that are always out of bounds. This warning is enabled by @option{-Wall}. ++ ++@item -Wno-div-by-zero ++@opindex Wno-div-by-zero ++@opindex Wdiv-by-zero ++Do not warn about compile-time integer division by zero. Floating point ++division by zero is not warned about, as it can be a legitimate way of ++obtaining infinities and NaNs. ++ ++@item -Wsystem-headers ++@opindex Wsystem-headers ++@opindex Wno-system-headers ++@cindex warnings from system headers ++@cindex system headers, warnings from ++Print warning messages for constructs found in system header files. ++Warnings from system headers are normally suppressed, on the assumption ++that they usually do not indicate real problems and would only make the ++compiler output harder to read. Using this command line option tells ++GCC to emit warnings from system headers as if they occurred in user ++code. However, note that using @option{-Wall} in conjunction with this ++option will @emph{not} warn about unknown pragmas in system ++headers---for that, @option{-Wunknown-pragmas} must also be used. ++ ++@item -Wfloat-equal ++@opindex Wfloat-equal ++@opindex Wno-float-equal ++Warn if floating point values are used in equality comparisons. ++ ++The idea behind this is that sometimes it is convenient (for the ++programmer) to consider floating-point values as approximations to ++infinitely precise real numbers. If you are doing this, then you need ++to compute (by analyzing the code, or in some other way) the maximum or ++likely maximum error that the computation introduces, and allow for it ++when performing comparisons (and when producing output, but that's a ++different problem). In particular, instead of testing for equality, you ++would check to see whether the two values have ranges that overlap; and ++this is done with the relational operators, so equality comparisons are ++probably mistaken. ++ ++@item -Wtraditional @r{(C and Objective-C only)} ++@opindex Wtraditional ++@opindex Wno-traditional ++Warn about certain constructs that behave differently in traditional and ++ISO C@. Also warn about ISO C constructs that have no traditional C ++equivalent, and/or problematic constructs which should be avoided. ++ ++@itemize @bullet ++@item ++Macro parameters that appear within string literals in the macro body. ++In traditional C macro replacement takes place within string literals, ++but does not in ISO C@. ++ ++@item ++In traditional C, some preprocessor directives did not exist. ++Traditional preprocessors would only consider a line to be a directive ++if the @samp{#} appeared in column 1 on the line. Therefore ++@option{-Wtraditional} warns about directives that traditional C ++understands but would ignore because the @samp{#} does not appear as the ++first character on the line. It also suggests you hide directives like ++@samp{#pragma} not understood by traditional C by indenting them. Some ++traditional implementations would not recognize @samp{#elif}, so it ++suggests avoiding it altogether. ++ ++@item ++A function-like macro that appears without arguments. ++ ++@item ++The unary plus operator. ++ ++@item ++The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating point ++constant suffixes. (Traditional C does support the @samp{L} suffix on integer ++constants.) Note, these suffixes appear in macros defined in the system ++headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}. ++Use of these macros in user code might normally lead to spurious ++warnings, however GCC's integrated preprocessor has enough context to ++avoid warning in these cases. ++ ++@item ++A function declared external in one block and then used after the end of ++the block. ++ ++@item ++A @code{switch} statement has an operand of type @code{long}. ++ ++@item ++A non-@code{static} function declaration follows a @code{static} one. ++This construct is not accepted by some traditional C compilers. ++ ++@item ++The ISO type of an integer constant has a different width or ++signedness from its traditional type. This warning is only issued if ++the base of the constant is ten. I.e.@: hexadecimal or octal values, which ++typically represent bit patterns, are not warned about. ++ ++@item ++Usage of ISO string concatenation is detected. ++ ++@item ++Initialization of automatic aggregates. ++ ++@item ++Identifier conflicts with labels. Traditional C lacks a separate ++namespace for labels. ++ ++@item ++Initialization of unions. If the initializer is zero, the warning is ++omitted. This is done under the assumption that the zero initializer in ++user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing ++initializer warnings and relies on default initialization to zero in the ++traditional C case. ++ ++@item ++Conversions by prototypes between fixed/floating point values and vice ++versa. The absence of these prototypes when compiling with traditional ++C would cause serious problems. This is a subset of the possible ++conversion warnings, for the full set use @option{-Wtraditional-conversion}. ++ ++@item ++Use of ISO C style function definitions. This warning intentionally is ++@emph{not} issued for prototype declarations or variadic functions ++because these ISO C features will appear in your code when using ++libiberty's traditional C compatibility macros, @code{PARAMS} and ++@code{VPARAMS}. This warning is also bypassed for nested functions ++because that feature is already a GCC extension and thus not relevant to ++traditional C compatibility. ++@end itemize ++ ++@item -Wtraditional-conversion @r{(C and Objective-C only)} ++@opindex Wtraditional-conversion ++@opindex Wno-traditional-conversion ++Warn if a prototype causes a type conversion that is different from what ++would happen to the same argument in the absence of a prototype. This ++includes conversions of fixed point to floating and vice versa, and ++conversions changing the width or signedness of a fixed point argument ++except when the same as the default promotion. ++ ++@item -Wdeclaration-after-statement @r{(C and Objective-C only)} ++@opindex Wdeclaration-after-statement ++@opindex Wno-declaration-after-statement ++Warn when a declaration is found after a statement in a block. This ++construct, known from C++, was introduced with ISO C99 and is by default ++allowed in GCC@. It is not supported by ISO C90 and was not supported by ++GCC versions before GCC 3.0. @xref{Mixed Declarations}. ++ ++@item -Wundef ++@opindex Wundef ++@opindex Wno-undef ++Warn if an undefined identifier is evaluated in an @samp{#if} directive. ++ ++@item -Wno-endif-labels ++@opindex Wno-endif-labels ++@opindex Wendif-labels ++Do not warn whenever an @samp{#else} or an @samp{#endif} are followed by text. ++ ++@item -Wshadow ++@opindex Wshadow ++@opindex Wno-shadow ++Warn whenever a local variable shadows another local variable, parameter or ++global variable or whenever a built-in function is shadowed. ++ ++@item -Wlarger-than=@var{len} ++@opindex Wlarger-than=@var{len} ++@opindex Wlarger-than-@var{len} ++Warn whenever an object of larger than @var{len} bytes is defined. ++ ++@item -Wframe-larger-than=@var{len} ++@opindex Wframe-larger-than ++Warn if the size of a function frame is larger than @var{len} bytes. ++The computation done to determine the stack frame size is approximate ++and not conservative. ++The actual requirements may be somewhat greater than @var{len} ++even if you do not get a warning. In addition, any space allocated ++via @code{alloca}, variable-length arrays, or related constructs ++is not included by the compiler when determining ++whether or not to issue a warning. ++ ++@item -Wunsafe-loop-optimizations ++@opindex Wunsafe-loop-optimizations ++@opindex Wno-unsafe-loop-optimizations ++Warn if the loop cannot be optimized because the compiler could not ++assume anything on the bounds of the loop indices. With ++@option{-funsafe-loop-optimizations} warn if the compiler made ++such assumptions. ++ ++@item -Wno-pedantic-ms-format @r{(MinGW targets only)} ++@opindex Wno-pedantic-ms-format ++@opindex Wpedantic-ms-format ++Disables the warnings about non-ISO @code{printf} / @code{scanf} format ++width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets ++depending on the MS runtime, when you are using the options @option{-Wformat} ++and @option{-pedantic} without gnu-extensions. ++ ++@item -Wpointer-arith ++@opindex Wpointer-arith ++@opindex Wno-pointer-arith ++Warn about anything that depends on the ``size of'' a function type or ++of @code{void}. GNU C assigns these types a size of 1, for ++convenience in calculations with @code{void *} pointers and pointers ++to functions. In C++, warn also when an arithmetic operation involves ++@code{NULL}. This warning is also enabled by @option{-pedantic}. ++ ++@item -Wtype-limits ++@opindex Wtype-limits ++@opindex Wno-type-limits ++Warn if a comparison is always true or always false due to the limited ++range of the data type, but do not warn for constant expressions. For ++example, warn if an unsigned variable is compared against zero with ++@samp{<} or @samp{>=}. This warning is also enabled by ++@option{-Wextra}. ++ ++@item -Wbad-function-cast @r{(C and Objective-C only)} ++@opindex Wbad-function-cast ++@opindex Wno-bad-function-cast ++Warn whenever a function call is cast to a non-matching type. ++For example, warn if @code{int malloc()} is cast to @code{anything *}. ++ ++@item -Wc++-compat @r{(C and Objective-C only)} ++Warn about ISO C constructs that are outside of the common subset of ++ISO C and ISO C++, e.g.@: request for implicit conversion from ++@code{void *} to a pointer to non-@code{void} type. ++ ++@item -Wc++0x-compat @r{(C++ and Objective-C++ only)} ++Warn about C++ constructs whose meaning differs between ISO C++ 1998 and ++ISO C++ 200x, e.g., identifiers in ISO C++ 1998 that will become keywords ++in ISO C++ 200x. This warning is enabled by @option{-Wall}. ++ ++@item -Wcast-qual ++@opindex Wcast-qual ++@opindex Wno-cast-qual ++Warn whenever a pointer is cast so as to remove a type qualifier from ++the target type. For example, warn if a @code{const char *} is cast ++to an ordinary @code{char *}. ++ ++@item -Wcast-align ++@opindex Wcast-align ++@opindex Wno-cast-align ++Warn whenever a pointer is cast such that the required alignment of the ++target is increased. For example, warn if a @code{char *} is cast to ++an @code{int *} on machines where integers can only be accessed at ++two- or four-byte boundaries. ++ ++@item -Wwrite-strings ++@opindex Wwrite-strings ++@opindex Wno-write-strings ++When compiling C, give string constants the type @code{const ++char[@var{length}]} so that copying the address of one into a ++non-@code{const} @code{char *} pointer will get a warning. These ++warnings will help you find at compile time code that can try to write ++into a string constant, but only if you have been very careful about ++using @code{const} in declarations and prototypes. Otherwise, it will ++just be a nuisance. This is why we did not make @option{-Wall} request ++these warnings. ++ ++When compiling C++, warn about the deprecated conversion from string ++literals to @code{char *}. This warning is enabled by default for C++ ++programs. ++ ++@item -Wclobbered ++@opindex Wclobbered ++@opindex Wno-clobbered ++Warn for variables that might be changed by @samp{longjmp} or ++@samp{vfork}. This warning is also enabled by @option{-Wextra}. ++ ++@item -Wconversion ++@opindex Wconversion ++@opindex Wno-conversion ++Warn for implicit conversions that may alter a value. This includes ++conversions between real and integer, like @code{abs (x)} when ++@code{x} is @code{double}; conversions between signed and unsigned, ++like @code{unsigned ui = -1}; and conversions to smaller types, like ++@code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs ++((int) x)} and @code{ui = (unsigned) -1}, or if the value is not ++changed by the conversion like in @code{abs (2.0)}. Warnings about ++conversions between signed and unsigned integers can be disabled by ++using @option{-Wno-sign-conversion}. ++ ++For C++, also warn for conversions between @code{NULL} and non-pointer ++types; confusing overload resolution for user-defined conversions; and ++conversions that will never use a type conversion operator: ++conversions to @code{void}, the same type, a base class or a reference ++to them. Warnings about conversions between signed and unsigned ++integers are disabled by default in C++ unless ++@option{-Wsign-conversion} is explicitly enabled. ++ ++@item -Wempty-body ++@opindex Wempty-body ++@opindex Wno-empty-body ++Warn if an empty body occurs in an @samp{if}, @samp{else} or @samp{do ++while} statement. This warning is also enabled by @option{-Wextra}. ++ ++@item -Wenum-compare @r{(C++ and Objective-C++ only)} ++@opindex Wenum-compare ++@opindex Wno-enum-compare ++Warn about a comparison between values of different enum types. This ++warning is enabled by default. ++ ++@item -Wsign-compare ++@opindex Wsign-compare ++@opindex Wno-sign-compare ++@cindex warning for comparison of signed and unsigned values ++@cindex comparison of signed and unsigned values, warning ++@cindex signed and unsigned values, comparison warning ++Warn when a comparison between signed and unsigned values could produce ++an incorrect result when the signed value is converted to unsigned. ++This warning is also enabled by @option{-Wextra}; to get the other warnings ++of @option{-Wextra} without this warning, use @samp{-Wextra -Wno-sign-compare}. ++ ++@item -Wsign-conversion ++@opindex Wsign-conversion ++@opindex Wno-sign-conversion ++Warn for implicit conversions that may change the sign of an integer ++value, like assigning a signed integer expression to an unsigned ++integer variable. An explicit cast silences the warning. In C, this ++option is enabled also by @option{-Wconversion}. ++ ++@item -Waddress ++@opindex Waddress ++@opindex Wno-address ++Warn about suspicious uses of memory addresses. These include using ++the address of a function in a conditional expression, such as ++@code{void func(void); if (func)}, and comparisons against the memory ++address of a string literal, such as @code{if (x == "abc")}. Such ++uses typically indicate a programmer error: the address of a function ++always evaluates to true, so their use in a conditional usually ++indicate that the programmer forgot the parentheses in a function ++call; and comparisons against string literals result in unspecified ++behavior and are not portable in C, so they usually indicate that the ++programmer intended to use @code{strcmp}. This warning is enabled by ++@option{-Wall}. ++ ++@item -Wlogical-op ++@opindex Wlogical-op ++@opindex Wno-logical-op ++Warn about suspicious uses of logical operators in expressions. ++This includes using logical operators in contexts where a ++bit-wise operator is likely to be expected. ++ ++@item -Waggregate-return ++@opindex Waggregate-return ++@opindex Wno-aggregate-return ++Warn if any functions that return structures or unions are defined or ++called. (In languages where you can return an array, this also elicits ++a warning.) ++ ++@item -Wno-attributes ++@opindex Wno-attributes ++@opindex Wattributes ++Do not warn if an unexpected @code{__attribute__} is used, such as ++unrecognized attributes, function attributes applied to variables, ++etc. This will not stop errors for incorrect use of supported ++attributes. ++ ++@item -Wno-builtin-macro-redefined ++@opindex Wno-builtin-macro-redefined ++@opindex Wbuiltin-macro-redefined ++Do not warn if certain built-in macros are redefined. This suppresses ++warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__}, ++@code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}. ++ ++@item -Wstrict-prototypes @r{(C and Objective-C only)} ++@opindex Wstrict-prototypes ++@opindex Wno-strict-prototypes ++Warn if a function is declared or defined without specifying the ++argument types. (An old-style function definition is permitted without ++a warning if preceded by a declaration which specifies the argument ++types.) ++ ++@item -Wold-style-declaration @r{(C and Objective-C only)} ++@opindex Wold-style-declaration ++@opindex Wno-old-style-declaration ++Warn for obsolescent usages, according to the C Standard, in a ++declaration. For example, warn if storage-class specifiers like ++@code{static} are not the first things in a declaration. This warning ++is also enabled by @option{-Wextra}. ++ ++@item -Wold-style-definition @r{(C and Objective-C only)} ++@opindex Wold-style-definition ++@opindex Wno-old-style-definition ++Warn if an old-style function definition is used. A warning is given ++even if there is a previous prototype. ++ ++@item -Wmissing-parameter-type @r{(C and Objective-C only)} ++@opindex Wmissing-parameter-type ++@opindex Wno-missing-parameter-type ++A function parameter is declared without a type specifier in K&R-style ++functions: ++ ++@smallexample ++void foo(bar) @{ @} ++@end smallexample ++ ++This warning is also enabled by @option{-Wextra}. ++ ++@item -Wmissing-prototypes @r{(C and Objective-C only)} ++@opindex Wmissing-prototypes ++@opindex Wno-missing-prototypes ++Warn if a global function is defined without a previous prototype ++declaration. This warning is issued even if the definition itself ++provides a prototype. The aim is to detect global functions that fail ++to be declared in header files. ++ ++@item -Wmissing-declarations ++@opindex Wmissing-declarations ++@opindex Wno-missing-declarations ++Warn if a global function is defined without a previous declaration. ++Do so even if the definition itself provides a prototype. ++Use this option to detect global functions that are not declared in ++header files. In C++, no warnings are issued for function templates, ++or for inline functions, or for functions in anonymous namespaces. ++ ++@item -Wmissing-field-initializers ++@opindex Wmissing-field-initializers ++@opindex Wno-missing-field-initializers ++@opindex W ++@opindex Wextra ++@opindex Wno-extra ++Warn if a structure's initializer has some fields missing. For ++example, the following code would cause such a warning, because ++@code{x.h} is implicitly zero: ++ ++@smallexample ++struct s @{ int f, g, h; @}; ++struct s x = @{ 3, 4 @}; ++@end smallexample ++ ++This option does not warn about designated initializers, so the following ++modification would not trigger a warning: ++ ++@smallexample ++struct s @{ int f, g, h; @}; ++struct s x = @{ .f = 3, .g = 4 @}; ++@end smallexample ++ ++This warning is included in @option{-Wextra}. To get other @option{-Wextra} ++warnings without this one, use @samp{-Wextra -Wno-missing-field-initializers}. ++ ++@item -Wmissing-noreturn ++@opindex Wmissing-noreturn ++@opindex Wno-missing-noreturn ++Warn about functions which might be candidates for attribute @code{noreturn}. ++Note these are only possible candidates, not absolute ones. Care should ++be taken to manually verify functions actually do not ever return before ++adding the @code{noreturn} attribute, otherwise subtle code generation ++bugs could be introduced. You will not get a warning for @code{main} in ++hosted C environments. ++ ++@item -Wmissing-format-attribute ++@opindex Wmissing-format-attribute ++@opindex Wno-missing-format-attribute ++@opindex Wformat ++@opindex Wno-format ++Warn about function pointers which might be candidates for @code{format} ++attributes. Note these are only possible candidates, not absolute ones. ++GCC will guess that function pointers with @code{format} attributes that ++are used in assignment, initialization, parameter passing or return ++statements should have a corresponding @code{format} attribute in the ++resulting type. I.e.@: the left-hand side of the assignment or ++initialization, the type of the parameter variable, or the return type ++of the containing function respectively should also have a @code{format} ++attribute to avoid the warning. ++ ++GCC will also warn about function definitions which might be ++candidates for @code{format} attributes. Again, these are only ++possible candidates. GCC will guess that @code{format} attributes ++might be appropriate for any function that calls a function like ++@code{vprintf} or @code{vscanf}, but this might not always be the ++case, and some functions for which @code{format} attributes are ++appropriate may not be detected. ++ ++@item -Wno-multichar ++@opindex Wno-multichar ++@opindex Wmultichar ++Do not warn if a multicharacter constant (@samp{'FOOF'}) is used. ++Usually they indicate a typo in the user's code, as they have ++implementation-defined values, and should not be used in portable code. ++ ++@item -Wnormalized=<none|id|nfc|nfkc> ++@opindex Wnormalized= ++@cindex NFC ++@cindex NFKC ++@cindex character set, input normalization ++In ISO C and ISO C++, two identifiers are different if they are ++different sequences of characters. However, sometimes when characters ++outside the basic ASCII character set are used, you can have two ++different character sequences that look the same. To avoid confusion, ++the ISO 10646 standard sets out some @dfn{normalization rules} which ++when applied ensure that two sequences that look the same are turned into ++the same sequence. GCC can warn you if you are using identifiers which ++have not been normalized; this option controls that warning. ++ ++There are four levels of warning that GCC supports. The default is ++@option{-Wnormalized=nfc}, which warns about any identifier which is ++not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the ++recommended form for most uses. ++ ++Unfortunately, there are some characters which ISO C and ISO C++ allow ++in identifiers that when turned into NFC aren't allowable as ++identifiers. That is, there's no way to use these symbols in portable ++ISO C or C++ and have all your identifiers in NFC@. ++@option{-Wnormalized=id} suppresses the warning for these characters. ++It is hoped that future versions of the standards involved will correct ++this, which is why this option is not the default. ++ ++You can switch the warning off for all characters by writing ++@option{-Wnormalized=none}. You would only want to do this if you ++were using some other normalization scheme (like ``D''), because ++otherwise you can easily create bugs that are literally impossible to see. ++ ++Some characters in ISO 10646 have distinct meanings but look identical ++in some fonts or display methodologies, especially once formatting has ++been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL ++LETTER N'', will display just like a regular @code{n} which has been ++placed in a superscript. ISO 10646 defines the @dfn{NFKC} ++normalization scheme to convert all these into a standard form as ++well, and GCC will warn if your code is not in NFKC if you use ++@option{-Wnormalized=nfkc}. This warning is comparable to warning ++about every identifier that contains the letter O because it might be ++confused with the digit 0, and so is not the default, but may be ++useful as a local coding convention if the programming environment is ++unable to be fixed to display these characters distinctly. ++ ++@item -Wno-deprecated ++@opindex Wno-deprecated ++@opindex Wdeprecated ++Do not warn about usage of deprecated features. @xref{Deprecated Features}. ++ ++@item -Wno-deprecated-declarations ++@opindex Wno-deprecated-declarations ++@opindex Wdeprecated-declarations ++Do not warn about uses of functions (@pxref{Function Attributes}), ++variables (@pxref{Variable Attributes}), and types (@pxref{Type ++Attributes}) marked as deprecated by using the @code{deprecated} ++attribute. ++ ++@item -Wno-overflow ++@opindex Wno-overflow ++@opindex Woverflow ++Do not warn about compile-time overflow in constant expressions. ++ ++@item -Woverride-init @r{(C and Objective-C only)} ++@opindex Woverride-init ++@opindex Wno-override-init ++@opindex W ++@opindex Wextra ++@opindex Wno-extra ++Warn if an initialized field without side effects is overridden when ++using designated initializers (@pxref{Designated Inits, , Designated ++Initializers}). ++ ++This warning is included in @option{-Wextra}. To get other ++@option{-Wextra} warnings without this one, use @samp{-Wextra ++-Wno-override-init}. ++ ++@item -Wpacked ++@opindex Wpacked ++@opindex Wno-packed ++Warn if a structure is given the packed attribute, but the packed ++attribute has no effect on the layout or size of the structure. ++Such structures may be mis-aligned for little benefit. For ++instance, in this code, the variable @code{f.x} in @code{struct bar} ++will be misaligned even though @code{struct bar} does not itself ++have the packed attribute: ++ ++@smallexample ++@group ++struct foo @{ ++ int x; ++ char a, b, c, d; ++@} __attribute__((packed)); ++struct bar @{ ++ char z; ++ struct foo f; ++@}; ++@end group ++@end smallexample ++ ++@item -Wpacked-bitfield-compat ++@opindex Wpacked-bitfield-compat ++@opindex Wno-packed-bitfield-compat ++The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute ++on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but ++the change can lead to differences in the structure layout. GCC ++informs you when the offset of such a field has changed in GCC 4.4. ++For example there is no longer a 4-bit padding between field @code{a} ++and @code{b} in this structure: ++ ++@smallexample ++struct foo ++@{ ++ char a:4; ++ char b:8; ++@} __attribute__ ((packed)); ++@end smallexample ++ ++This warning is enabled by default. Use ++@option{-Wno-packed-bitfield-compat} to disable this warning. ++ ++@item -Wpadded ++@opindex Wpadded ++@opindex Wno-padded ++Warn if padding is included in a structure, either to align an element ++of the structure or to align the whole structure. Sometimes when this ++happens it is possible to rearrange the fields of the structure to ++reduce the padding and so make the structure smaller. ++ ++@item -Wredundant-decls ++@opindex Wredundant-decls ++@opindex Wno-redundant-decls ++Warn if anything is declared more than once in the same scope, even in ++cases where multiple declaration is valid and changes nothing. ++ ++@item -Wnested-externs @r{(C and Objective-C only)} ++@opindex Wnested-externs ++@opindex Wno-nested-externs ++Warn if an @code{extern} declaration is encountered within a function. ++ ++@item -Wunreachable-code ++@opindex Wunreachable-code ++@opindex Wno-unreachable-code ++Warn if the compiler detects that code will never be executed. ++ ++This option is intended to warn when the compiler detects that at ++least a whole line of source code will never be executed, because ++some condition is never satisfied or because it is after a ++procedure that never returns. ++ ++It is possible for this option to produce a warning even though there ++are circumstances under which part of the affected line can be executed, ++so care should be taken when removing apparently-unreachable code. ++ ++For instance, when a function is inlined, a warning may mean that the ++line is unreachable in only one inlined copy of the function. ++ ++This option is not made part of @option{-Wall} because in a debugging ++version of a program there is often substantial code which checks ++correct functioning of the program and is, hopefully, unreachable ++because the program does work. Another common use of unreachable ++code is to provide behavior which is selectable at compile-time. ++ ++@item -Winline ++@opindex Winline ++@opindex Wno-inline ++Warn if a function can not be inlined and it was declared as inline. ++Even with this option, the compiler will not warn about failures to ++inline functions declared in system headers. ++ ++The compiler uses a variety of heuristics to determine whether or not ++to inline a function. For example, the compiler takes into account ++the size of the function being inlined and the amount of inlining ++that has already been done in the current function. Therefore, ++seemingly insignificant changes in the source program can cause the ++warnings produced by @option{-Winline} to appear or disappear. ++ ++@item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)} ++@opindex Wno-invalid-offsetof ++@opindex Winvalid-offsetof ++Suppress warnings from applying the @samp{offsetof} macro to a non-POD ++type. According to the 1998 ISO C++ standard, applying @samp{offsetof} ++to a non-POD type is undefined. In existing C++ implementations, ++however, @samp{offsetof} typically gives meaningful results even when ++applied to certain kinds of non-POD types. (Such as a simple ++@samp{struct} that fails to be a POD type only by virtue of having a ++constructor.) This flag is for users who are aware that they are ++writing nonportable code and who have deliberately chosen to ignore the ++warning about it. ++ ++The restrictions on @samp{offsetof} may be relaxed in a future version ++of the C++ standard. ++ ++@item -Wno-int-to-pointer-cast @r{(C and Objective-C only)} ++@opindex Wno-int-to-pointer-cast ++@opindex Wint-to-pointer-cast ++Suppress warnings from casts to pointer type of an integer of a ++different size. ++ ++@item -Wno-pointer-to-int-cast @r{(C and Objective-C only)} ++@opindex Wno-pointer-to-int-cast ++@opindex Wpointer-to-int-cast ++Suppress warnings from casts from a pointer to an integer type of a ++different size. ++ ++@item -Winvalid-pch ++@opindex Winvalid-pch ++@opindex Wno-invalid-pch ++Warn if a precompiled header (@pxref{Precompiled Headers}) is found in ++the search path but can't be used. ++ ++@item -Wlong-long ++@opindex Wlong-long ++@opindex Wno-long-long ++Warn if @samp{long long} type is used. This is default. To inhibit ++the warning messages, use @option{-Wno-long-long}. Flags ++@option{-Wlong-long} and @option{-Wno-long-long} are taken into account ++only when @option{-pedantic} flag is used. ++ ++@item -Wvariadic-macros ++@opindex Wvariadic-macros ++@opindex Wno-variadic-macros ++Warn if variadic macros are used in pedantic ISO C90 mode, or the GNU ++alternate syntax when in pedantic ISO C99 mode. This is default. ++To inhibit the warning messages, use @option{-Wno-variadic-macros}. ++ ++@item -Wvla ++@opindex Wvla ++@opindex Wno-vla ++Warn if variable length array is used in the code. ++@option{-Wno-vla} will prevent the @option{-pedantic} warning of ++the variable length array. ++ ++@item -Wvolatile-register-var ++@opindex Wvolatile-register-var ++@opindex Wno-volatile-register-var ++Warn if a register variable is declared volatile. The volatile ++modifier does not inhibit all optimizations that may eliminate reads ++and/or writes to register variables. This warning is enabled by ++@option{-Wall}. ++ ++@item -Wdisabled-optimization ++@opindex Wdisabled-optimization ++@opindex Wno-disabled-optimization ++Warn if a requested optimization pass is disabled. This warning does ++not generally indicate that there is anything wrong with your code; it ++merely indicates that GCC's optimizers were unable to handle the code ++effectively. Often, the problem is that your code is too big or too ++complex; GCC will refuse to optimize programs when the optimization ++itself is likely to take inordinate amounts of time. ++ ++@item -Wpointer-sign @r{(C and Objective-C only)} ++@opindex Wpointer-sign ++@opindex Wno-pointer-sign ++Warn for pointer argument passing or assignment with different signedness. ++This option is only supported for C and Objective-C@. It is implied by ++@option{-Wall} and by @option{-pedantic}, which can be disabled with ++@option{-Wno-pointer-sign}. ++ ++@item -Wstack-protector ++@opindex Wstack-protector ++@opindex Wno-stack-protector ++This option is only active when @option{-fstack-protector} is active. It ++warns about functions that will not be protected against stack smashing. ++ ++@item -Wno-mudflap ++@opindex Wno-mudflap ++Suppress warnings about constructs that cannot be instrumented by ++@option{-fmudflap}. ++ ++@item -Woverlength-strings ++@opindex Woverlength-strings ++@opindex Wno-overlength-strings ++Warn about string constants which are longer than the ``minimum ++maximum'' length specified in the C standard. Modern compilers ++generally allow string constants which are much longer than the ++standard's minimum limit, but very portable programs should avoid ++using longer strings. ++ ++The limit applies @emph{after} string constant concatenation, and does ++not count the trailing NUL@. In C89, the limit was 509 characters; in ++C99, it was raised to 4095. C++98 does not specify a normative ++minimum maximum, so we do not diagnose overlength strings in C++@. ++ ++This option is implied by @option{-pedantic}, and can be disabled with ++@option{-Wno-overlength-strings}. ++@end table ++ ++@node Debugging Options ++@section Options for Debugging Your Program or GCC ++@cindex options, debugging ++@cindex debugging information options ++ ++GCC has various special options that are used for debugging ++either your program or GCC: ++ ++@table @gcctabopt ++@item -g ++@opindex g ++Produce debugging information in the operating system's native format ++(stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging ++information. ++ ++On most systems that use stabs format, @option{-g} enables use of extra ++debugging information that only GDB can use; this extra information ++makes debugging work better in GDB but will probably make other debuggers ++crash or ++refuse to read the program. If you want to control for certain whether ++to generate the extra information, use @option{-gstabs+}, @option{-gstabs}, ++@option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below). ++ ++GCC allows you to use @option{-g} with ++@option{-O}. The shortcuts taken by optimized code may occasionally ++produce surprising results: some variables you declared may not exist ++at all; flow of control may briefly move where you did not expect it; ++some statements may not be executed because they compute constant ++results or their values were already at hand; some statements may ++execute in different places because they were moved out of loops. ++ ++Nevertheless it proves possible to debug optimized output. This makes ++it reasonable to use the optimizer for programs that might have bugs. ++ ++The following options are useful when GCC is generated with the ++capability for more than one debugging format. ++ ++@item -ggdb ++@opindex ggdb ++Produce debugging information for use by GDB@. This means to use the ++most expressive format available (DWARF 2, stabs, or the native format ++if neither of those are supported), including GDB extensions if at all ++possible. ++ ++@item -gstabs ++@opindex gstabs ++Produce debugging information in stabs format (if that is supported), ++without GDB extensions. This is the format used by DBX on most BSD ++systems. On MIPS, Alpha and System V Release 4 systems this option ++produces stabs debugging output which is not understood by DBX or SDB@. ++On System V Release 4 systems this option requires the GNU assembler. ++ ++@item -feliminate-unused-debug-symbols ++@opindex feliminate-unused-debug-symbols ++Produce debugging information in stabs format (if that is supported), ++for only symbols that are actually used. ++ ++@item -femit-class-debug-always ++Instead of emitting debugging information for a C++ class in only one ++object file, emit it in all object files using the class. This option ++should be used only with debuggers that are unable to handle the way GCC ++normally emits debugging information for classes because using this ++option will increase the size of debugging information by as much as a ++factor of two. ++ ++@item -gstabs+ ++@opindex gstabs+ ++Produce debugging information in stabs format (if that is supported), ++using GNU extensions understood only by the GNU debugger (GDB)@. The ++use of these extensions is likely to make other debuggers crash or ++refuse to read the program. ++ ++@item -gcoff ++@opindex gcoff ++Produce debugging information in COFF format (if that is supported). ++This is the format used by SDB on most System V systems prior to ++System V Release 4. ++ ++@item -gxcoff ++@opindex gxcoff ++Produce debugging information in XCOFF format (if that is supported). ++This is the format used by the DBX debugger on IBM RS/6000 systems. ++ ++@item -gxcoff+ ++@opindex gxcoff+ ++Produce debugging information in XCOFF format (if that is supported), ++using GNU extensions understood only by the GNU debugger (GDB)@. The ++use of these extensions is likely to make other debuggers crash or ++refuse to read the program, and may cause assemblers other than the GNU ++assembler (GAS) to fail with an error. ++ ++@item -gdwarf-2 ++@opindex gdwarf-2 ++Produce debugging information in DWARF version 2 format (if that is ++supported). This is the format used by DBX on IRIX 6. With this ++option, GCC uses features of DWARF version 3 when they are useful; ++version 3 is upward compatible with version 2, but may still cause ++problems for older debuggers. ++ ++@item -gvms ++@opindex gvms ++Produce debugging information in VMS debug format (if that is ++supported). This is the format used by DEBUG on VMS systems. ++ ++@item -g@var{level} ++@itemx -ggdb@var{level} ++@itemx -gstabs@var{level} ++@itemx -gcoff@var{level} ++@itemx -gxcoff@var{level} ++@itemx -gvms@var{level} ++Request debugging information and also use @var{level} to specify how ++much information. The default level is 2. ++ ++Level 0 produces no debug information at all. Thus, @option{-g0} negates ++@option{-g}. ++ ++Level 1 produces minimal information, enough for making backtraces in ++parts of the program that you don't plan to debug. This includes ++descriptions of functions and external variables, but no information ++about local variables and no line numbers. ++ ++Level 3 includes extra information, such as all the macro definitions ++present in the program. Some debuggers support macro expansion when ++you use @option{-g3}. ++ ++@option{-gdwarf-2} does not accept a concatenated debug level, because ++GCC used to support an option @option{-gdwarf} that meant to generate ++debug information in version 1 of the DWARF format (which is very ++different from version 2), and it would have been too confusing. That ++debug format is long obsolete, but the option cannot be changed now. ++Instead use an additional @option{-g@var{level}} option to change the ++debug level for DWARF2. ++ ++@item -feliminate-dwarf2-dups ++@opindex feliminate-dwarf2-dups ++Compress DWARF2 debugging information by eliminating duplicated ++information about each symbol. This option only makes sense when ++generating DWARF2 debugging information with @option{-gdwarf-2}. ++ ++@item -femit-struct-debug-baseonly ++Emit debug information for struct-like types ++only when the base name of the compilation source file ++matches the base name of file in which the struct was defined. ++ ++This option substantially reduces the size of debugging information, ++but at significant potential loss in type information to the debugger. ++See @option{-femit-struct-debug-reduced} for a less aggressive option. ++See @option{-femit-struct-debug-detailed} for more detailed control. ++ ++This option works only with DWARF 2. ++ ++@item -femit-struct-debug-reduced ++Emit debug information for struct-like types ++only when the base name of the compilation source file ++matches the base name of file in which the type was defined, ++unless the struct is a template or defined in a system header. ++ ++This option significantly reduces the size of debugging information, ++with some potential loss in type information to the debugger. ++See @option{-femit-struct-debug-baseonly} for a more aggressive option. ++See @option{-femit-struct-debug-detailed} for more detailed control. ++ ++This option works only with DWARF 2. ++ ++@item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} ++Specify the struct-like types ++for which the compiler will generate debug information. ++The intent is to reduce duplicate struct debug information ++between different object files within the same program. ++ ++This option is a detailed version of ++@option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly}, ++which will serve for most needs. ++ ++A specification has the syntax ++[@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none}) ++ ++The optional first word limits the specification to ++structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}). ++A struct type is used directly when it is the type of a variable, member. ++Indirect uses arise through pointers to structs. ++That is, when use of an incomplete struct would be legal, the use is indirect. ++An example is ++@samp{struct one direct; struct two * indirect;}. ++ ++The optional second word limits the specification to ++ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}). ++Generic structs are a bit complicated to explain. ++For C++, these are non-explicit specializations of template classes, ++or non-template classes within the above. ++Other programming languages have generics, ++but @samp{-femit-struct-debug-detailed} does not yet implement them. ++ ++The third word specifies the source files for those ++structs for which the compiler will emit debug information. ++The values @samp{none} and @samp{any} have the normal meaning. ++The value @samp{base} means that ++the base of name of the file in which the type declaration appears ++must match the base of the name of the main compilation file. ++In practice, this means that ++types declared in @file{foo.c} and @file{foo.h} will have debug information, ++but types declared in other header will not. ++The value @samp{sys} means those types satisfying @samp{base} ++or declared in system or compiler headers. ++ ++You may need to experiment to determine the best settings for your application. ++ ++The default is @samp{-femit-struct-debug-detailed=all}. ++ ++This option works only with DWARF 2. ++ ++@item -fno-merge-debug-strings ++@opindex fmerge-debug-strings ++@opindex fno-merge-debug-strings ++Direct the linker to not merge together strings in the debugging ++information which are identical in different object files. Merging is ++not supported by all assemblers or linkers. Merging decreases the size ++of the debug information in the output file at the cost of increasing ++link processing time. Merging is enabled by default. ++ ++@item -fdebug-prefix-map=@var{old}=@var{new} ++@opindex fdebug-prefix-map ++When compiling files in directory @file{@var{old}}, record debugging ++information describing them as in @file{@var{new}} instead. ++ ++@item -fno-dwarf2-cfi-asm ++@opindex fdwarf2-cfi-asm ++@opindex fno-dwarf2-cfi-asm ++Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section ++instead of using GAS @code{.cfi_*} directives. ++ ++@cindex @command{prof} ++@item -p ++@opindex p ++Generate extra code to write profile information suitable for the ++analysis program @command{prof}. You must use this option when compiling ++the source files you want data about, and you must also use it when ++linking. ++ ++@cindex @command{gprof} ++@item -pg ++@opindex pg ++Generate extra code to write profile information suitable for the ++analysis program @command{gprof}. You must use this option when compiling ++the source files you want data about, and you must also use it when ++linking. ++ ++@item -Q ++@opindex Q ++Makes the compiler print out each function name as it is compiled, and ++print some statistics about each pass when it finishes. ++ ++@item -ftime-report ++@opindex ftime-report ++Makes the compiler print some statistics about the time consumed by each ++pass when it finishes. ++ ++@item -fmem-report ++@opindex fmem-report ++Makes the compiler print some statistics about permanent memory ++allocation when it finishes. ++ ++@item -fpre-ipa-mem-report ++@opindex fpre-ipa-mem-report ++@item -fpost-ipa-mem-report ++@opindex fpost-ipa-mem-report ++Makes the compiler print some statistics about permanent memory ++allocation before or after interprocedural optimization. ++ ++@item -fprofile-arcs ++@opindex fprofile-arcs ++Add code so that program flow @dfn{arcs} are instrumented. During ++execution the program records how many times each branch and call is ++executed and how many times it is taken or returns. When the compiled ++program exits it saves this data to a file called ++@file{@var{auxname}.gcda} for each source file. The data may be used for ++profile-directed optimizations (@option{-fbranch-probabilities}), or for ++test coverage analysis (@option{-ftest-coverage}). Each object file's ++@var{auxname} is generated from the name of the output file, if ++explicitly specified and it is not the final executable, otherwise it is ++the basename of the source file. In both cases any suffix is removed ++(e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or ++@file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}). ++@xref{Cross-profiling}. ++ ++@cindex @command{gcov} ++@item --coverage ++@opindex coverage ++ ++This option is used to compile and link code instrumented for coverage ++analysis. The option is a synonym for @option{-fprofile-arcs} ++@option{-ftest-coverage} (when compiling) and @option{-lgcov} (when ++linking). See the documentation for those options for more details. ++ ++@itemize ++ ++@item ++Compile the source files with @option{-fprofile-arcs} plus optimization ++and code generation options. For test coverage analysis, use the ++additional @option{-ftest-coverage} option. You do not need to profile ++every source file in a program. ++ ++@item ++Link your object files with @option{-lgcov} or @option{-fprofile-arcs} ++(the latter implies the former). ++ ++@item ++Run the program on a representative workload to generate the arc profile ++information. This may be repeated any number of times. You can run ++concurrent instances of your program, and provided that the file system ++supports locking, the data files will be correctly updated. Also ++@code{fork} calls are detected and correctly handled (double counting ++will not happen). ++ ++@item ++For profile-directed optimizations, compile the source files again with ++the same optimization and code generation options plus ++@option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that ++Control Optimization}). ++ ++@item ++For test coverage analysis, use @command{gcov} to produce human readable ++information from the @file{.gcno} and @file{.gcda} files. Refer to the ++@command{gcov} documentation for further information. ++ ++@end itemize ++ ++With @option{-fprofile-arcs}, for each function of your program GCC ++creates a program flow graph, then finds a spanning tree for the graph. ++Only arcs that are not on the spanning tree have to be instrumented: the ++compiler adds code to count the number of times that these arcs are ++executed. When an arc is the only exit or only entrance to a block, the ++instrumentation code can be added to the block; otherwise, a new basic ++block must be created to hold the instrumentation code. ++ ++@need 2000 ++@item -ftest-coverage ++@opindex ftest-coverage ++Produce a notes file that the @command{gcov} code-coverage utility ++(@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to ++show program coverage. Each source file's note file is called ++@file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option ++above for a description of @var{auxname} and instructions on how to ++generate test coverage data. Coverage data will match the source files ++more closely, if you do not optimize. ++ ++@item -fdbg-cnt-list ++@opindex fdbg-cnt-list ++Print the name and the counter upperbound for all debug counters. ++ ++@item -fdbg-cnt=@var{counter-value-list} ++@opindex fdbg-cnt ++Set the internal debug counter upperbound. @var{counter-value-list} ++is a comma-separated list of @var{name}:@var{value} pairs ++which sets the upperbound of each debug counter @var{name} to @var{value}. ++All debug counters have the initial upperbound of @var{UINT_MAX}, ++thus dbg_cnt() returns true always unless the upperbound is set by this option. ++e.g. With -fdbg-cnt=dce:10,tail_call:0 ++dbg_cnt(dce) will return true only for first 10 invocations ++and dbg_cnt(tail_call) will return false always. ++ ++@item -d@var{letters} ++@itemx -fdump-rtl-@var{pass} ++@opindex d ++Says to make debugging dumps during compilation at times specified by ++@var{letters}. This is used for debugging the RTL-based passes of the ++compiler. The file names for most of the dumps are made by appending a ++pass number and a word to the @var{dumpname}. @var{dumpname} is generated ++from the name of the output file, if explicitly specified and it is not ++an executable, otherwise it is the basename of the source file. These ++switches may have different effects when @option{-E} is used for ++preprocessing. ++ ++Debug dumps can be enabled with a @option{-fdump-rtl} switch or some ++@option{-d} option @var{letters}. Here are the possible ++letters for use in @var{pass} and @var{letters}, and their meanings: ++ ++@table @gcctabopt ++ ++@item -fdump-rtl-alignments ++@opindex fdump-rtl-alignments ++Dump after branch alignments have been computed. ++ ++@item -fdump-rtl-asmcons ++@opindex fdump-rtl-asmcons ++Dump after fixing rtl statements that have unsatisfied in/out constraints. ++ ++@item -fdump-rtl-auto_inc_dec ++@opindex fdump-rtl-auto_inc_dec ++Dump after auto-inc-dec discovery. This pass is only run on ++architectures that have auto inc or auto dec instructions. ++ ++@item -fdump-rtl-barriers ++@opindex fdump-rtl-barriers ++Dump after cleaning up the barrier instructions. ++ ++@item -fdump-rtl-bbpart ++@opindex fdump-rtl-bbpart ++Dump after partitioning hot and cold basic blocks. ++ ++@item -fdump-rtl-bbro ++@opindex fdump-rtl-bbro ++Dump after block reordering. ++ ++@item -fdump-rtl-btl1 ++@itemx -fdump-rtl-btl2 ++@opindex fdump-rtl-btl2 ++@opindex fdump-rtl-btl2 ++@option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping ++after the two branch ++target load optimization passes. ++ ++@item -fdump-rtl-bypass ++@opindex fdump-rtl-bypass ++Dump after jump bypassing and control flow optimizations. ++ ++@item -fdump-rtl-combine ++@opindex fdump-rtl-combine ++Dump after the RTL instruction combination pass. ++ ++@item -fdump-rtl-compgotos ++@opindex fdump-rtl-compgotos ++Dump after duplicating the computed gotos. ++ ++@item -fdump-rtl-ce1 ++@itemx -fdump-rtl-ce2 ++@itemx -fdump-rtl-ce3 ++@opindex fdump-rtl-ce1 ++@opindex fdump-rtl-ce2 ++@opindex fdump-rtl-ce3 ++@option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and ++@option{-fdump-rtl-ce3} enable dumping after the three ++if conversion passes. ++ ++@itemx -fdump-rtl-cprop_hardreg ++@opindex fdump-rtl-cprop_hardreg ++Dump after hard register copy propagation. ++ ++@itemx -fdump-rtl-csa ++@opindex fdump-rtl-csa ++Dump after combining stack adjustments. ++ ++@item -fdump-rtl-cse1 ++@itemx -fdump-rtl-cse2 ++@opindex fdump-rtl-cse1 ++@opindex fdump-rtl-cse2 ++@option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after ++the two common sub-expression elimination passes. ++ ++@itemx -fdump-rtl-dce ++@opindex fdump-rtl-dce ++Dump after the standalone dead code elimination passes. ++ ++@itemx -fdump-rtl-dbr ++@opindex fdump-rtl-dbr ++Dump after delayed branch scheduling. ++ ++@item -fdump-rtl-dce1 ++@itemx -fdump-rtl-dce2 ++@opindex fdump-rtl-dce1 ++@opindex fdump-rtl-dce2 ++@option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after ++the two dead store elimination passes. ++ ++@item -fdump-rtl-eh ++@opindex fdump-rtl-eh ++Dump after finalization of EH handling code. ++ ++@item -fdump-rtl-eh_ranges ++@opindex fdump-rtl-eh_ranges ++Dump after conversion of EH handling range regions. ++ ++@item -fdump-rtl-expand ++@opindex fdump-rtl-expand ++Dump after RTL generation. ++ ++@item -fdump-rtl-fwprop1 ++@itemx -fdump-rtl-fwprop2 ++@opindex fdump-rtl-fwprop1 ++@opindex fdump-rtl-fwprop2 ++@option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable ++dumping after the two forward propagation passes. ++ ++@item -fdump-rtl-gcse1 ++@itemx -fdump-rtl-gcse2 ++@opindex fdump-rtl-gcse1 ++@opindex fdump-rtl-gcse2 ++@option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping ++after global common subexpression elimination. ++ ++@item -fdump-rtl-init-regs ++@opindex fdump-rtl-init-regs ++Dump after the initialization of the registers. ++ ++@item -fdump-rtl-initvals ++@opindex fdump-rtl-initvals ++Dump after the computation of the initial value sets. ++ ++@itemx -fdump-rtl-into_cfglayout ++@opindex fdump-rtl-into_cfglayout ++Dump after converting to cfglayout mode. ++ ++@item -fdump-rtl-ira ++@opindex fdump-rtl-ira ++Dump after iterated register allocation. ++ ++@item -fdump-rtl-jump ++@opindex fdump-rtl-jump ++Dump after the second jump optimization. ++ ++@item -fdump-rtl-loop2 ++@opindex fdump-rtl-loop2 ++@option{-fdump-rtl-loop2} enables dumping after the rtl ++loop optimization passes. ++ ++@item -fdump-rtl-mach ++@opindex fdump-rtl-mach ++Dump after performing the machine dependent reorganization pass, if that ++pass exists. ++ ++@item -fdump-rtl-mode_sw ++@opindex fdump-rtl-mode_sw ++Dump after removing redundant mode switches. ++ ++@item -fdump-rtl-rnreg ++@opindex fdump-rtl-rnreg ++Dump after register renumbering. ++ ++@itemx -fdump-rtl-outof_cfglayout ++@opindex fdump-rtl-outof_cfglayout ++Dump after converting from cfglayout mode. ++ ++@item -fdump-rtl-peephole2 ++@opindex fdump-rtl-peephole2 ++Dump after the peephole pass. ++ ++@item -fdump-rtl-postreload ++@opindex fdump-rtl-postreload ++Dump after post-reload optimizations. ++ ++@itemx -fdump-rtl-pro_and_epilogue ++@opindex fdump-rtl-pro_and_epilogue ++Dump after generating the function pro and epilogues. ++ ++@item -fdump-rtl-regmove ++@opindex fdump-rtl-regmove ++Dump after the register move pass. ++ ++@item -fdump-rtl-sched1 ++@itemx -fdump-rtl-sched2 ++@opindex fdump-rtl-sched1 ++@opindex fdump-rtl-sched2 ++@option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping ++after the basic block scheduling passes. ++ ++@item -fdump-rtl-see ++@opindex fdump-rtl-see ++Dump after sign extension elimination. ++ ++@item -fdump-rtl-seqabstr ++@opindex fdump-rtl-seqabstr ++Dump after common sequence discovery. ++ ++@item -fdump-rtl-shorten ++@opindex fdump-rtl-shorten ++Dump after shortening branches. ++ ++@item -fdump-rtl-sibling ++@opindex fdump-rtl-sibling ++Dump after sibling call optimizations. ++ ++@item -fdump-rtl-split1 ++@itemx -fdump-rtl-split2 ++@itemx -fdump-rtl-split3 ++@itemx -fdump-rtl-split4 ++@itemx -fdump-rtl-split5 ++@opindex fdump-rtl-split1 ++@opindex fdump-rtl-split2 ++@opindex fdump-rtl-split3 ++@opindex fdump-rtl-split4 ++@opindex fdump-rtl-split5 ++@option{-fdump-rtl-split1}, @option{-fdump-rtl-split2}, ++@option{-fdump-rtl-split3}, @option{-fdump-rtl-split4} and ++@option{-fdump-rtl-split5} enable dumping after five rounds of ++instruction splitting. ++ ++@item -fdump-rtl-sms ++@opindex fdump-rtl-sms ++Dump after modulo scheduling. This pass is only run on some ++architectures. ++ ++@item -fdump-rtl-stack ++@opindex fdump-rtl-stack ++Dump after conversion from GCC's "flat register file" registers to the ++x87's stack-like registers. This pass is only run on x86 variants. ++ ++@item -fdump-rtl-subreg1 ++@itemx -fdump-rtl-subreg2 ++@opindex fdump-rtl-subreg1 ++@opindex fdump-rtl-subreg2 ++@option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after ++the two subreg expansion passes. ++ ++@item -fdump-rtl-unshare ++@opindex fdump-rtl-unshare ++Dump after all rtl has been unshared. ++ ++@item -fdump-rtl-vartrack ++@opindex fdump-rtl-vartrack ++Dump after variable tracking. ++ ++@item -fdump-rtl-vregs ++@opindex fdump-rtl-vregs ++Dump after converting virtual registers to hard registers. ++ ++@item -fdump-rtl-web ++@opindex fdump-rtl-web ++Dump after live range splitting. ++ ++@item -fdump-rtl-regclass ++@itemx -fdump-rtl-subregs_of_mode_init ++@itemx -fdump-rtl-subregs_of_mode_finish ++@itemx -fdump-rtl-dfinit ++@itemx -fdump-rtl-dfinish ++@opindex fdump-rtl-regclass ++@opindex fdump-rtl-subregs_of_mode_init ++@opindex fdump-rtl-subregs_of_mode_finish ++@opindex fdump-rtl-dfinit ++@opindex fdump-rtl-dfinish ++These dumps are defined but always produce empty files. ++ ++@item -fdump-rtl-all ++@opindex fdump-rtl-all ++Produce all the dumps listed above. ++ ++@item -dA ++@opindex dA ++Annotate the assembler output with miscellaneous debugging information. ++ ++@item -dD ++@opindex dD ++Dump all macro definitions, at the end of preprocessing, in addition to ++normal output. ++ ++@item -dH ++@opindex dH ++Produce a core dump whenever an error occurs. ++ ++@item -dm ++@opindex dm ++Print statistics on memory usage, at the end of the run, to ++standard error. ++ ++@item -dp ++@opindex dp ++Annotate the assembler output with a comment indicating which ++pattern and alternative was used. The length of each instruction is ++also printed. ++ ++@item -dP ++@opindex dP ++Dump the RTL in the assembler output as a comment before each instruction. ++Also turns on @option{-dp} annotation. ++ ++@item -dv ++@opindex dv ++For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}), ++dump a representation of the control flow graph suitable for viewing with VCG ++to @file{@var{file}.@var{pass}.vcg}. ++ ++@item -dx ++@opindex dx ++Just generate RTL for a function instead of compiling it. Usually used ++with @option{-fdump-rtl-expand}. ++ ++@item -dy ++@opindex dy ++Dump debugging information during parsing, to standard error. ++@end table ++ ++@item -fdump-noaddr ++@opindex fdump-noaddr ++When doing debugging dumps, suppress address output. This makes it more ++feasible to use diff on debugging dumps for compiler invocations with ++different compiler binaries and/or different ++text / bss / data / heap / stack / dso start locations. ++ ++@item -fdump-unnumbered ++@opindex fdump-unnumbered ++When doing debugging dumps, suppress instruction numbers and address output. ++This makes it more feasible to use diff on debugging dumps for compiler ++invocations with different options, in particular with and without ++@option{-g}. ++ ++@item -fdump-translation-unit @r{(C++ only)} ++@itemx -fdump-translation-unit-@var{options} @r{(C++ only)} ++@opindex fdump-translation-unit ++Dump a representation of the tree structure for the entire translation ++unit to a file. The file name is made by appending @file{.tu} to the ++source file name. If the @samp{-@var{options}} form is used, @var{options} ++controls the details of the dump as described for the ++@option{-fdump-tree} options. ++ ++@item -fdump-class-hierarchy @r{(C++ only)} ++@itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)} ++@opindex fdump-class-hierarchy ++Dump a representation of each class's hierarchy and virtual function ++table layout to a file. The file name is made by appending @file{.class} ++to the source file name. If the @samp{-@var{options}} form is used, ++@var{options} controls the details of the dump as described for the ++@option{-fdump-tree} options. ++ ++@item -fdump-ipa-@var{switch} ++@opindex fdump-ipa ++Control the dumping at various stages of inter-procedural analysis ++language tree to a file. The file name is generated by appending a switch ++specific suffix to the source file name. The following dumps are possible: ++ ++@table @samp ++@item all ++Enables all inter-procedural analysis dumps. ++ ++@item cgraph ++Dumps information about call-graph optimization, unused function removal, ++and inlining decisions. ++ ++@item inline ++Dump after function inlining. ++ ++@end table ++ ++@item -fdump-statistics-@var{option} ++@opindex -fdump-statistics ++Enable and control dumping of pass statistics in a separate file. The ++file name is generated by appending a suffix ending in @samp{.statistics} ++to the source file name. If the @samp{-@var{option}} form is used, ++@samp{-stats} will cause counters to be summed over the whole compilation unit ++while @samp{-details} will dump every event as the passes generate them. ++The default with no option is to sum counters for each function compiled. ++ ++@item -fdump-tree-@var{switch} ++@itemx -fdump-tree-@var{switch}-@var{options} ++@opindex fdump-tree ++Control the dumping at various stages of processing the intermediate ++language tree to a file. The file name is generated by appending a switch ++specific suffix to the source file name. If the @samp{-@var{options}} ++form is used, @var{options} is a list of @samp{-} separated options that ++control the details of the dump. Not all options are applicable to all ++dumps, those which are not meaningful will be ignored. The following ++options are available ++ ++@table @samp ++@item address ++Print the address of each node. Usually this is not meaningful as it ++changes according to the environment and source file. Its primary use ++is for tying up a dump file with a debug environment. ++@item slim ++Inhibit dumping of members of a scope or body of a function merely ++because that scope has been reached. Only dump such items when they ++are directly reachable by some other path. When dumping pretty-printed ++trees, this option inhibits dumping the bodies of control structures. ++@item raw ++Print a raw representation of the tree. By default, trees are ++pretty-printed into a C-like representation. ++@item details ++Enable more detailed dumps (not honored by every dump option). ++@item stats ++Enable dumping various statistics about the pass (not honored by every dump ++option). ++@item blocks ++Enable showing basic block boundaries (disabled in raw dumps). ++@item vops ++Enable showing virtual operands for every statement. ++@item lineno ++Enable showing line numbers for statements. ++@item uid ++Enable showing the unique ID (@code{DECL_UID}) for each variable. ++@item verbose ++Enable showing the tree dump for each statement. ++@item all ++Turn on all options, except @option{raw}, @option{slim}, @option{verbose} ++and @option{lineno}. ++@end table ++ ++The following tree dumps are possible: ++@table @samp ++ ++@item original ++Dump before any tree based optimization, to @file{@var{file}.original}. ++ ++@item optimized ++Dump after all tree based optimization, to @file{@var{file}.optimized}. ++ ++@item gimple ++@opindex fdump-tree-gimple ++Dump each function before and after the gimplification pass to a file. The ++file name is made by appending @file{.gimple} to the source file name. ++ ++@item cfg ++@opindex fdump-tree-cfg ++Dump the control flow graph of each function to a file. The file name is ++made by appending @file{.cfg} to the source file name. ++ ++@item vcg ++@opindex fdump-tree-vcg ++Dump the control flow graph of each function to a file in VCG format. The ++file name is made by appending @file{.vcg} to the source file name. Note ++that if the file contains more than one function, the generated file cannot ++be used directly by VCG@. You will need to cut and paste each function's ++graph into its own separate file first. ++ ++@item ch ++@opindex fdump-tree-ch ++Dump each function after copying loop headers. The file name is made by ++appending @file{.ch} to the source file name. ++ ++@item ssa ++@opindex fdump-tree-ssa ++Dump SSA related information to a file. The file name is made by appending ++@file{.ssa} to the source file name. ++ ++@item alias ++@opindex fdump-tree-alias ++Dump aliasing information for each function. The file name is made by ++appending @file{.alias} to the source file name. ++ ++@item ccp ++@opindex fdump-tree-ccp ++Dump each function after CCP@. The file name is made by appending ++@file{.ccp} to the source file name. ++ ++@item storeccp ++@opindex fdump-tree-storeccp ++Dump each function after STORE-CCP@. The file name is made by appending ++@file{.storeccp} to the source file name. ++ ++@item pre ++@opindex fdump-tree-pre ++Dump trees after partial redundancy elimination. The file name is made ++by appending @file{.pre} to the source file name. ++ ++@item fre ++@opindex fdump-tree-fre ++Dump trees after full redundancy elimination. The file name is made ++by appending @file{.fre} to the source file name. ++ ++@item copyprop ++@opindex fdump-tree-copyprop ++Dump trees after copy propagation. The file name is made ++by appending @file{.copyprop} to the source file name. ++ ++@item store_copyprop ++@opindex fdump-tree-store_copyprop ++Dump trees after store copy-propagation. The file name is made ++by appending @file{.store_copyprop} to the source file name. ++ ++@item dce ++@opindex fdump-tree-dce ++Dump each function after dead code elimination. The file name is made by ++appending @file{.dce} to the source file name. ++ ++@item mudflap ++@opindex fdump-tree-mudflap ++Dump each function after adding mudflap instrumentation. The file name is ++made by appending @file{.mudflap} to the source file name. ++ ++@item sra ++@opindex fdump-tree-sra ++Dump each function after performing scalar replacement of aggregates. The ++file name is made by appending @file{.sra} to the source file name. ++ ++@item sink ++@opindex fdump-tree-sink ++Dump each function after performing code sinking. The file name is made ++by appending @file{.sink} to the source file name. ++ ++@item dom ++@opindex fdump-tree-dom ++Dump each function after applying dominator tree optimizations. The file ++name is made by appending @file{.dom} to the source file name. ++ ++@item dse ++@opindex fdump-tree-dse ++Dump each function after applying dead store elimination. The file ++name is made by appending @file{.dse} to the source file name. ++ ++@item phiopt ++@opindex fdump-tree-phiopt ++Dump each function after optimizing PHI nodes into straightline code. The file ++name is made by appending @file{.phiopt} to the source file name. ++ ++@item forwprop ++@opindex fdump-tree-forwprop ++Dump each function after forward propagating single use variables. The file ++name is made by appending @file{.forwprop} to the source file name. ++ ++@item copyrename ++@opindex fdump-tree-copyrename ++Dump each function after applying the copy rename optimization. The file ++name is made by appending @file{.copyrename} to the source file name. ++ ++@item nrv ++@opindex fdump-tree-nrv ++Dump each function after applying the named return value optimization on ++generic trees. The file name is made by appending @file{.nrv} to the source ++file name. ++ ++@item vect ++@opindex fdump-tree-vect ++Dump each function after applying vectorization of loops. The file name is ++made by appending @file{.vect} to the source file name. ++ ++@item vrp ++@opindex fdump-tree-vrp ++Dump each function after Value Range Propagation (VRP). The file name ++is made by appending @file{.vrp} to the source file name. ++ ++@item all ++@opindex fdump-tree-all ++Enable all the available tree dumps with the flags provided in this option. ++@end table ++ ++@item -ftree-vectorizer-verbose=@var{n} ++@opindex ftree-vectorizer-verbose ++This option controls the amount of debugging output the vectorizer prints. ++This information is written to standard error, unless ++@option{-fdump-tree-all} or @option{-fdump-tree-vect} is specified, ++in which case it is output to the usual dump listing file, @file{.vect}. ++For @var{n}=0 no diagnostic information is reported. ++If @var{n}=1 the vectorizer reports each loop that got vectorized, ++and the total number of loops that got vectorized. ++If @var{n}=2 the vectorizer also reports non-vectorized loops that passed ++the first analysis phase (vect_analyze_loop_form) - i.e.@: countable, ++inner-most, single-bb, single-entry/exit loops. This is the same verbosity ++level that @option{-fdump-tree-vect-stats} uses. ++Higher verbosity levels mean either more information dumped for each ++reported loop, or same amount of information reported for more loops: ++If @var{n}=3, alignment related information is added to the reports. ++If @var{n}=4, data-references related information (e.g.@: memory dependences, ++memory access-patterns) is added to the reports. ++If @var{n}=5, the vectorizer reports also non-vectorized inner-most loops ++that did not pass the first analysis phase (i.e., may not be countable, or ++may have complicated control-flow). ++If @var{n}=6, the vectorizer reports also non-vectorized nested loops. ++For @var{n}=7, all the information the vectorizer generates during its ++analysis and transformation is reported. This is the same verbosity level ++that @option{-fdump-tree-vect-details} uses. ++ ++@item -frandom-seed=@var{string} ++@opindex frandom-string ++This option provides a seed that GCC uses when it would otherwise use ++random numbers. It is used to generate certain symbol names ++that have to be different in every compiled file. It is also used to ++place unique stamps in coverage data files and the object files that ++produce them. You can use the @option{-frandom-seed} option to produce ++reproducibly identical object files. ++ ++The @var{string} should be different for every file you compile. ++ ++@item -fsched-verbose=@var{n} ++@opindex fsched-verbose ++On targets that use instruction scheduling, this option controls the ++amount of debugging output the scheduler prints. This information is ++written to standard error, unless @option{-fdump-rtl-sched1} or ++@option{-fdump-rtl-sched2} is specified, in which case it is output ++to the usual dump listing file, @file{.sched} or @file{.sched2} ++respectively. However for @var{n} greater than nine, the output is ++always printed to standard error. ++ ++For @var{n} greater than zero, @option{-fsched-verbose} outputs the ++same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}. ++For @var{n} greater than one, it also output basic block probabilities, ++detailed ready list information and unit/insn info. For @var{n} greater ++than two, it includes RTL at abort point, control-flow and regions info. ++And for @var{n} over four, @option{-fsched-verbose} also includes ++dependence info. ++ ++@item -save-temps ++@opindex save-temps ++Store the usual ``temporary'' intermediate files permanently; place them ++in the current directory and name them based on the source file. Thus, ++compiling @file{foo.c} with @samp{-c -save-temps} would produce files ++@file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a ++preprocessed @file{foo.i} output file even though the compiler now ++normally uses an integrated preprocessor. ++ ++When used in combination with the @option{-x} command line option, ++@option{-save-temps} is sensible enough to avoid over writing an ++input source file with the same extension as an intermediate file. ++The corresponding intermediate file may be obtained by renaming the ++source file before using @option{-save-temps}. ++ ++@item -time ++@opindex time ++Report the CPU time taken by each subprocess in the compilation ++sequence. For C source files, this is the compiler proper and assembler ++(plus the linker if linking is done). The output looks like this: ++ ++@smallexample ++# cc1 0.12 0.01 ++# as 0.00 0.01 ++@end smallexample ++ ++The first number on each line is the ``user time'', that is time spent ++executing the program itself. The second number is ``system time'', ++time spent executing operating system routines on behalf of the program. ++Both numbers are in seconds. ++ ++@item -fvar-tracking ++@opindex fvar-tracking ++Run variable tracking pass. It computes where variables are stored at each ++position in code. Better debugging information is then generated ++(if the debugging information format supports this information). ++ ++It is enabled by default when compiling with optimization (@option{-Os}, ++@option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and ++the debug info format supports it. ++ ++@item -print-file-name=@var{library} ++@opindex print-file-name ++Print the full absolute name of the library file @var{library} that ++would be used when linking---and don't do anything else. With this ++option, GCC does not compile or link anything; it just prints the ++file name. ++ ++@item -print-multi-directory ++@opindex print-multi-directory ++Print the directory name corresponding to the multilib selected by any ++other switches present in the command line. This directory is supposed ++to exist in @env{GCC_EXEC_PREFIX}. ++ ++@item -print-multi-lib ++@opindex print-multi-lib ++Print the mapping from multilib directory names to compiler switches ++that enable them. The directory name is separated from the switches by ++@samp{;}, and each switch starts with an @samp{@@} instead of the ++@samp{-}, without spaces between multiple switches. This is supposed to ++ease shell-processing. ++ ++@item -print-prog-name=@var{program} ++@opindex print-prog-name ++Like @option{-print-file-name}, but searches for a program such as @samp{cpp}. ++ ++@item -print-libgcc-file-name ++@opindex print-libgcc-file-name ++Same as @option{-print-file-name=libgcc.a}. ++ ++This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs} ++but you do want to link with @file{libgcc.a}. You can do ++ ++@smallexample ++gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name` ++@end smallexample ++ ++@item -print-search-dirs ++@opindex print-search-dirs ++Print the name of the configured installation directory and a list of ++program and library directories @command{gcc} will search---and don't do anything else. ++ ++This is useful when @command{gcc} prints the error message ++@samp{installation problem, cannot exec cpp0: No such file or directory}. ++To resolve this you either need to put @file{cpp0} and the other compiler ++components where @command{gcc} expects to find them, or you can set the environment ++variable @env{GCC_EXEC_PREFIX} to the directory where you installed them. ++Don't forget the trailing @samp{/}. ++@xref{Environment Variables}. ++ ++@item -print-sysroot ++@opindex print-sysroot ++Print the target sysroot directory that will be used during ++compilation. This is the target sysroot specified either at configure ++time or using the @option{--sysroot} option, possibly with an extra ++suffix that depends on compilation options. If no target sysroot is ++specified, the option prints nothing. ++ ++@item -print-sysroot-headers-suffix ++@opindex print-sysroot-headers-suffix ++Print the suffix added to the target sysroot when searching for ++headers, or give an error if the compiler is not configured with such ++a suffix---and don't do anything else. ++ ++@item -dumpmachine ++@opindex dumpmachine ++Print the compiler's target machine (for example, ++@samp{i686-pc-linux-gnu})---and don't do anything else. ++ ++@item -dumpversion ++@opindex dumpversion ++Print the compiler version (for example, @samp{3.0})---and don't do ++anything else. ++ ++@item -dumpspecs ++@opindex dumpspecs ++Print the compiler's built-in specs---and don't do anything else. (This ++is used when GCC itself is being built.) @xref{Spec Files}. ++ ++@item -feliminate-unused-debug-types ++@opindex feliminate-unused-debug-types ++Normally, when producing DWARF2 output, GCC will emit debugging ++information for all types declared in a compilation ++unit, regardless of whether or not they are actually used ++in that compilation unit. Sometimes this is useful, such as ++if, in the debugger, you want to cast a value to a type that is ++not actually used in your program (but is declared). More often, ++however, this results in a significant amount of wasted space. ++With this option, GCC will avoid producing debug symbol output ++for types that are nowhere used in the source file being compiled. ++@end table ++ ++@node Optimize Options ++@section Options That Control Optimization ++@cindex optimize options ++@cindex options, optimization ++ ++These options control various sorts of optimizations. ++ ++Without any optimization option, the compiler's goal is to reduce the ++cost of compilation and to make debugging produce the expected ++results. Statements are independent: if you stop the program with a ++breakpoint between statements, you can then assign a new value to any ++variable or change the program counter to any other statement in the ++function and get exactly the results you would expect from the source ++code. ++ ++Turning on optimization flags makes the compiler attempt to improve ++the performance and/or code size at the expense of compilation time ++and possibly the ability to debug the program. ++ ++The compiler performs optimization based on the knowledge it has of the ++program. Compiling multiple files at once to a single output file mode allows ++the compiler to use information gained from all of the files when compiling ++each of them. ++ ++Not all optimizations are controlled directly by a flag. Only ++optimizations that have a flag are listed. ++ ++@table @gcctabopt ++@item -O ++@itemx -O1 ++@opindex O ++@opindex O1 ++Optimize. Optimizing compilation takes somewhat more time, and a lot ++more memory for a large function. ++ ++With @option{-O}, the compiler tries to reduce code size and execution ++time, without performing any optimizations that take a great deal of ++compilation time. ++ ++@option{-O} turns on the following optimization flags: ++@gccoptlist{ ++-fauto-inc-dec @gol ++-fcprop-registers @gol ++-fdce @gol ++-fdefer-pop @gol ++-fdelayed-branch @gol ++-fdse @gol ++-fguess-branch-probability @gol ++-fif-conversion2 @gol ++-fif-conversion @gol ++-finline-small-functions @gol ++-fipa-pure-const @gol ++-fipa-reference @gol ++-fmerge-constants ++-fsplit-wide-types @gol ++-ftree-builtin-call-dce @gol ++-ftree-ccp @gol ++-ftree-ch @gol ++-ftree-copyrename @gol ++-ftree-dce @gol ++-ftree-dominator-opts @gol ++-ftree-dse @gol ++-ftree-fre @gol ++-ftree-sra @gol ++-ftree-ter @gol ++-funit-at-a-time} ++ ++@option{-O} also turns on @option{-fomit-frame-pointer} on machines ++where doing so does not interfere with debugging. ++ ++@item -O2 ++@opindex O2 ++Optimize even more. GCC performs nearly all supported optimizations ++that do not involve a space-speed tradeoff. ++As compared to @option{-O}, this option increases both compilation time ++and the performance of the generated code. ++ ++@option{-O2} turns on all optimization flags specified by @option{-O}. It ++also turns on the following optimization flags: ++@gccoptlist{-fthread-jumps @gol ++-falign-functions -falign-jumps @gol ++-falign-loops -falign-labels @gol ++-fcaller-saves @gol ++-fcrossjumping @gol ++-fcse-follow-jumps -fcse-skip-blocks @gol ++-fdelete-null-pointer-checks @gol ++-fexpensive-optimizations @gol ++-fgcse -fgcse-lm @gol ++-findirect-inlining @gol ++-foptimize-sibling-calls @gol ++-fpeephole2 @gol ++-fregmove @gol ++-freorder-blocks -freorder-functions @gol ++-frerun-cse-after-loop @gol ++-fsched-interblock -fsched-spec @gol ++-fschedule-insns -fschedule-insns2 @gol ++-fstrict-aliasing -fstrict-overflow @gol ++-ftree-switch-conversion @gol ++-ftree-pre @gol ++-ftree-vrp} ++ ++Please note the warning under @option{-fgcse} about ++invoking @option{-O2} on programs that use computed gotos. ++ ++@item -O3 ++@opindex O3 ++Optimize yet more. @option{-O3} turns on all optimizations specified ++by @option{-O2} and also turns on the @option{-finline-functions}, ++@option{-funswitch-loops}, @option{-fpredictive-commoning}, ++@option{-fgcse-after-reload}, @option{-ftree-vectorize} and ++@option{-fipa-cp-clone} options. ++ ++@item -O0 ++@opindex O0 ++Reduce compilation time and make debugging produce the expected ++results. This is the default. ++ ++@item -Os ++@opindex Os ++Optimize for size. @option{-Os} enables all @option{-O2} optimizations that ++do not typically increase code size. It also performs further ++optimizations designed to reduce code size. ++ ++@option{-Os} disables the following optimization flags: ++@gccoptlist{-falign-functions -falign-jumps -falign-loops @gol ++-falign-labels -freorder-blocks -freorder-blocks-and-partition @gol ++-fprefetch-loop-arrays -ftree-vect-loop-version} ++ ++If you use multiple @option{-O} options, with or without level numbers, ++the last such option is the one that is effective. ++@end table ++ ++Options of the form @option{-f@var{flag}} specify machine-independent ++flags. Most flags have both positive and negative forms; the negative ++form of @option{-ffoo} would be @option{-fno-foo}. In the table ++below, only one of the forms is listed---the one you typically will ++use. You can figure out the other form by either removing @samp{no-} ++or adding it. ++ ++The following options control specific optimizations. They are either ++activated by @option{-O} options or are related to ones that are. You ++can use the following flags in the rare cases when ``fine-tuning'' of ++optimizations to be performed is desired. ++ ++@table @gcctabopt ++@item -fno-default-inline ++@opindex fno-default-inline ++Do not make member functions inline by default merely because they are ++defined inside the class scope (C++ only). Otherwise, when you specify ++@w{@option{-O}}, member functions defined inside class scope are compiled ++inline by default; i.e., you don't need to add @samp{inline} in front of ++the member function name. ++ ++@item -fno-defer-pop ++@opindex fno-defer-pop ++Always pop the arguments to each function call as soon as that function ++returns. For machines which must pop arguments after a function call, ++the compiler normally lets arguments accumulate on the stack for several ++function calls and pops them all at once. ++ ++Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fforward-propagate ++@opindex fforward-propagate ++Perform a forward propagation pass on RTL@. The pass tries to combine two ++instructions and checks if the result can be simplified. If loop unrolling ++is active, two passes are performed and the second is scheduled after ++loop unrolling. ++ ++This option is enabled by default at optimization levels @option{-O2}, ++@option{-O3}, @option{-Os}. ++ ++@item -fomit-frame-pointer ++@opindex fomit-frame-pointer ++Don't keep the frame pointer in a register for functions that ++don't need one. This avoids the instructions to save, set up and ++restore frame pointers; it also makes an extra register available ++in many functions. @strong{It also makes debugging impossible on ++some machines.} ++ ++On some machines, such as the VAX, this flag has no effect, because ++the standard calling sequence automatically handles the frame pointer ++and nothing is saved by pretending it doesn't exist. The ++machine-description macro @code{FRAME_POINTER_REQUIRED} controls ++whether a target machine supports this flag. @xref{Registers,,Register ++Usage, gccint, GNU Compiler Collection (GCC) Internals}. ++ ++Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -foptimize-sibling-calls ++@opindex foptimize-sibling-calls ++Optimize sibling and tail recursive calls. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fno-inline ++@opindex fno-inline ++Don't pay attention to the @code{inline} keyword. Normally this option ++is used to keep the compiler from expanding any functions inline. ++Note that if you are not optimizing, no functions can be expanded inline. ++ ++@item -finline-small-functions ++@opindex finline-small-functions ++Integrate functions into their callers when their body is smaller than expected ++function call code (so overall size of program gets smaller). The compiler ++heuristically decides which functions are simple enough to be worth integrating ++in this way. ++ ++Enabled at level @option{-O2}. ++ ++@item -findirect-inlining ++@opindex findirect-inlining ++Inline also indirect calls that are discovered to be known at compile ++time thanks to previous inlining. This option has any effect only ++when inlining itself is turned on by the @option{-finline-functions} ++or @option{-finline-small-functions} options. ++ ++Enabled at level @option{-O2}. ++ ++@item -finline-functions ++@opindex finline-functions ++Integrate all simple functions into their callers. The compiler ++heuristically decides which functions are simple enough to be worth ++integrating in this way. ++ ++If all calls to a given function are integrated, and the function is ++declared @code{static}, then the function is normally not output as ++assembler code in its own right. ++ ++Enabled at level @option{-O3}. ++ ++@item -finline-functions-called-once ++@opindex finline-functions-called-once ++Consider all @code{static} functions called once for inlining into their ++caller even if they are not marked @code{inline}. If a call to a given ++function is integrated, then the function is not output as assembler code ++in its own right. ++ ++Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}. ++ ++@item -fearly-inlining ++@opindex fearly-inlining ++Inline functions marked by @code{always_inline} and functions whose body seems ++smaller than the function call overhead early before doing ++@option{-fprofile-generate} instrumentation and real inlining pass. Doing so ++makes profiling significantly cheaper and usually inlining faster on programs ++having large chains of nested wrapper functions. ++ ++Enabled by default. ++ ++@item -finline-limit=@var{n} ++@opindex finline-limit ++By default, GCC limits the size of functions that can be inlined. This flag ++allows coarse control of this limit. @var{n} is the size of functions that ++can be inlined in number of pseudo instructions. ++ ++Inlining is actually controlled by a number of parameters, which may be ++specified individually by using @option{--param @var{name}=@var{value}}. ++The @option{-finline-limit=@var{n}} option sets some of these parameters ++as follows: ++ ++@table @gcctabopt ++@item max-inline-insns-single ++is set to @var{n}/2. ++@item max-inline-insns-auto ++is set to @var{n}/2. ++@end table ++ ++See below for a documentation of the individual ++parameters controlling inlining and for the defaults of these parameters. ++ ++@emph{Note:} there may be no value to @option{-finline-limit} that results ++in default behavior. ++ ++@emph{Note:} pseudo instruction represents, in this particular context, an ++abstract measurement of function's size. In no way does it represent a count ++of assembly instructions and as such its exact meaning might change from one ++release to an another. ++ ++@item -fkeep-inline-functions ++@opindex fkeep-inline-functions ++In C, emit @code{static} functions that are declared @code{inline} ++into the object file, even if the function has been inlined into all ++of its callers. This switch does not affect functions using the ++@code{extern inline} extension in GNU C89@. In C++, emit any and all ++inline functions into the object file. ++ ++@item -fkeep-static-consts ++@opindex fkeep-static-consts ++Emit variables declared @code{static const} when optimization isn't turned ++on, even if the variables aren't referenced. ++ ++GCC enables this option by default. If you want to force the compiler to ++check if the variable was referenced, regardless of whether or not ++optimization is turned on, use the @option{-fno-keep-static-consts} option. ++ ++@item -fmerge-constants ++@opindex fmerge-constants ++Attempt to merge identical constants (string constants and floating point ++constants) across compilation units. ++ ++This option is the default for optimized compilation if the assembler and ++linker support it. Use @option{-fno-merge-constants} to inhibit this ++behavior. ++ ++Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fmerge-all-constants ++@opindex fmerge-all-constants ++Attempt to merge identical constants and identical variables. ++ ++This option implies @option{-fmerge-constants}. In addition to ++@option{-fmerge-constants} this considers e.g.@: even constant initialized ++arrays or initialized constant variables with integral or floating point ++types. Languages like C or C++ require each variable, including multiple ++instances of the same variable in recursive calls, to have distinct locations, ++so using this option will result in non-conforming ++behavior. ++ ++@item -fmodulo-sched ++@opindex fmodulo-sched ++Perform swing modulo scheduling immediately before the first scheduling ++pass. This pass looks at innermost loops and reorders their ++instructions by overlapping different iterations. ++ ++@item -fmodulo-sched-allow-regmoves ++@opindex fmodulo-sched-allow-regmoves ++Perform more aggressive SMS based modulo scheduling with register moves ++allowed. By setting this flag certain anti-dependences edges will be ++deleted which will trigger the generation of reg-moves based on the ++life-range analysis. This option is effective only with ++@option{-fmodulo-sched} enabled. ++ ++@item -fno-branch-count-reg ++@opindex fno-branch-count-reg ++Do not use ``decrement and branch'' instructions on a count register, ++but instead generate a sequence of instructions that decrement a ++register, compare it against zero, then branch based upon the result. ++This option is only meaningful on architectures that support such ++instructions, which include x86, PowerPC, IA-64 and S/390. ++ ++The default is @option{-fbranch-count-reg}. ++ ++@item -fno-function-cse ++@opindex fno-function-cse ++Do not put function addresses in registers; make each instruction that ++calls a constant function contain the function's address explicitly. ++ ++This option results in less efficient code, but some strange hacks ++that alter the assembler output may be confused by the optimizations ++performed when this option is not used. ++ ++The default is @option{-ffunction-cse} ++ ++@item -fno-zero-initialized-in-bss ++@opindex fno-zero-initialized-in-bss ++If the target supports a BSS section, GCC by default puts variables that ++are initialized to zero into BSS@. This can save space in the resulting ++code. ++ ++This option turns off this behavior because some programs explicitly ++rely on variables going to the data section. E.g., so that the ++resulting executable can find the beginning of that section and/or make ++assumptions based on that. ++ ++The default is @option{-fzero-initialized-in-bss}. ++ ++@item -fmudflap -fmudflapth -fmudflapir ++@opindex fmudflap ++@opindex fmudflapth ++@opindex fmudflapir ++@cindex bounds checking ++@cindex mudflap ++For front-ends that support it (C and C++), instrument all risky ++pointer/array dereferencing operations, some standard library ++string/heap functions, and some other associated constructs with ++range/validity tests. Modules so instrumented should be immune to ++buffer overflows, invalid heap use, and some other classes of C/C++ ++programming errors. The instrumentation relies on a separate runtime ++library (@file{libmudflap}), which will be linked into a program if ++@option{-fmudflap} is given at link time. Run-time behavior of the ++instrumented program is controlled by the @env{MUDFLAP_OPTIONS} ++environment variable. See @code{env MUDFLAP_OPTIONS=-help a.out} ++for its options. ++ ++Use @option{-fmudflapth} instead of @option{-fmudflap} to compile and to ++link if your program is multi-threaded. Use @option{-fmudflapir}, in ++addition to @option{-fmudflap} or @option{-fmudflapth}, if ++instrumentation should ignore pointer reads. This produces less ++instrumentation (and therefore faster execution) and still provides ++some protection against outright memory corrupting writes, but allows ++erroneously read data to propagate within a program. ++ ++@item -fthread-jumps ++@opindex fthread-jumps ++Perform optimizations where we check to see if a jump branches to a ++location where another comparison subsumed by the first is found. If ++so, the first branch is redirected to either the destination of the ++second branch or a point immediately following it, depending on whether ++the condition is known to be true or false. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fsplit-wide-types ++@opindex fsplit-wide-types ++When using a type that occupies multiple registers, such as @code{long ++long} on a 32-bit system, split the registers apart and allocate them ++independently. This normally generates better code for those types, ++but may make debugging more difficult. ++ ++Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, ++@option{-Os}. ++ ++@item -fcse-follow-jumps ++@opindex fcse-follow-jumps ++In common subexpression elimination (CSE), scan through jump instructions ++when the target of the jump is not reached by any other path. For ++example, when CSE encounters an @code{if} statement with an ++@code{else} clause, CSE will follow the jump when the condition ++tested is false. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fcse-skip-blocks ++@opindex fcse-skip-blocks ++This is similar to @option{-fcse-follow-jumps}, but causes CSE to ++follow jumps which conditionally skip over blocks. When CSE ++encounters a simple @code{if} statement with no else clause, ++@option{-fcse-skip-blocks} causes CSE to follow the jump around the ++body of the @code{if}. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -frerun-cse-after-loop ++@opindex frerun-cse-after-loop ++Re-run common subexpression elimination after loop optimizations has been ++performed. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fgcse ++@opindex fgcse ++Perform a global common subexpression elimination pass. ++This pass also performs global constant and copy propagation. ++ ++@emph{Note:} When compiling a program using computed gotos, a GCC ++extension, you may get better runtime performance if you disable ++the global common subexpression elimination pass by adding ++@option{-fno-gcse} to the command line. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fgcse-lm ++@opindex fgcse-lm ++When @option{-fgcse-lm} is enabled, global common subexpression elimination will ++attempt to move loads which are only killed by stores into themselves. This ++allows a loop containing a load/store sequence to be changed to a load outside ++the loop, and a copy/store within the loop. ++ ++Enabled by default when gcse is enabled. ++ ++@item -fgcse-sm ++@opindex fgcse-sm ++When @option{-fgcse-sm} is enabled, a store motion pass is run after ++global common subexpression elimination. This pass will attempt to move ++stores out of loops. When used in conjunction with @option{-fgcse-lm}, ++loops containing a load/store sequence can be changed to a load before ++the loop and a store after the loop. ++ ++Not enabled at any optimization level. ++ ++@item -fgcse-las ++@opindex fgcse-las ++When @option{-fgcse-las} is enabled, the global common subexpression ++elimination pass eliminates redundant loads that come after stores to the ++same memory location (both partial and full redundancies). ++ ++Not enabled at any optimization level. ++ ++@item -fgcse-after-reload ++@opindex fgcse-after-reload ++When @option{-fgcse-after-reload} is enabled, a redundant load elimination ++pass is performed after reload. The purpose of this pass is to cleanup ++redundant spilling. ++ ++@item -funsafe-loop-optimizations ++@opindex funsafe-loop-optimizations ++If given, the loop optimizer will assume that loop indices do not ++overflow, and that the loops with nontrivial exit condition are not ++infinite. This enables a wider range of loop optimizations even if ++the loop optimizer itself cannot prove that these assumptions are valid. ++Using @option{-Wunsafe-loop-optimizations}, the compiler will warn you ++if it finds this kind of loop. ++ ++@item -fcrossjumping ++@opindex fcrossjumping ++Perform cross-jumping transformation. This transformation unifies equivalent code and save code size. The ++resulting code may or may not perform better than without cross-jumping. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fauto-inc-dec ++@opindex fauto-inc-dec ++Combine increments or decrements of addresses with memory accesses. ++This pass is always skipped on architectures that do not have ++instructions to support this. Enabled by default at @option{-O} and ++higher on architectures that support this. ++ ++@item -fdce ++@opindex fdce ++Perform dead code elimination (DCE) on RTL@. ++Enabled by default at @option{-O} and higher. ++ ++@item -fdse ++@opindex fdse ++Perform dead store elimination (DSE) on RTL@. ++Enabled by default at @option{-O} and higher. ++ ++@item -fif-conversion ++@opindex fif-conversion ++Attempt to transform conditional jumps into branch-less equivalents. This ++include use of conditional moves, min, max, set flags and abs instructions, and ++some tricks doable by standard arithmetics. The use of conditional execution ++on chips where it is available is controlled by @code{if-conversion2}. ++ ++Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fif-conversion2 ++@opindex fif-conversion2 ++Use conditional execution (where available) to transform conditional jumps into ++branch-less equivalents. ++ ++Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fdelete-null-pointer-checks ++@opindex fdelete-null-pointer-checks ++Use global dataflow analysis to identify and eliminate useless checks ++for null pointers. The compiler assumes that dereferencing a null ++pointer would have halted the program. If a pointer is checked after ++it has already been dereferenced, it cannot be null. ++ ++In some environments, this assumption is not true, and programs can ++safely dereference null pointers. Use ++@option{-fno-delete-null-pointer-checks} to disable this optimization ++for programs which depend on that behavior. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fexpensive-optimizations ++@opindex fexpensive-optimizations ++Perform a number of minor optimizations that are relatively expensive. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -foptimize-register-move ++@itemx -fregmove ++@opindex foptimize-register-move ++@opindex fregmove ++Attempt to reassign register numbers in move instructions and as ++operands of other simple instructions in order to maximize the amount of ++register tying. This is especially helpful on machines with two-operand ++instructions. ++ ++Note @option{-fregmove} and @option{-foptimize-register-move} are the same ++optimization. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fira-algorithm=@var{algorithm} ++Use specified coloring algorithm for the integrated register ++allocator. The @var{algorithm} argument should be @code{priority} or ++@code{CB}. The first algorithm specifies Chow's priority coloring, ++the second one specifies Chaitin-Briggs coloring. The second ++algorithm can be unimplemented for some architectures. If it is ++implemented, it is the default because Chaitin-Briggs coloring as a ++rule generates a better code. ++ ++@item -fira-region=@var{region} ++Use specified regions for the integrated register allocator. The ++@var{region} argument should be one of @code{all}, @code{mixed}, or ++@code{one}. The first value means using all loops as register ++allocation regions, the second value which is the default means using ++all loops except for loops with small register pressure as the ++regions, and third one means using all function as a single region. ++The first value can give best result for machines with small size and ++irregular register set, the third one results in faster and generates ++decent code and the smallest size code, and the default value usually ++give the best results in most cases and for most architectures. ++ ++@item -fira-coalesce ++@opindex fira-coalesce ++Do optimistic register coalescing. This option might be profitable for ++architectures with big regular register files. ++ ++@item -fno-ira-share-save-slots ++@opindex fno-ira-share-save-slots ++Switch off sharing stack slots used for saving call used hard ++registers living through a call. Each hard register will get a ++separate stack slot and as a result function stack frame will be ++bigger. ++ ++@item -fno-ira-share-spill-slots ++@opindex fno-ira-share-spill-slots ++Switch off sharing stack slots allocated for pseudo-registers. Each ++pseudo-register which did not get a hard register will get a separate ++stack slot and as a result function stack frame will be bigger. ++ ++@item -fira-verbose=@var{n} ++@opindex fira-verbose ++Set up how verbose dump file for the integrated register allocator ++will be. Default value is 5. If the value is greater or equal to 10, ++the dump file will be stderr as if the value were @var{n} minus 10. ++ ++@item -fdelayed-branch ++@opindex fdelayed-branch ++If supported for the target machine, attempt to reorder instructions ++to exploit instruction slots available after delayed branch ++instructions. ++ ++Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fschedule-insns ++@opindex fschedule-insns ++If supported for the target machine, attempt to reorder instructions to ++eliminate execution stalls due to required data being unavailable. This ++helps machines that have slow floating point or memory load instructions ++by allowing other instructions to be issued until the result of the load ++or floating point instruction is required. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fschedule-insns2 ++@opindex fschedule-insns2 ++Similar to @option{-fschedule-insns}, but requests an additional pass of ++instruction scheduling after register allocation has been done. This is ++especially useful on machines with a relatively small number of ++registers and where memory load instructions take more than one cycle. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fno-sched-interblock ++@opindex fno-sched-interblock ++Don't schedule instructions across basic blocks. This is normally ++enabled by default when scheduling before register allocation, i.e.@: ++with @option{-fschedule-insns} or at @option{-O2} or higher. ++ ++@item -fno-sched-spec ++@opindex fno-sched-spec ++Don't allow speculative motion of non-load instructions. This is normally ++enabled by default when scheduling before register allocation, i.e.@: ++with @option{-fschedule-insns} or at @option{-O2} or higher. ++ ++@item -fsched-spec-load ++@opindex fsched-spec-load ++Allow speculative motion of some load instructions. This only makes ++sense when scheduling before register allocation, i.e.@: with ++@option{-fschedule-insns} or at @option{-O2} or higher. ++ ++@item -fsched-spec-load-dangerous ++@opindex fsched-spec-load-dangerous ++Allow speculative motion of more load instructions. This only makes ++sense when scheduling before register allocation, i.e.@: with ++@option{-fschedule-insns} or at @option{-O2} or higher. ++ ++@item -fsched-stalled-insns ++@itemx -fsched-stalled-insns=@var{n} ++@opindex fsched-stalled-insns ++Define how many insns (if any) can be moved prematurely from the queue ++of stalled insns into the ready list, during the second scheduling pass. ++@option{-fno-sched-stalled-insns} means that no insns will be moved ++prematurely, @option{-fsched-stalled-insns=0} means there is no limit ++on how many queued insns can be moved prematurely. ++@option{-fsched-stalled-insns} without a value is equivalent to ++@option{-fsched-stalled-insns=1}. ++ ++@item -fsched-stalled-insns-dep ++@itemx -fsched-stalled-insns-dep=@var{n} ++@opindex fsched-stalled-insns-dep ++Define how many insn groups (cycles) will be examined for a dependency ++on a stalled insn that is candidate for premature removal from the queue ++of stalled insns. This has an effect only during the second scheduling pass, ++and only if @option{-fsched-stalled-insns} is used. ++@option{-fno-sched-stalled-insns-dep} is equivalent to ++@option{-fsched-stalled-insns-dep=0}. ++@option{-fsched-stalled-insns-dep} without a value is equivalent to ++@option{-fsched-stalled-insns-dep=1}. ++ ++@item -fsched2-use-superblocks ++@opindex fsched2-use-superblocks ++When scheduling after register allocation, do use superblock scheduling ++algorithm. Superblock scheduling allows motion across basic block boundaries ++resulting on faster schedules. This option is experimental, as not all machine ++descriptions used by GCC model the CPU closely enough to avoid unreliable ++results from the algorithm. ++ ++This only makes sense when scheduling after register allocation, i.e.@: with ++@option{-fschedule-insns2} or at @option{-O2} or higher. ++ ++@item -fsched2-use-traces ++@opindex fsched2-use-traces ++Use @option{-fsched2-use-superblocks} algorithm when scheduling after register ++allocation and additionally perform code duplication in order to increase the ++size of superblocks using tracer pass. See @option{-ftracer} for details on ++trace formation. ++ ++This mode should produce faster but significantly longer programs. Also ++without @option{-fbranch-probabilities} the traces constructed may not ++match the reality and hurt the performance. This only makes ++sense when scheduling after register allocation, i.e.@: with ++@option{-fschedule-insns2} or at @option{-O2} or higher. ++ ++@item -fsee ++@opindex fsee ++Eliminate redundant sign extension instructions and move the non-redundant ++ones to optimal placement using lazy code motion (LCM). ++ ++@item -freschedule-modulo-scheduled-loops ++@opindex freschedule-modulo-scheduled-loops ++The modulo scheduling comes before the traditional scheduling, if a loop ++was modulo scheduled we may want to prevent the later scheduling passes ++from changing its schedule, we use this option to control that. ++ ++@item -fselective-scheduling ++@opindex fselective-scheduling ++Schedule instructions using selective scheduling algorithm. Selective ++scheduling runs instead of the first scheduler pass. ++ ++@item -fselective-scheduling2 ++@opindex fselective-scheduling2 ++Schedule instructions using selective scheduling algorithm. Selective ++scheduling runs instead of the second scheduler pass. ++ ++@item -fsel-sched-pipelining ++@opindex fsel-sched-pipelining ++Enable software pipelining of innermost loops during selective scheduling. ++This option has no effect until one of @option{-fselective-scheduling} or ++@option{-fselective-scheduling2} is turned on. ++ ++@item -fsel-sched-pipelining-outer-loops ++@opindex fsel-sched-pipelining-outer-loops ++When pipelining loops during selective scheduling, also pipeline outer loops. ++This option has no effect until @option{-fsel-sched-pipelining} is turned on. ++ ++@item -fcaller-saves ++@opindex fcaller-saves ++Enable values to be allocated in registers that will be clobbered by ++function calls, by emitting extra instructions to save and restore the ++registers around such calls. Such allocation is done only when it ++seems to result in better code than would otherwise be produced. ++ ++This option is always enabled by default on certain machines, usually ++those which have no call-preserved registers to use instead. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fconserve-stack ++@opindex fconserve-stack ++Attempt to minimize stack usage. The compiler will attempt to use less ++stack space, even if that makes the program slower. This option ++implies setting the @option{large-stack-frame} parameter to 100 ++and the @option{large-stack-frame-growth} parameter to 400. ++ ++@item -ftree-reassoc ++@opindex ftree-reassoc ++Perform reassociation on trees. This flag is enabled by default ++at @option{-O} and higher. ++ ++@item -ftree-pre ++@opindex ftree-pre ++Perform partial redundancy elimination (PRE) on trees. This flag is ++enabled by default at @option{-O2} and @option{-O3}. ++ ++@item -ftree-fre ++@opindex ftree-fre ++Perform full redundancy elimination (FRE) on trees. The difference ++between FRE and PRE is that FRE only considers expressions ++that are computed on all paths leading to the redundant computation. ++This analysis is faster than PRE, though it exposes fewer redundancies. ++This flag is enabled by default at @option{-O} and higher. ++ ++@item -ftree-copy-prop ++@opindex ftree-copy-prop ++Perform copy propagation on trees. This pass eliminates unnecessary ++copy operations. This flag is enabled by default at @option{-O} and ++higher. ++ ++@item -fipa-pure-const ++@opindex fipa-pure-const ++Discover which functions are pure or constant. ++Enabled by default at @option{-O} and higher. ++ ++@item -fipa-reference ++@opindex fipa-reference ++Discover which static variables do not escape cannot escape the ++compilation unit. ++Enabled by default at @option{-O} and higher. ++ ++@item -fipa-struct-reorg ++@opindex fipa-struct-reorg ++Perform structure reorganization optimization, that change C-like structures ++layout in order to better utilize spatial locality. This transformation is ++effective for programs containing arrays of structures. Available in two ++compilation modes: profile-based (enabled with @option{-fprofile-generate}) ++or static (which uses built-in heuristics). Require @option{-fipa-type-escape} ++to provide the safety of this transformation. It works only in whole program ++mode, so it requires @option{-fwhole-program} and @option{-combine} to be ++enabled. Structures considered @samp{cold} by this transformation are not ++affected (see @option{--param struct-reorg-cold-struct-ratio=@var{value}}). ++ ++With this flag, the program debug info reflects a new structure layout. ++ ++@item -fipa-pta ++@opindex fipa-pta ++Perform interprocedural pointer analysis. This option is experimental ++and does not affect generated code. ++ ++@item -fipa-cp ++@opindex fipa-cp ++Perform interprocedural constant propagation. ++This optimization analyzes the program to determine when values passed ++to functions are constants and then optimizes accordingly. ++This optimization can substantially increase performance ++if the application has constants passed to functions. ++This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}. ++ ++@item -fipa-cp-clone ++@opindex fipa-cp-clone ++Perform function cloning to make interprocedural constant propagation stronger. ++When enabled, interprocedural constant propagation will perform function cloning ++when externally visible function can be called with constant arguments. ++Because this optimization can create multiple copies of functions, ++it may significantly increase code size ++(see @option{--param ipcp-unit-growth=@var{value}}). ++This flag is enabled by default at @option{-O3}. ++ ++@item -fipa-matrix-reorg ++@opindex fipa-matrix-reorg ++Perform matrix flattening and transposing. ++Matrix flattening tries to replace a m-dimensional matrix ++with its equivalent n-dimensional matrix, where n < m. ++This reduces the level of indirection needed for accessing the elements ++of the matrix. The second optimization is matrix transposing that ++attempts to change the order of the matrix's dimensions in order to ++improve cache locality. ++Both optimizations need the @option{-fwhole-program} flag. ++Transposing is enabled only if profiling information is available. ++ ++ ++@item -ftree-sink ++@opindex ftree-sink ++Perform forward store motion on trees. This flag is ++enabled by default at @option{-O} and higher. ++ ++@item -ftree-ccp ++@opindex ftree-ccp ++Perform sparse conditional constant propagation (CCP) on trees. This ++pass only operates on local scalar variables and is enabled by default ++at @option{-O} and higher. ++ ++@item -ftree-switch-conversion ++Perform conversion of simple initializations in a switch to ++initializations from a scalar array. This flag is enabled by default ++at @option{-O2} and higher. ++ ++@item -ftree-dce ++@opindex ftree-dce ++Perform dead code elimination (DCE) on trees. This flag is enabled by ++default at @option{-O} and higher. ++ ++@item -ftree-builtin-call-dce ++@opindex ftree-builtin-call-dce ++Perform conditional dead code elimination (DCE) for calls to builtin functions ++that may set @code{errno} but are otherwise side-effect free. This flag is ++enabled by default at @option{-O2} and higher if @option{-Os} is not also ++specified. ++ ++@item -ftree-dominator-opts ++@opindex ftree-dominator-opts ++Perform a variety of simple scalar cleanups (constant/copy ++propagation, redundancy elimination, range propagation and expression ++simplification) based on a dominator tree traversal. This also ++performs jump threading (to reduce jumps to jumps). This flag is ++enabled by default at @option{-O} and higher. ++ ++@item -ftree-dse ++@opindex ftree-dse ++Perform dead store elimination (DSE) on trees. A dead store is a store into ++a memory location which will later be overwritten by another store without ++any intervening loads. In this case the earlier store can be deleted. This ++flag is enabled by default at @option{-O} and higher. ++ ++@item -ftree-ch ++@opindex ftree-ch ++Perform loop header copying on trees. This is beneficial since it increases ++effectiveness of code motion optimizations. It also saves one jump. This flag ++is enabled by default at @option{-O} and higher. It is not enabled ++for @option{-Os}, since it usually increases code size. ++ ++@item -ftree-loop-optimize ++@opindex ftree-loop-optimize ++Perform loop optimizations on trees. This flag is enabled by default ++at @option{-O} and higher. ++ ++@item -ftree-loop-linear ++@opindex ftree-loop-linear ++Perform linear loop transformations on tree. This flag can improve cache ++performance and allow further loop optimizations to take place. ++ ++@item -floop-interchange ++Perform loop interchange transformations on loops. Interchanging two ++nested loops switches the inner and outer loops. For example, given a ++loop like: ++@smallexample ++DO J = 1, M ++ DO I = 1, N ++ A(J, I) = A(J, I) * C ++ ENDDO ++ENDDO ++@end smallexample ++loop interchange will transform the loop as if the user had written: ++@smallexample ++DO I = 1, N ++ DO J = 1, M ++ A(J, I) = A(J, I) * C ++ ENDDO ++ENDDO ++@end smallexample ++which can be beneficial when @code{N} is larger than the caches, ++because in Fortran, the elements of an array are stored in memory ++contiguously by column, and the original loop iterates over rows, ++potentially creating at each access a cache miss. This optimization ++applies to all the languages supported by GCC and is not limited to ++Fortran. To use this code transformation, GCC has to be configured ++with @option{--with-ppl} and @option{--with-cloog} to enable the ++Graphite loop transformation infrastructure. ++ ++@item -floop-strip-mine ++Perform loop strip mining transformations on loops. Strip mining ++splits a loop into two nested loops. The outer loop has strides ++equal to the strip size and the inner loop has strides of the ++original loop within a strip. For example, given a loop like: ++@smallexample ++DO I = 1, N ++ A(I) = A(I) + C ++ENDDO ++@end smallexample ++loop strip mining will transform the loop as if the user had written: ++@smallexample ++DO II = 1, N, 4 ++ DO I = II, min (II + 3, N) ++ A(I) = A(I) + C ++ ENDDO ++ENDDO ++@end smallexample ++This optimization applies to all the languages supported by GCC and is ++not limited to Fortran. To use this code transformation, GCC has to ++be configured with @option{--with-ppl} and @option{--with-cloog} to ++enable the Graphite loop transformation infrastructure. ++ ++@item -floop-block ++Perform loop blocking transformations on loops. Blocking strip mines ++each loop in the loop nest such that the memory accesses of the ++element loops fit inside caches. For example, given a loop like: ++@smallexample ++DO I = 1, N ++ DO J = 1, M ++ A(J, I) = B(I) + C(J) ++ ENDDO ++ENDDO ++@end smallexample ++loop blocking will transform the loop as if the user had written: ++@smallexample ++DO II = 1, N, 64 ++ DO JJ = 1, M, 64 ++ DO I = II, min (II + 63, N) ++ DO J = JJ, min (JJ + 63, M) ++ A(J, I) = B(I) + C(J) ++ ENDDO ++ ENDDO ++ ENDDO ++ENDDO ++@end smallexample ++which can be beneficial when @code{M} is larger than the caches, ++because the innermost loop will iterate over a smaller amount of data ++that can be kept in the caches. This optimization applies to all the ++languages supported by GCC and is not limited to Fortran. To use this ++code transformation, GCC has to be configured with @option{--with-ppl} ++and @option{--with-cloog} to enable the Graphite loop transformation ++infrastructure. ++ ++@item -fcheck-data-deps ++@opindex fcheck-data-deps ++Compare the results of several data dependence analyzers. This option ++is used for debugging the data dependence analyzers. ++ ++@item -ftree-loop-distribution ++Perform loop distribution. This flag can improve cache performance on ++big loop bodies and allow further loop optimizations, like ++parallelization or vectorization, to take place. For example, the loop ++@smallexample ++DO I = 1, N ++ A(I) = B(I) + C ++ D(I) = E(I) * F ++ENDDO ++@end smallexample ++is transformed to ++@smallexample ++DO I = 1, N ++ A(I) = B(I) + C ++ENDDO ++DO I = 1, N ++ D(I) = E(I) * F ++ENDDO ++@end smallexample ++ ++@item -ftree-loop-im ++@opindex ftree-loop-im ++Perform loop invariant motion on trees. This pass moves only invariants that ++would be hard to handle at RTL level (function calls, operations that expand to ++nontrivial sequences of insns). With @option{-funswitch-loops} it also moves ++operands of conditions that are invariant out of the loop, so that we can use ++just trivial invariantness analysis in loop unswitching. The pass also includes ++store motion. ++ ++@item -ftree-loop-ivcanon ++@opindex ftree-loop-ivcanon ++Create a canonical counter for number of iterations in the loop for that ++determining number of iterations requires complicated analysis. Later ++optimizations then may determine the number easily. Useful especially ++in connection with unrolling. ++ ++@item -fivopts ++@opindex fivopts ++Perform induction variable optimizations (strength reduction, induction ++variable merging and induction variable elimination) on trees. ++ ++@item -ftree-parallelize-loops=n ++@opindex ftree-parallelize-loops ++Parallelize loops, i.e., split their iteration space to run in n threads. ++This is only possible for loops whose iterations are independent ++and can be arbitrarily reordered. The optimization is only ++profitable on multiprocessor machines, for loops that are CPU-intensive, ++rather than constrained e.g.@: by memory bandwidth. This option ++implies @option{-pthread}, and thus is only supported on targets ++that have support for @option{-pthread}. ++ ++@item -ftree-sra ++@opindex ftree-sra ++Perform scalar replacement of aggregates. This pass replaces structure ++references with scalars to prevent committing structures to memory too ++early. This flag is enabled by default at @option{-O} and higher. ++ ++@item -ftree-copyrename ++@opindex ftree-copyrename ++Perform copy renaming on trees. This pass attempts to rename compiler ++temporaries to other variables at copy locations, usually resulting in ++variable names which more closely resemble the original variables. This flag ++is enabled by default at @option{-O} and higher. ++ ++@item -ftree-ter ++@opindex ftree-ter ++Perform temporary expression replacement during the SSA->normal phase. Single ++use/single def temporaries are replaced at their use location with their ++defining expression. This results in non-GIMPLE code, but gives the expanders ++much more complex trees to work on resulting in better RTL generation. This is ++enabled by default at @option{-O} and higher. ++ ++@item -ftree-vectorize ++@opindex ftree-vectorize ++Perform loop vectorization on trees. This flag is enabled by default at ++@option{-O3}. ++ ++@item -ftree-vect-loop-version ++@opindex ftree-vect-loop-version ++Perform loop versioning when doing loop vectorization on trees. When a loop ++appears to be vectorizable except that data alignment or data dependence cannot ++be determined at compile time then vectorized and non-vectorized versions of ++the loop are generated along with runtime checks for alignment or dependence ++to control which version is executed. This option is enabled by default ++except at level @option{-Os} where it is disabled. ++ ++@item -fvect-cost-model ++@opindex fvect-cost-model ++Enable cost model for vectorization. ++ ++@item -ftree-vrp ++@opindex ftree-vrp ++Perform Value Range Propagation on trees. This is similar to the ++constant propagation pass, but instead of values, ranges of values are ++propagated. This allows the optimizers to remove unnecessary range ++checks like array bound checks and null pointer checks. This is ++enabled by default at @option{-O2} and higher. Null pointer check ++elimination is only done if @option{-fdelete-null-pointer-checks} is ++enabled. ++ ++@item -ftracer ++@opindex ftracer ++Perform tail duplication to enlarge superblock size. This transformation ++simplifies the control flow of the function allowing other optimizations to do ++better job. ++ ++@item -funroll-loops ++@opindex funroll-loops ++Unroll loops whose number of iterations can be determined at compile ++time or upon entry to the loop. @option{-funroll-loops} implies ++@option{-frerun-cse-after-loop}. This option makes code larger, ++and may or may not make it run faster. ++ ++@item -funroll-all-loops ++@opindex funroll-all-loops ++Unroll all loops, even if their number of iterations is uncertain when ++the loop is entered. This usually makes programs run more slowly. ++@option{-funroll-all-loops} implies the same options as ++@option{-funroll-loops}, ++ ++@item -fsplit-ivs-in-unroller ++@opindex fsplit-ivs-in-unroller ++Enables expressing of values of induction variables in later iterations ++of the unrolled loop using the value in the first iteration. This breaks ++long dependency chains, thus improving efficiency of the scheduling passes. ++ ++Combination of @option{-fweb} and CSE is often sufficient to obtain the ++same effect. However in cases the loop body is more complicated than ++a single basic block, this is not reliable. It also does not work at all ++on some of the architectures due to restrictions in the CSE pass. ++ ++This optimization is enabled by default. ++ ++@item -fvariable-expansion-in-unroller ++@opindex fvariable-expansion-in-unroller ++With this option, the compiler will create multiple copies of some ++local variables when unrolling a loop which can result in superior code. ++ ++@item -fpredictive-commoning ++@opindex fpredictive-commoning ++Perform predictive commoning optimization, i.e., reusing computations ++(especially memory loads and stores) performed in previous ++iterations of loops. ++ ++This option is enabled at level @option{-O3}. ++ ++@item -fprefetch-loop-arrays ++@opindex fprefetch-loop-arrays ++If supported by the target machine, generate instructions to prefetch ++memory to improve the performance of loops that access large arrays. ++ ++This option may generate better or worse code; results are highly ++dependent on the structure of loops within the source code. ++ ++Disabled at level @option{-Os}. ++ ++@item -fno-peephole ++@itemx -fno-peephole2 ++@opindex fno-peephole ++@opindex fno-peephole2 ++Disable any machine-specific peephole optimizations. The difference ++between @option{-fno-peephole} and @option{-fno-peephole2} is in how they ++are implemented in the compiler; some targets use one, some use the ++other, a few use both. ++ ++@option{-fpeephole} is enabled by default. ++@option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fno-guess-branch-probability ++@opindex fno-guess-branch-probability ++Do not guess branch probabilities using heuristics. ++ ++GCC will use heuristics to guess branch probabilities if they are ++not provided by profiling feedback (@option{-fprofile-arcs}). These ++heuristics are based on the control flow graph. If some branch probabilities ++are specified by @samp{__builtin_expect}, then the heuristics will be ++used to guess branch probabilities for the rest of the control flow graph, ++taking the @samp{__builtin_expect} info into account. The interactions ++between the heuristics and @samp{__builtin_expect} can be complex, and in ++some cases, it may be useful to disable the heuristics so that the effects ++of @samp{__builtin_expect} are easier to understand. ++ ++The default is @option{-fguess-branch-probability} at levels ++@option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -freorder-blocks ++@opindex freorder-blocks ++Reorder basic blocks in the compiled function in order to reduce number of ++taken branches and improve code locality. ++ ++Enabled at levels @option{-O2}, @option{-O3}. ++ ++@item -freorder-blocks-and-partition ++@opindex freorder-blocks-and-partition ++In addition to reordering basic blocks in the compiled function, in order ++to reduce number of taken branches, partitions hot and cold basic blocks ++into separate sections of the assembly and .o files, to improve ++paging and cache locality performance. ++ ++This optimization is automatically turned off in the presence of ++exception handling, for linkonce sections, for functions with a user-defined ++section attribute and on any architecture that does not support named ++sections. ++ ++@item -freorder-functions ++@opindex freorder-functions ++Reorder functions in the object file in order to ++improve code locality. This is implemented by using special ++subsections @code{.text.hot} for most frequently executed functions and ++@code{.text.unlikely} for unlikely executed functions. Reordering is done by ++the linker so object file format must support named sections and linker must ++place them in a reasonable way. ++ ++Also profile feedback must be available in to make this option effective. See ++@option{-fprofile-arcs} for details. ++ ++Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fstrict-aliasing ++@opindex fstrict-aliasing ++Allow the compiler to assume the strictest aliasing rules applicable to ++the language being compiled. For C (and C++), this activates ++optimizations based on the type of expressions. In particular, an ++object of one type is assumed never to reside at the same address as an ++object of a different type, unless the types are almost the same. For ++example, an @code{unsigned int} can alias an @code{int}, but not a ++@code{void*} or a @code{double}. A character type may alias any other ++type. ++ ++@anchor{Type-punning}Pay special attention to code like this: ++@smallexample ++union a_union @{ ++ int i; ++ double d; ++@}; ++ ++int f() @{ ++ union a_union t; ++ t.d = 3.0; ++ return t.i; ++@} ++@end smallexample ++The practice of reading from a different union member than the one most ++recently written to (called ``type-punning'') is common. Even with ++@option{-fstrict-aliasing}, type-punning is allowed, provided the memory ++is accessed through the union type. So, the code above will work as ++expected. @xref{Structures unions enumerations and bit-fields ++implementation}. However, this code might not: ++@smallexample ++int f() @{ ++ union a_union t; ++ int* ip; ++ t.d = 3.0; ++ ip = &t.i; ++ return *ip; ++@} ++@end smallexample ++ ++Similarly, access by taking the address, casting the resulting pointer ++and dereferencing the result has undefined behavior, even if the cast ++uses a union type, e.g.: ++@smallexample ++int f() @{ ++ double d = 3.0; ++ return ((union a_union *) &d)->i; ++@} ++@end smallexample ++ ++The @option{-fstrict-aliasing} option is enabled at levels ++@option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fstrict-overflow ++@opindex fstrict-overflow ++Allow the compiler to assume strict signed overflow rules, depending ++on the language being compiled. For C (and C++) this means that ++overflow when doing arithmetic with signed numbers is undefined, which ++means that the compiler may assume that it will not happen. This ++permits various optimizations. For example, the compiler will assume ++that an expression like @code{i + 10 > i} will always be true for ++signed @code{i}. This assumption is only valid if signed overflow is ++undefined, as the expression is false if @code{i + 10} overflows when ++using twos complement arithmetic. When this option is in effect any ++attempt to determine whether an operation on signed numbers will ++overflow must be written carefully to not actually involve overflow. ++ ++This option also allows the compiler to assume strict pointer ++semantics: given a pointer to an object, if adding an offset to that ++pointer does not produce a pointer to the same object, the addition is ++undefined. This permits the compiler to conclude that @code{p + u > ++p} is always true for a pointer @code{p} and unsigned integer ++@code{u}. This assumption is only valid because pointer wraparound is ++undefined, as the expression is false if @code{p + u} overflows using ++twos complement arithmetic. ++ ++See also the @option{-fwrapv} option. Using @option{-fwrapv} means ++that integer signed overflow is fully defined: it wraps. When ++@option{-fwrapv} is used, there is no difference between ++@option{-fstrict-overflow} and @option{-fno-strict-overflow} for ++integers. With @option{-fwrapv} certain types of overflow are ++permitted. For example, if the compiler gets an overflow when doing ++arithmetic on constants, the overflowed value can still be used with ++@option{-fwrapv}, but not otherwise. ++ ++The @option{-fstrict-overflow} option is enabled at levels ++@option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -falign-functions ++@itemx -falign-functions=@var{n} ++@opindex falign-functions ++Align the start of functions to the next power-of-two greater than ++@var{n}, skipping up to @var{n} bytes. For instance, ++@option{-falign-functions=32} aligns functions to the next 32-byte ++boundary, but @option{-falign-functions=24} would align to the next ++32-byte boundary only if this can be done by skipping 23 bytes or less. ++ ++@option{-fno-align-functions} and @option{-falign-functions=1} are ++equivalent and mean that functions will not be aligned. ++ ++Some assemblers only support this flag when @var{n} is a power of two; ++in that case, it is rounded up. ++ ++If @var{n} is not specified or is zero, use a machine-dependent default. ++ ++Enabled at levels @option{-O2}, @option{-O3}. ++ ++@item -falign-labels ++@itemx -falign-labels=@var{n} ++@opindex falign-labels ++Align all branch targets to a power-of-two boundary, skipping up to ++@var{n} bytes like @option{-falign-functions}. This option can easily ++make code slower, because it must insert dummy operations for when the ++branch target is reached in the usual flow of the code. ++ ++@option{-fno-align-labels} and @option{-falign-labels=1} are ++equivalent and mean that labels will not be aligned. ++ ++If @option{-falign-loops} or @option{-falign-jumps} are applicable and ++are greater than this value, then their values are used instead. ++ ++If @var{n} is not specified or is zero, use a machine-dependent default ++which is very likely to be @samp{1}, meaning no alignment. ++ ++Enabled at levels @option{-O2}, @option{-O3}. ++ ++@item -falign-loops ++@itemx -falign-loops=@var{n} ++@opindex falign-loops ++Align loops to a power-of-two boundary, skipping up to @var{n} bytes ++like @option{-falign-functions}. The hope is that the loop will be ++executed many times, which will make up for any execution of the dummy ++operations. ++ ++@option{-fno-align-loops} and @option{-falign-loops=1} are ++equivalent and mean that loops will not be aligned. ++ ++If @var{n} is not specified or is zero, use a machine-dependent default. ++ ++Enabled at levels @option{-O2}, @option{-O3}. ++ ++@item -falign-jumps ++@itemx -falign-jumps=@var{n} ++@opindex falign-jumps ++Align branch targets to a power-of-two boundary, for branch targets ++where the targets can only be reached by jumping, skipping up to @var{n} ++bytes like @option{-falign-functions}. In this case, no dummy operations ++need be executed. ++ ++@option{-fno-align-jumps} and @option{-falign-jumps=1} are ++equivalent and mean that loops will not be aligned. ++ ++If @var{n} is not specified or is zero, use a machine-dependent default. ++ ++Enabled at levels @option{-O2}, @option{-O3}. ++ ++@item -funit-at-a-time ++@opindex funit-at-a-time ++This option is left for compatibility reasons. @option{-funit-at-a-time} ++has no effect, while @option{-fno-unit-at-a-time} implies ++@option{-fno-toplevel-reorder} and @option{-fno-section-anchors}. ++ ++Enabled by default. ++ ++@item -fno-toplevel-reorder ++@opindex fno-toplevel-reorder ++Do not reorder top-level functions, variables, and @code{asm} ++statements. Output them in the same order that they appear in the ++input file. When this option is used, unreferenced static variables ++will not be removed. This option is intended to support existing code ++which relies on a particular ordering. For new code, it is better to ++use attributes. ++ ++Enabled at level @option{-O0}. When disabled explicitly, it also imply ++@option{-fno-section-anchors} that is otherwise enabled at @option{-O0} on some ++targets. ++ ++@item -fweb ++@opindex fweb ++Constructs webs as commonly used for register allocation purposes and assign ++each web individual pseudo register. This allows the register allocation pass ++to operate on pseudos directly, but also strengthens several other optimization ++passes, such as CSE, loop optimizer and trivial dead code remover. It can, ++however, make debugging impossible, since variables will no longer stay in a ++``home register''. ++ ++Enabled by default with @option{-funroll-loops}. ++ ++@item -fwhole-program ++@opindex fwhole-program ++Assume that the current compilation unit represents whole program being ++compiled. All public functions and variables with the exception of @code{main} ++and those merged by attribute @code{externally_visible} become static functions ++and in a affect gets more aggressively optimized by interprocedural optimizers. ++While this option is equivalent to proper use of @code{static} keyword for ++programs consisting of single file, in combination with option ++@option{--combine} this flag can be used to compile most of smaller scale C ++programs since the functions and variables become local for the whole combined ++compilation unit, not for the single source file itself. ++ ++This option is not supported for Fortran programs. ++ ++@item -fcprop-registers ++@opindex fcprop-registers ++After register allocation and post-register allocation instruction splitting, ++we perform a copy-propagation pass to try to reduce scheduling dependencies ++and occasionally eliminate the copy. ++ ++Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}. ++ ++@item -fprofile-correction ++@opindex fprofile-correction ++Profiles collected using an instrumented binary for multi-threaded programs may ++be inconsistent due to missed counter updates. When this option is specified, ++GCC will use heuristics to correct or smooth out such inconsistencies. By ++default, GCC will emit an error message when an inconsistent profile is detected. ++ ++@item -fprofile-dir=@var{path} ++@opindex fprofile-dir ++ ++Set the directory to search the profile data files in to @var{path}. ++This option affects only the profile data generated by ++@option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs} ++and used by @option{-fprofile-use} and @option{-fbranch-probabilities} ++and its related options. ++By default, GCC will use the current directory as @var{path} ++thus the profile data file will appear in the same directory as the object file. ++ ++@item -fprofile-generate ++@itemx -fprofile-generate=@var{path} ++@opindex fprofile-generate ++ ++Enable options usually used for instrumenting application to produce ++profile useful for later recompilation with profile feedback based ++optimization. You must use @option{-fprofile-generate} both when ++compiling and when linking your program. ++ ++The following options are enabled: @code{-fprofile-arcs}, @code{-fprofile-values}, @code{-fvpt}. ++ ++If @var{path} is specified, GCC will look at the @var{path} to find ++the profile feedback data files. See @option{-fprofile-dir}. ++ ++@item -fprofile-use ++@itemx -fprofile-use=@var{path} ++@opindex fprofile-use ++Enable profile feedback directed optimizations, and optimizations ++generally profitable only with profile feedback available. ++ ++The following options are enabled: @code{-fbranch-probabilities}, @code{-fvpt}, ++@code{-funroll-loops}, @code{-fpeel-loops}, @code{-ftracer} ++ ++By default, GCC emits an error message if the feedback profiles do not ++match the source code. This error can be turned into a warning by using ++@option{-Wcoverage-mismatch}. Note this may result in poorly optimized ++code. ++ ++If @var{path} is specified, GCC will look at the @var{path} to find ++the profile feedback data files. See @option{-fprofile-dir}. ++@end table ++ ++The following options control compiler behavior regarding floating ++point arithmetic. These options trade off between speed and ++correctness. All must be specifically enabled. ++ ++@table @gcctabopt ++@item -ffloat-store ++@opindex ffloat-store ++Do not store floating point variables in registers, and inhibit other ++options that might change whether a floating point value is taken from a ++register or memory. ++ ++@cindex floating point precision ++This option prevents undesirable excess precision on machines such as ++the 68000 where the floating registers (of the 68881) keep more ++precision than a @code{double} is supposed to have. Similarly for the ++x86 architecture. For most programs, the excess precision does only ++good, but a few programs rely on the precise definition of IEEE floating ++point. Use @option{-ffloat-store} for such programs, after modifying ++them to store all pertinent intermediate computations into variables. ++ ++@item -ffast-math ++@opindex ffast-math ++Sets @option{-fno-math-errno}, @option{-funsafe-math-optimizations}, ++@option{-ffinite-math-only}, @option{-fno-rounding-math}, ++@option{-fno-signaling-nans} and @option{-fcx-limited-range}. ++ ++This option causes the preprocessor macro @code{__FAST_MATH__} to be defined. ++ ++This option is not turned on by any @option{-O} option since ++it can result in incorrect output for programs which depend on ++an exact implementation of IEEE or ISO rules/specifications for ++math functions. It may, however, yield faster code for programs ++that do not require the guarantees of these specifications. ++ ++@item -fno-math-errno ++@opindex fno-math-errno ++Do not set ERRNO after calling math functions that are executed ++with a single instruction, e.g., sqrt. A program that relies on ++IEEE exceptions for math error handling may want to use this flag ++for speed while maintaining IEEE arithmetic compatibility. ++ ++This option is not turned on by any @option{-O} option since ++it can result in incorrect output for programs which depend on ++an exact implementation of IEEE or ISO rules/specifications for ++math functions. It may, however, yield faster code for programs ++that do not require the guarantees of these specifications. ++ ++The default is @option{-fmath-errno}. ++ ++On Darwin systems, the math library never sets @code{errno}. There is ++therefore no reason for the compiler to consider the possibility that ++it might, and @option{-fno-math-errno} is the default. ++ ++@item -funsafe-math-optimizations ++@opindex funsafe-math-optimizations ++ ++Allow optimizations for floating-point arithmetic that (a) assume ++that arguments and results are valid and (b) may violate IEEE or ++ANSI standards. When used at link-time, it may include libraries ++or startup files that change the default FPU control word or other ++similar optimizations. ++ ++This option is not turned on by any @option{-O} option since ++it can result in incorrect output for programs which depend on ++an exact implementation of IEEE or ISO rules/specifications for ++math functions. It may, however, yield faster code for programs ++that do not require the guarantees of these specifications. ++Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math}, ++@option{-fassociative-math} and @option{-freciprocal-math}. ++ ++The default is @option{-fno-unsafe-math-optimizations}. ++ ++@item -fassociative-math ++@opindex fassociative-math ++ ++Allow re-association of operands in series of floating-point operations. ++This violates the ISO C and C++ language standard by possibly changing ++computation result. NOTE: re-ordering may change the sign of zero as ++well as ignore NaNs and inhibit or create underflow or overflow (and ++thus cannot be used on a code which relies on rounding behavior like ++@code{(x + 2**52) - 2**52)}. May also reorder floating-point comparisons ++and thus may not be used when ordered comparisons are required. ++This option requires that both @option{-fno-signed-zeros} and ++@option{-fno-trapping-math} be in effect. Moreover, it doesn't make ++much sense with @option{-frounding-math}. ++ ++The default is @option{-fno-associative-math}. ++ ++@item -freciprocal-math ++@opindex freciprocal-math ++ ++Allow the reciprocal of a value to be used instead of dividing by ++the value if this enables optimizations. For example @code{x / y} ++can be replaced with @code{x * (1/y)} which is useful if @code{(1/y)} ++is subject to common subexpression elimination. Note that this loses ++precision and increases the number of flops operating on the value. ++ ++The default is @option{-fno-reciprocal-math}. ++ ++@item -ffinite-math-only ++@opindex ffinite-math-only ++Allow optimizations for floating-point arithmetic that assume ++that arguments and results are not NaNs or +-Infs. ++ ++This option is not turned on by any @option{-O} option since ++it can result in incorrect output for programs which depend on ++an exact implementation of IEEE or ISO rules/specifications for ++math functions. It may, however, yield faster code for programs ++that do not require the guarantees of these specifications. ++ ++The default is @option{-fno-finite-math-only}. ++ ++@item -fno-signed-zeros ++@opindex fno-signed-zeros ++Allow optimizations for floating point arithmetic that ignore the ++signedness of zero. IEEE arithmetic specifies the behavior of ++distinct +0.0 and @minus{}0.0 values, which then prohibits simplification ++of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}). ++This option implies that the sign of a zero result isn't significant. ++ ++The default is @option{-fsigned-zeros}. ++ ++@item -fno-trapping-math ++@opindex fno-trapping-math ++Compile code assuming that floating-point operations cannot generate ++user-visible traps. These traps include division by zero, overflow, ++underflow, inexact result and invalid operation. This option requires ++that @option{-fno-signaling-nans} be in effect. Setting this option may ++allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example. ++ ++This option should never be turned on by any @option{-O} option since ++it can result in incorrect output for programs which depend on ++an exact implementation of IEEE or ISO rules/specifications for ++math functions. ++ ++The default is @option{-ftrapping-math}. ++ ++@item -frounding-math ++@opindex frounding-math ++Disable transformations and optimizations that assume default floating ++point rounding behavior. This is round-to-zero for all floating point ++to integer conversions, and round-to-nearest for all other arithmetic ++truncations. This option should be specified for programs that change ++the FP rounding mode dynamically, or that may be executed with a ++non-default rounding mode. This option disables constant folding of ++floating point expressions at compile-time (which may be affected by ++rounding mode) and arithmetic transformations that are unsafe in the ++presence of sign-dependent rounding modes. ++ ++The default is @option{-fno-rounding-math}. ++ ++This option is experimental and does not currently guarantee to ++disable all GCC optimizations that are affected by rounding mode. ++Future versions of GCC may provide finer control of this setting ++using C99's @code{FENV_ACCESS} pragma. This command line option ++will be used to specify the default state for @code{FENV_ACCESS}. ++ ++@item -frtl-abstract-sequences ++@opindex frtl-abstract-sequences ++It is a size optimization method. This option is to find identical ++sequences of code, which can be turned into pseudo-procedures and ++then replace all occurrences with calls to the newly created ++subroutine. It is kind of an opposite of @option{-finline-functions}. ++This optimization runs at RTL level. ++ ++@item -fsignaling-nans ++@opindex fsignaling-nans ++Compile code assuming that IEEE signaling NaNs may generate user-visible ++traps during floating-point operations. Setting this option disables ++optimizations that may change the number of exceptions visible with ++signaling NaNs. This option implies @option{-ftrapping-math}. ++ ++This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to ++be defined. ++ ++The default is @option{-fno-signaling-nans}. ++ ++This option is experimental and does not currently guarantee to ++disable all GCC optimizations that affect signaling NaN behavior. ++ ++@item -fsingle-precision-constant ++@opindex fsingle-precision-constant ++Treat floating point constant as single precision constant instead of ++implicitly converting it to double precision constant. ++ ++@item -fcx-limited-range ++@opindex fcx-limited-range ++When enabled, this option states that a range reduction step is not ++needed when performing complex division. Also, there is no checking ++whether the result of a complex multiplication or division is @code{NaN +++ I*NaN}, with an attempt to rescue the situation in that case. The ++default is @option{-fno-cx-limited-range}, but is enabled by ++@option{-ffast-math}. ++ ++This option controls the default setting of the ISO C99 ++@code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to ++all languages. ++ ++@item -fcx-fortran-rules ++@opindex fcx-fortran-rules ++Complex multiplication and division follow Fortran rules. Range ++reduction is done as part of complex division, but there is no checking ++whether the result of a complex multiplication or division is @code{NaN +++ I*NaN}, with an attempt to rescue the situation in that case. ++ ++The default is @option{-fno-cx-fortran-rules}. ++ ++@end table ++ ++The following options control optimizations that may improve ++performance, but are not enabled by any @option{-O} options. This ++section includes experimental options that may produce broken code. ++ ++@table @gcctabopt ++@item -fbranch-probabilities ++@opindex fbranch-probabilities ++After running a program compiled with @option{-fprofile-arcs} ++(@pxref{Debugging Options,, Options for Debugging Your Program or ++@command{gcc}}), you can compile it a second time using ++@option{-fbranch-probabilities}, to improve optimizations based on ++the number of times each branch was taken. When the program ++compiled with @option{-fprofile-arcs} exits it saves arc execution ++counts to a file called @file{@var{sourcename}.gcda} for each source ++file. The information in this data file is very dependent on the ++structure of the generated code, so you must use the same source code ++and the same optimization options for both compilations. ++ ++With @option{-fbranch-probabilities}, GCC puts a ++@samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}. ++These can be used to improve optimization. Currently, they are only ++used in one place: in @file{reorg.c}, instead of guessing which path a ++branch is mostly to take, the @samp{REG_BR_PROB} values are used to ++exactly determine which path is taken more often. ++ ++@item -fprofile-values ++@opindex fprofile-values ++If combined with @option{-fprofile-arcs}, it adds code so that some ++data about values of expressions in the program is gathered. ++ ++With @option{-fbranch-probabilities}, it reads back the data gathered ++from profiling values of expressions and adds @samp{REG_VALUE_PROFILE} ++notes to instructions for their later usage in optimizations. ++ ++Enabled with @option{-fprofile-generate} and @option{-fprofile-use}. ++ ++@item -fvpt ++@opindex fvpt ++If combined with @option{-fprofile-arcs}, it instructs the compiler to add ++a code to gather information about values of expressions. ++ ++With @option{-fbranch-probabilities}, it reads back the data gathered ++and actually performs the optimizations based on them. ++Currently the optimizations include specialization of division operation ++using the knowledge about the value of the denominator. ++ ++@item -frename-registers ++@opindex frename-registers ++Attempt to avoid false dependencies in scheduled code by making use ++of registers left over after register allocation. This optimization ++will most benefit processors with lots of registers. Depending on the ++debug information format adopted by the target, however, it can ++make debugging impossible, since variables will no longer stay in ++a ``home register''. ++ ++Enabled by default with @option{-funroll-loops}. ++ ++@item -ftracer ++@opindex ftracer ++Perform tail duplication to enlarge superblock size. This transformation ++simplifies the control flow of the function allowing other optimizations to do ++better job. ++ ++Enabled with @option{-fprofile-use}. ++ ++@item -funroll-loops ++@opindex funroll-loops ++Unroll loops whose number of iterations can be determined at compile time or ++upon entry to the loop. @option{-funroll-loops} implies ++@option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}. ++It also turns on complete loop peeling (i.e.@: complete removal of loops with ++small constant number of iterations). This option makes code larger, and may ++or may not make it run faster. ++ ++Enabled with @option{-fprofile-use}. ++ ++@item -funroll-all-loops ++@opindex funroll-all-loops ++Unroll all loops, even if their number of iterations is uncertain when ++the loop is entered. This usually makes programs run more slowly. ++@option{-funroll-all-loops} implies the same options as ++@option{-funroll-loops}. ++ ++@item -fpeel-loops ++@opindex fpeel-loops ++Peels the loops for that there is enough information that they do not ++roll much (from profile feedback). It also turns on complete loop peeling ++(i.e.@: complete removal of loops with small constant number of iterations). ++ ++Enabled with @option{-fprofile-use}. ++ ++@item -fmove-loop-invariants ++@opindex fmove-loop-invariants ++Enables the loop invariant motion pass in the RTL loop optimizer. Enabled ++at level @option{-O1} ++ ++@item -funswitch-loops ++@opindex funswitch-loops ++Move branches with loop invariant conditions out of the loop, with duplicates ++of the loop on both branches (modified according to result of the condition). ++ ++@item -ffunction-sections ++@itemx -fdata-sections ++@opindex ffunction-sections ++@opindex fdata-sections ++Place each function or data item into its own section in the output ++file if the target supports arbitrary sections. The name of the ++function or the name of the data item determines the section's name ++in the output file. ++ ++Use these options on systems where the linker can perform optimizations ++to improve locality of reference in the instruction space. Most systems ++using the ELF object format and SPARC processors running Solaris 2 have ++linkers with such optimizations. AIX may have these optimizations in ++the future. ++ ++Only use these options when there are significant benefits from doing ++so. When you specify these options, the assembler and linker will ++create larger object and executable files and will also be slower. ++You will not be able to use @code{gprof} on all systems if you ++specify this option and you may have problems with debugging if ++you specify both this option and @option{-g}. ++ ++@item -fbranch-target-load-optimize ++@opindex fbranch-target-load-optimize ++Perform branch target register load optimization before prologue / epilogue ++threading. ++The use of target registers can typically be exposed only during reload, ++thus hoisting loads out of loops and doing inter-block scheduling needs ++a separate optimization pass. ++ ++@item -fbranch-target-load-optimize2 ++@opindex fbranch-target-load-optimize2 ++Perform branch target register load optimization after prologue / epilogue ++threading. ++ ++@item -fbtr-bb-exclusive ++@opindex fbtr-bb-exclusive ++When performing branch target register load optimization, don't reuse ++branch target registers in within any basic block. ++ ++@item -fstack-protector ++@opindex fstack-protector ++Emit extra code to check for buffer overflows, such as stack smashing ++attacks. This is done by adding a guard variable to functions with ++vulnerable objects. This includes functions that call alloca, and ++functions with buffers larger than 8 bytes. The guards are initialized ++when a function is entered and then checked when the function exits. ++If a guard check fails, an error message is printed and the program exits. ++ ++@item -fstack-protector-all ++@opindex fstack-protector-all ++Like @option{-fstack-protector} except that all functions are protected. ++ ++@item -fsection-anchors ++@opindex fsection-anchors ++Try to reduce the number of symbolic address calculations by using ++shared ``anchor'' symbols to address nearby objects. This transformation ++can help to reduce the number of GOT entries and GOT accesses on some ++targets. ++ ++For example, the implementation of the following function @code{foo}: ++ ++@smallexample ++static int a, b, c; ++int foo (void) @{ return a + b + c; @} ++@end smallexample ++ ++would usually calculate the addresses of all three variables, but if you ++compile it with @option{-fsection-anchors}, it will access the variables ++from a common anchor point instead. The effect is similar to the ++following pseudocode (which isn't valid C): ++ ++@smallexample ++int foo (void) ++@{ ++ register int *xr = &x; ++ return xr[&a - &x] + xr[&b - &x] + xr[&c - &x]; ++@} ++@end smallexample ++ ++Not all targets support this option. ++ ++@item --param @var{name}=@var{value} ++@opindex param ++In some places, GCC uses various constants to control the amount of ++optimization that is done. For example, GCC will not inline functions ++that contain more that a certain number of instructions. You can ++control some of these constants on the command-line using the ++@option{--param} option. ++ ++The names of specific parameters, and the meaning of the values, are ++tied to the internals of the compiler, and are subject to change ++without notice in future releases. ++ ++In each case, the @var{value} is an integer. The allowable choices for ++@var{name} are given in the following table: ++ ++@table @gcctabopt ++@item sra-max-structure-size ++The maximum structure size, in bytes, at which the scalar replacement ++of aggregates (SRA) optimization will perform block copies. The ++default value, 0, implies that GCC will select the most appropriate ++size itself. ++ ++@item sra-field-structure-ratio ++The threshold ratio (as a percentage) between instantiated fields and ++the complete structure size. We say that if the ratio of the number ++of bytes in instantiated fields to the number of bytes in the complete ++structure exceeds this parameter, then block copies are not used. The ++default is 75. ++ ++@item struct-reorg-cold-struct-ratio ++The threshold ratio (as a percentage) between a structure frequency ++and the frequency of the hottest structure in the program. This parameter ++is used by struct-reorg optimization enabled by @option{-fipa-struct-reorg}. ++We say that if the ratio of a structure frequency, calculated by profiling, ++to the hottest structure frequency in the program is less than this ++parameter, then structure reorganization is not applied to this structure. ++The default is 10. ++ ++@item predictable-branch-cost-outcome ++When branch is predicted to be taken with probability lower than this threshold ++(in percent), then it is considered well predictable. The default is 10. ++ ++@item max-crossjump-edges ++The maximum number of incoming edges to consider for crossjumping. ++The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in ++the number of edges incoming to each block. Increasing values mean ++more aggressive optimization, making the compile time increase with ++probably small improvement in executable size. ++ ++@item min-crossjump-insns ++The minimum number of instructions which must be matched at the end ++of two blocks before crossjumping will be performed on them. This ++value is ignored in the case where all instructions in the block being ++crossjumped from are matched. The default value is 5. ++ ++@item max-grow-copy-bb-insns ++The maximum code size expansion factor when copying basic blocks ++instead of jumping. The expansion is relative to a jump instruction. ++The default value is 8. ++ ++@item max-goto-duplication-insns ++The maximum number of instructions to duplicate to a block that jumps ++to a computed goto. To avoid @math{O(N^2)} behavior in a number of ++passes, GCC factors computed gotos early in the compilation process, ++and unfactors them as late as possible. Only computed jumps at the ++end of a basic blocks with no more than max-goto-duplication-insns are ++unfactored. The default value is 8. ++ ++@item max-delay-slot-insn-search ++The maximum number of instructions to consider when looking for an ++instruction to fill a delay slot. If more than this arbitrary number of ++instructions is searched, the time savings from filling the delay slot ++will be minimal so stop searching. Increasing values mean more ++aggressive optimization, making the compile time increase with probably ++small improvement in executable run time. ++ ++@item max-delay-slot-live-search ++When trying to fill delay slots, the maximum number of instructions to ++consider when searching for a block with valid live register ++information. Increasing this arbitrarily chosen value means more ++aggressive optimization, increasing the compile time. This parameter ++should be removed when the delay slot code is rewritten to maintain the ++control-flow graph. ++ ++@item max-gcse-memory ++The approximate maximum amount of memory that will be allocated in ++order to perform the global common subexpression elimination ++optimization. If more memory than specified is required, the ++optimization will not be done. ++ ++@item max-gcse-passes ++The maximum number of passes of GCSE to run. The default is 1. ++ ++@item max-pending-list-length ++The maximum number of pending dependencies scheduling will allow ++before flushing the current state and starting over. Large functions ++with few branches or calls can create excessively large lists which ++needlessly consume memory and resources. ++ ++@item max-inline-insns-single ++Several parameters control the tree inliner used in gcc. ++This number sets the maximum number of instructions (counted in GCC's ++internal representation) in a single function that the tree inliner ++will consider for inlining. This only affects functions declared ++inline and methods implemented in a class declaration (C++). ++The default value is 450. ++ ++@item max-inline-insns-auto ++When you use @option{-finline-functions} (included in @option{-O3}), ++a lot of functions that would otherwise not be considered for inlining ++by the compiler will be investigated. To those functions, a different ++(more restrictive) limit compared to functions declared inline can ++be applied. ++The default value is 90. ++ ++@item large-function-insns ++The limit specifying really large functions. For functions larger than this ++limit after inlining, inlining is constrained by ++@option{--param large-function-growth}. This parameter is useful primarily ++to avoid extreme compilation time caused by non-linear algorithms used by the ++backend. ++The default value is 2700. ++ ++@item large-function-growth ++Specifies maximal growth of large function caused by inlining in percents. ++The default value is 100 which limits large function growth to 2.0 times ++the original size. ++ ++@item large-unit-insns ++The limit specifying large translation unit. Growth caused by inlining of ++units larger than this limit is limited by @option{--param inline-unit-growth}. ++For small units this might be too tight (consider unit consisting of function A ++that is inline and B that just calls A three time. If B is small relative to ++A, the growth of unit is 300\% and yet such inlining is very sane. For very ++large units consisting of small inlineable functions however the overall unit ++growth limit is needed to avoid exponential explosion of code size. Thus for ++smaller units, the size is increased to @option{--param large-unit-insns} ++before applying @option{--param inline-unit-growth}. The default is 10000 ++ ++@item inline-unit-growth ++Specifies maximal overall growth of the compilation unit caused by inlining. ++The default value is 30 which limits unit growth to 1.3 times the original ++size. ++ ++@item ipcp-unit-growth ++Specifies maximal overall growth of the compilation unit caused by ++interprocedural constant propagation. The default value is 10 which limits ++unit growth to 1.1 times the original size. ++ ++@item large-stack-frame ++The limit specifying large stack frames. While inlining the algorithm is trying ++to not grow past this limit too much. Default value is 256 bytes. ++ ++@item large-stack-frame-growth ++Specifies maximal growth of large stack frames caused by inlining in percents. ++The default value is 1000 which limits large stack frame growth to 11 times ++the original size. ++ ++@item max-inline-insns-recursive ++@itemx max-inline-insns-recursive-auto ++Specifies maximum number of instructions out-of-line copy of self recursive inline ++function can grow into by performing recursive inlining. ++ ++For functions declared inline @option{--param max-inline-insns-recursive} is ++taken into account. For function not declared inline, recursive inlining ++happens only when @option{-finline-functions} (included in @option{-O3}) is ++enabled and @option{--param max-inline-insns-recursive-auto} is used. The ++default value is 450. ++ ++@item max-inline-recursive-depth ++@itemx max-inline-recursive-depth-auto ++Specifies maximum recursion depth used by the recursive inlining. ++ ++For functions declared inline @option{--param max-inline-recursive-depth} is ++taken into account. For function not declared inline, recursive inlining ++happens only when @option{-finline-functions} (included in @option{-O3}) is ++enabled and @option{--param max-inline-recursive-depth-auto} is used. The ++default value is 8. ++ ++@item min-inline-recursive-probability ++Recursive inlining is profitable only for function having deep recursion ++in average and can hurt for function having little recursion depth by ++increasing the prologue size or complexity of function body to other ++optimizers. ++ ++When profile feedback is available (see @option{-fprofile-generate}) the actual ++recursion depth can be guessed from probability that function will recurse via ++given call expression. This parameter limits inlining only to call expression ++whose probability exceeds given threshold (in percents). The default value is ++10. ++ ++@item inline-call-cost ++Specify cost of call instruction relative to simple arithmetics operations ++(having cost of 1). Increasing this cost disqualifies inlining of non-leaf ++functions and at the same time increases size of leaf function that is believed to ++reduce function size by being inlined. In effect it increases amount of ++inlining for code having large abstraction penalty (many functions that just ++pass the arguments to other functions) and decrease inlining for code with low ++abstraction penalty. The default value is 12. ++ ++@item min-vect-loop-bound ++The minimum number of iterations under which a loop will not get vectorized ++when @option{-ftree-vectorize} is used. The number of iterations after ++vectorization needs to be greater than the value specified by this option ++to allow vectorization. The default value is 0. ++ ++@item max-unrolled-insns ++The maximum number of instructions that a loop should have if that loop ++is unrolled, and if the loop is unrolled, it determines how many times ++the loop code is unrolled. ++ ++@item max-average-unrolled-insns ++The maximum number of instructions biased by probabilities of their execution ++that a loop should have if that loop is unrolled, and if the loop is unrolled, ++it determines how many times the loop code is unrolled. ++ ++@item max-unroll-times ++The maximum number of unrollings of a single loop. ++ ++@item max-peeled-insns ++The maximum number of instructions that a loop should have if that loop ++is peeled, and if the loop is peeled, it determines how many times ++the loop code is peeled. ++ ++@item max-peel-times ++The maximum number of peelings of a single loop. ++ ++@item max-completely-peeled-insns ++The maximum number of insns of a completely peeled loop. ++ ++@item max-completely-peel-times ++The maximum number of iterations of a loop to be suitable for complete peeling. ++ ++@item max-completely-peel-loop-nest-depth ++The maximum depth of a loop nest suitable for complete peeling. ++ ++@item max-unswitch-insns ++The maximum number of insns of an unswitched loop. ++ ++@item max-unswitch-level ++The maximum number of branches unswitched in a single loop. ++ ++@item lim-expensive ++The minimum cost of an expensive expression in the loop invariant motion. ++ ++@item iv-consider-all-candidates-bound ++Bound on number of candidates for induction variables below that ++all candidates are considered for each use in induction variable ++optimizations. Only the most relevant candidates are considered ++if there are more candidates, to avoid quadratic time complexity. ++ ++@item iv-max-considered-uses ++The induction variable optimizations give up on loops that contain more ++induction variable uses. ++ ++@item iv-always-prune-cand-set-bound ++If number of candidates in the set is smaller than this value, ++we always try to remove unnecessary ivs from the set during its ++optimization when a new iv is added to the set. ++ ++@item scev-max-expr-size ++Bound on size of expressions used in the scalar evolutions analyzer. ++Large expressions slow the analyzer. ++ ++@item omega-max-vars ++The maximum number of variables in an Omega constraint system. ++The default value is 128. ++ ++@item omega-max-geqs ++The maximum number of inequalities in an Omega constraint system. ++The default value is 256. ++ ++@item omega-max-eqs ++The maximum number of equalities in an Omega constraint system. ++The default value is 128. ++ ++@item omega-max-wild-cards ++The maximum number of wildcard variables that the Omega solver will ++be able to insert. The default value is 18. ++ ++@item omega-hash-table-size ++The size of the hash table in the Omega solver. The default value is ++550. ++ ++@item omega-max-keys ++The maximal number of keys used by the Omega solver. The default ++value is 500. ++ ++@item omega-eliminate-redundant-constraints ++When set to 1, use expensive methods to eliminate all redundant ++constraints. The default value is 0. ++ ++@item vect-max-version-for-alignment-checks ++The maximum number of runtime checks that can be performed when ++doing loop versioning for alignment in the vectorizer. See option ++ftree-vect-loop-version for more information. ++ ++@item vect-max-version-for-alias-checks ++The maximum number of runtime checks that can be performed when ++doing loop versioning for alias in the vectorizer. See option ++ftree-vect-loop-version for more information. ++ ++@item max-iterations-to-track ++ ++The maximum number of iterations of a loop the brute force algorithm ++for analysis of # of iterations of the loop tries to evaluate. ++ ++@item hot-bb-count-fraction ++Select fraction of the maximal count of repetitions of basic block in program ++given basic block needs to have to be considered hot. ++ ++@item hot-bb-frequency-fraction ++Select fraction of the maximal frequency of executions of basic block in ++function given basic block needs to have to be considered hot ++ ++@item max-predicted-iterations ++The maximum number of loop iterations we predict statically. This is useful ++in cases where function contain single loop with known bound and other loop ++with unknown. We predict the known number of iterations correctly, while ++the unknown number of iterations average to roughly 10. This means that the ++loop without bounds would appear artificially cold relative to the other one. ++ ++@item align-threshold ++ ++Select fraction of the maximal frequency of executions of basic block in ++function given basic block will get aligned. ++ ++@item align-loop-iterations ++ ++A loop expected to iterate at lest the selected number of iterations will get ++aligned. ++ ++@item tracer-dynamic-coverage ++@itemx tracer-dynamic-coverage-feedback ++ ++This value is used to limit superblock formation once the given percentage of ++executed instructions is covered. This limits unnecessary code size ++expansion. ++ ++The @option{tracer-dynamic-coverage-feedback} is used only when profile ++feedback is available. The real profiles (as opposed to statically estimated ++ones) are much less balanced allowing the threshold to be larger value. ++ ++@item tracer-max-code-growth ++Stop tail duplication once code growth has reached given percentage. This is ++rather hokey argument, as most of the duplicates will be eliminated later in ++cross jumping, so it may be set to much higher values than is the desired code ++growth. ++ ++@item tracer-min-branch-ratio ++ ++Stop reverse growth when the reverse probability of best edge is less than this ++threshold (in percent). ++ ++@item tracer-min-branch-ratio ++@itemx tracer-min-branch-ratio-feedback ++ ++Stop forward growth if the best edge do have probability lower than this ++threshold. ++ ++Similarly to @option{tracer-dynamic-coverage} two values are present, one for ++compilation for profile feedback and one for compilation without. The value ++for compilation with profile feedback needs to be more conservative (higher) in ++order to make tracer effective. ++ ++@item max-cse-path-length ++ ++Maximum number of basic blocks on path that cse considers. The default is 10. ++ ++@item max-cse-insns ++The maximum instructions CSE process before flushing. The default is 1000. ++ ++@item max-aliased-vops ++ ++Maximum number of virtual operands per function allowed to represent ++aliases before triggering the alias partitioning heuristic. Alias ++partitioning reduces compile times and memory consumption needed for ++aliasing at the expense of precision loss in alias information. The ++default value for this parameter is 100 for -O1, 500 for -O2 and 1000 ++for -O3. ++ ++Notice that if a function contains more memory statements than the ++value of this parameter, it is not really possible to achieve this ++reduction. In this case, the compiler will use the number of memory ++statements as the value for @option{max-aliased-vops}. ++ ++@item avg-aliased-vops ++ ++Average number of virtual operands per statement allowed to represent ++aliases before triggering the alias partitioning heuristic. This ++works in conjunction with @option{max-aliased-vops}. If a function ++contains more than @option{max-aliased-vops} virtual operators, then ++memory symbols will be grouped into memory partitions until either the ++total number of virtual operators is below @option{max-aliased-vops} ++or the average number of virtual operators per memory statement is ++below @option{avg-aliased-vops}. The default value for this parameter ++is 1 for -O1 and -O2, and 3 for -O3. ++ ++@item ggc-min-expand ++ ++GCC uses a garbage collector to manage its own memory allocation. This ++parameter specifies the minimum percentage by which the garbage ++collector's heap should be allowed to expand between collections. ++Tuning this may improve compilation speed; it has no effect on code ++generation. ++ ++The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when ++RAM >= 1GB@. If @code{getrlimit} is available, the notion of "RAM" is ++the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If ++GCC is not able to calculate RAM on a particular platform, the lower ++bound of 30% is used. Setting this parameter and ++@option{ggc-min-heapsize} to zero causes a full collection to occur at ++every opportunity. This is extremely slow, but can be useful for ++debugging. ++ ++@item ggc-min-heapsize ++ ++Minimum size of the garbage collector's heap before it begins bothering ++to collect garbage. The first collection occurs after the heap expands ++by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again, ++tuning this may improve compilation speed, and has no effect on code ++generation. ++ ++The default is the smaller of RAM/8, RLIMIT_RSS, or a limit which ++tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but ++with a lower bound of 4096 (four megabytes) and an upper bound of ++131072 (128 megabytes). If GCC is not able to calculate RAM on a ++particular platform, the lower bound is used. Setting this parameter ++very large effectively disables garbage collection. Setting this ++parameter and @option{ggc-min-expand} to zero causes a full collection ++to occur at every opportunity. ++ ++@item max-reload-search-insns ++The maximum number of instruction reload should look backward for equivalent ++register. Increasing values mean more aggressive optimization, making the ++compile time increase with probably slightly better performance. The default ++value is 100. ++ ++@item max-cselib-memory-locations ++The maximum number of memory locations cselib should take into account. ++Increasing values mean more aggressive optimization, making the compile time ++increase with probably slightly better performance. The default value is 500. ++ ++@item reorder-blocks-duplicate ++@itemx reorder-blocks-duplicate-feedback ++ ++Used by basic block reordering pass to decide whether to use unconditional ++branch or duplicate the code on its destination. Code is duplicated when its ++estimated size is smaller than this value multiplied by the estimated size of ++unconditional jump in the hot spots of the program. ++ ++The @option{reorder-block-duplicate-feedback} is used only when profile ++feedback is available and may be set to higher values than ++@option{reorder-block-duplicate} since information about the hot spots is more ++accurate. ++ ++@item max-sched-ready-insns ++The maximum number of instructions ready to be issued the scheduler should ++consider at any given time during the first scheduling pass. Increasing ++values mean more thorough searches, making the compilation time increase ++with probably little benefit. The default value is 100. ++ ++@item max-sched-region-blocks ++The maximum number of blocks in a region to be considered for ++interblock scheduling. The default value is 10. ++ ++@item max-pipeline-region-blocks ++The maximum number of blocks in a region to be considered for ++pipelining in the selective scheduler. The default value is 15. ++ ++@item max-sched-region-insns ++The maximum number of insns in a region to be considered for ++interblock scheduling. The default value is 100. ++ ++@item max-pipeline-region-insns ++The maximum number of insns in a region to be considered for ++pipelining in the selective scheduler. The default value is 200. ++ ++@item min-spec-prob ++The minimum probability (in percents) of reaching a source block ++for interblock speculative scheduling. The default value is 40. ++ ++@item max-sched-extend-regions-iters ++The maximum number of iterations through CFG to extend regions. ++0 - disable region extension, ++N - do at most N iterations. ++The default value is 0. ++ ++@item max-sched-insn-conflict-delay ++The maximum conflict delay for an insn to be considered for speculative motion. ++The default value is 3. ++ ++@item sched-spec-prob-cutoff ++The minimal probability of speculation success (in percents), so that ++speculative insn will be scheduled. ++The default value is 40. ++ ++@item sched-mem-true-dep-cost ++Minimal distance (in CPU cycles) between store and load targeting same ++memory locations. The default value is 1. ++ ++@item selsched-max-lookahead ++The maximum size of the lookahead window of selective scheduling. It is a ++depth of search for available instructions. ++The default value is 50. ++ ++@item selsched-max-sched-times ++The maximum number of times that an instruction will be scheduled during ++selective scheduling. This is the limit on the number of iterations ++through which the instruction may be pipelined. The default value is 2. ++ ++@item selsched-max-insns-to-rename ++The maximum number of best instructions in the ready list that are considered ++for renaming in the selective scheduler. The default value is 2. ++ ++@item max-last-value-rtl ++The maximum size measured as number of RTLs that can be recorded in an expression ++in combiner for a pseudo register as last known value of that register. The default ++is 10000. ++ ++@item integer-share-limit ++Small integer constants can use a shared data structure, reducing the ++compiler's memory usage and increasing its speed. This sets the maximum ++value of a shared integer constant. The default value is 256. ++ ++@item min-virtual-mappings ++Specifies the minimum number of virtual mappings in the incremental ++SSA updater that should be registered to trigger the virtual mappings ++heuristic defined by virtual-mappings-ratio. The default value is ++100. ++ ++@item virtual-mappings-ratio ++If the number of virtual mappings is virtual-mappings-ratio bigger ++than the number of virtual symbols to be updated, then the incremental ++SSA updater switches to a full update for those symbols. The default ++ratio is 3. ++ ++@item ssp-buffer-size ++The minimum size of buffers (i.e.@: arrays) that will receive stack smashing ++protection when @option{-fstack-protection} is used. ++ ++@item max-jump-thread-duplication-stmts ++Maximum number of statements allowed in a block that needs to be ++duplicated when threading jumps. ++ ++@item max-fields-for-field-sensitive ++Maximum number of fields in a structure we will treat in ++a field sensitive manner during pointer analysis. The default is zero ++for -O0, and -O1 and 100 for -Os, -O2, and -O3. ++ ++@item prefetch-latency ++Estimate on average number of instructions that are executed before ++prefetch finishes. The distance we prefetch ahead is proportional ++to this constant. Increasing this number may also lead to less ++streams being prefetched (see @option{simultaneous-prefetches}). ++ ++@item simultaneous-prefetches ++Maximum number of prefetches that can run at the same time. ++ ++@item l1-cache-line-size ++The size of cache line in L1 cache, in bytes. ++ ++@item l1-cache-size ++The size of L1 cache, in kilobytes. ++ ++@item l2-cache-size ++The size of L2 cache, in kilobytes. ++ ++@item use-canonical-types ++Whether the compiler should use the ``canonical'' type system. By ++default, this should always be 1, which uses a more efficient internal ++mechanism for comparing types in C++ and Objective-C++. However, if ++bugs in the canonical type system are causing compilation failures, ++set this value to 0 to disable canonical types. ++ ++@item switch-conversion-max-branch-ratio ++Switch initialization conversion will refuse to create arrays that are ++bigger than @option{switch-conversion-max-branch-ratio} times the number of ++branches in the switch. ++ ++@item max-partial-antic-length ++Maximum length of the partial antic set computed during the tree ++partial redundancy elimination optimization (@option{-ftree-pre}) when ++optimizing at @option{-O3} and above. For some sorts of source code ++the enhanced partial redundancy elimination optimization can run away, ++consuming all of the memory available on the host machine. This ++parameter sets a limit on the length of the sets that are computed, ++which prevents the runaway behavior. Setting a value of 0 for ++this parameter will allow an unlimited set length. ++ ++@item sccvn-max-scc-size ++Maximum size of a strongly connected component (SCC) during SCCVN ++processing. If this limit is hit, SCCVN processing for the whole ++function will not be done and optimizations depending on it will ++be disabled. The default maximum SCC size is 10000. ++ ++@item ira-max-loops-num ++IRA uses a regional register allocation by default. If a function ++contains loops more than number given by the parameter, only at most ++given number of the most frequently executed loops will form regions ++for the regional register allocation. The default value of the ++parameter is 100. ++ ++@item ira-max-conflict-table-size ++Although IRA uses a sophisticated algorithm of compression conflict ++table, the table can be still big for huge functions. If the conflict ++table for a function could be more than size in MB given by the ++parameter, the conflict table is not built and faster, simpler, and ++lower quality register allocation algorithm will be used. The ++algorithm do not use pseudo-register conflicts. The default value of ++the parameter is 2000. ++ ++@item loop-invariant-max-bbs-in-loop ++Loop invariant motion can be very expensive, both in compile time and ++in amount of needed compile time memory, with very large loops. Loops ++with more basic blocks than this parameter won't have loop invariant ++motion optimization performed on them. The default value of the ++parameter is 1000 for -O1 and 10000 for -O2 and above. ++ ++@end table ++@end table ++ ++@node Preprocessor Options ++@section Options Controlling the Preprocessor ++@cindex preprocessor options ++@cindex options, preprocessor ++ ++These options control the C preprocessor, which is run on each C source ++file before actual compilation. ++ ++If you use the @option{-E} option, nothing is done except preprocessing. ++Some of these options make sense only together with @option{-E} because ++they cause the preprocessor output to be unsuitable for actual ++compilation. ++ ++@table @gcctabopt ++@item -Wp,@var{option} ++@opindex Wp ++You can use @option{-Wp,@var{option}} to bypass the compiler driver ++and pass @var{option} directly through to the preprocessor. If ++@var{option} contains commas, it is split into multiple options at the ++commas. However, many options are modified, translated or interpreted ++by the compiler driver before being passed to the preprocessor, and ++@option{-Wp} forcibly bypasses this phase. The preprocessor's direct ++interface is undocumented and subject to change, so whenever possible ++you should avoid using @option{-Wp} and let the driver handle the ++options instead. ++ ++@item -Xpreprocessor @var{option} ++@opindex Xpreprocessor ++Pass @var{option} as an option to the preprocessor. You can use this to ++supply system-specific preprocessor options which GCC does not know how to ++recognize. ++ ++If you want to pass an option that takes an argument, you must use ++@option{-Xpreprocessor} twice, once for the option and once for the argument. ++@end table ++ ++@include cppopts.texi ++ ++@node Assembler Options ++@section Passing Options to the Assembler ++ ++@c prevent bad page break with this line ++You can pass options to the assembler. ++ ++@table @gcctabopt ++@item -Wa,@var{option} ++@opindex Wa ++Pass @var{option} as an option to the assembler. If @var{option} ++contains commas, it is split into multiple options at the commas. ++ ++@item -Xassembler @var{option} ++@opindex Xassembler ++Pass @var{option} as an option to the assembler. You can use this to ++supply system-specific assembler options which GCC does not know how to ++recognize. ++ ++If you want to pass an option that takes an argument, you must use ++@option{-Xassembler} twice, once for the option and once for the argument. ++ ++@end table ++ ++@node Link Options ++@section Options for Linking ++@cindex link options ++@cindex options, linking ++ ++These options come into play when the compiler links object files into ++an executable output file. They are meaningless if the compiler is ++not doing a link step. ++ ++@table @gcctabopt ++@cindex file names ++@item @var{object-file-name} ++A file name that does not end in a special recognized suffix is ++considered to name an object file or library. (Object files are ++distinguished from libraries by the linker according to the file ++contents.) If linking is done, these object files are used as input ++to the linker. ++ ++@item -c ++@itemx -S ++@itemx -E ++@opindex c ++@opindex S ++@opindex E ++If any of these options is used, then the linker is not run, and ++object file names should not be used as arguments. @xref{Overall ++Options}. ++ ++@cindex Libraries ++@item -l@var{library} ++@itemx -l @var{library} ++@opindex l ++Search the library named @var{library} when linking. (The second ++alternative with the library as a separate argument is only for ++POSIX compliance and is not recommended.) ++ ++It makes a difference where in the command you write this option; the ++linker searches and processes libraries and object files in the order they ++are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z} ++after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers ++to functions in @samp{z}, those functions may not be loaded. ++ ++The linker searches a standard list of directories for the library, ++which is actually a file named @file{lib@var{library}.a}. The linker ++then uses this file as if it had been specified precisely by name. ++ ++The directories searched include several standard system directories ++plus any that you specify with @option{-L}. ++ ++Normally the files found this way are library files---archive files ++whose members are object files. The linker handles an archive file by ++scanning through it for members which define symbols that have so far ++been referenced but not defined. But if the file that is found is an ++ordinary object file, it is linked in the usual fashion. The only ++difference between using an @option{-l} option and specifying a file name ++is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a} ++and searches several directories. ++ ++@item -lobjc ++@opindex lobjc ++You need this special case of the @option{-l} option in order to ++link an Objective-C or Objective-C++ program. ++ ++@item -nostartfiles ++@opindex nostartfiles ++Do not use the standard system startup files when linking. ++The standard system libraries are used normally, unless @option{-nostdlib} ++or @option{-nodefaultlibs} is used. ++ ++@item -nodefaultlibs ++@opindex nodefaultlibs ++Do not use the standard system libraries when linking. ++Only the libraries you specify will be passed to the linker. ++The standard startup files are used normally, unless @option{-nostartfiles} ++is used. The compiler may generate calls to @code{memcmp}, ++@code{memset}, @code{memcpy} and @code{memmove}. ++These entries are usually resolved by entries in ++libc. These entry points should be supplied through some other ++mechanism when this option is specified. ++ ++@item -nostdlib ++@opindex nostdlib ++Do not use the standard system startup files or libraries when linking. ++No startup files and only the libraries you specify will be passed to ++the linker. The compiler may generate calls to @code{memcmp}, @code{memset}, ++@code{memcpy} and @code{memmove}. ++These entries are usually resolved by entries in ++libc. These entry points should be supplied through some other ++mechanism when this option is specified. ++ ++@cindex @option{-lgcc}, use with @option{-nostdlib} ++@cindex @option{-nostdlib} and unresolved references ++@cindex unresolved references and @option{-nostdlib} ++@cindex @option{-lgcc}, use with @option{-nodefaultlibs} ++@cindex @option{-nodefaultlibs} and unresolved references ++@cindex unresolved references and @option{-nodefaultlibs} ++One of the standard libraries bypassed by @option{-nostdlib} and ++@option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines ++that GCC uses to overcome shortcomings of particular machines, or special ++needs for some languages. ++(@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler ++Collection (GCC) Internals}, ++for more discussion of @file{libgcc.a}.) ++In most cases, you need @file{libgcc.a} even when you want to avoid ++other standard libraries. In other words, when you specify @option{-nostdlib} ++or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well. ++This ensures that you have no unresolved references to internal GCC ++library subroutines. (For example, @samp{__main}, used to ensure C++ ++constructors will be called; @pxref{Collect2,,@code{collect2}, gccint, ++GNU Compiler Collection (GCC) Internals}.) ++ ++@item -pie ++@opindex pie ++Produce a position independent executable on targets which support it. ++For predictable results, you must also specify the same set of options ++that were used to generate code (@option{-fpie}, @option{-fPIE}, ++or model suboptions) when you specify this option. ++ ++@item -rdynamic ++@opindex rdynamic ++Pass the flag @option{-export-dynamic} to the ELF linker, on targets ++that support it. This instructs the linker to add all symbols, not ++only used ones, to the dynamic symbol table. This option is needed ++for some uses of @code{dlopen} or to allow obtaining backtraces ++from within a program. ++ ++@item -s ++@opindex s ++Remove all symbol table and relocation information from the executable. ++ ++@item -static ++@opindex static ++On systems that support dynamic linking, this prevents linking with the shared ++libraries. On other systems, this option has no effect. ++ ++@item -shared ++@opindex shared ++Produce a shared object which can then be linked with other objects to ++form an executable. Not all systems support this option. For predictable ++results, you must also specify the same set of options that were used to ++generate code (@option{-fpic}, @option{-fPIC}, or model suboptions) ++when you specify this option.@footnote{On some systems, @samp{gcc -shared} ++needs to build supplementary stub code for constructors to work. On ++multi-libbed systems, @samp{gcc -shared} must select the correct support ++libraries to link against. Failing to supply the correct flags may lead ++to subtle defects. Supplying them in cases where they are not necessary ++is innocuous.} ++ ++@item -shared-libgcc ++@itemx -static-libgcc ++@opindex shared-libgcc ++@opindex static-libgcc ++On systems that provide @file{libgcc} as a shared library, these options ++force the use of either the shared or static version respectively. ++If no shared version of @file{libgcc} was built when the compiler was ++configured, these options have no effect. ++ ++There are several situations in which an application should use the ++shared @file{libgcc} instead of the static version. The most common ++of these is when the application wishes to throw and catch exceptions ++across different shared libraries. In that case, each of the libraries ++as well as the application itself should use the shared @file{libgcc}. ++ ++Therefore, the G++ and GCJ drivers automatically add ++@option{-shared-libgcc} whenever you build a shared library or a main ++executable, because C++ and Java programs typically use exceptions, so ++this is the right thing to do. ++ ++If, instead, you use the GCC driver to create shared libraries, you may ++find that they will not always be linked with the shared @file{libgcc}. ++If GCC finds, at its configuration time, that you have a non-GNU linker ++or a GNU linker that does not support option @option{--eh-frame-hdr}, ++it will link the shared version of @file{libgcc} into shared libraries ++by default. Otherwise, it will take advantage of the linker and optimize ++away the linking with the shared version of @file{libgcc}, linking with ++the static version of libgcc by default. This allows exceptions to ++propagate through such shared libraries, without incurring relocation ++costs at library load time. ++ ++However, if a library or main executable is supposed to throw or catch ++exceptions, you must link it using the G++ or GCJ driver, as appropriate ++for the languages used in the program, or using the option ++@option{-shared-libgcc}, such that it is linked with the shared ++@file{libgcc}. ++ ++@item -symbolic ++@opindex symbolic ++Bind references to global symbols when building a shared object. Warn ++about any unresolved references (unless overridden by the link editor ++option @samp{-Xlinker -z -Xlinker defs}). Only a few systems support ++this option. ++ ++@item -T @var{script} ++@opindex T ++@cindex linker script ++Use @var{script} as the linker script. This option is supported by most ++systems using the GNU linker. On some targets, such as bare-board ++targets without an operating system, the @option{-T} option may be required ++when linking to avoid references to undefined symbols. ++ ++@item -Xlinker @var{option} ++@opindex Xlinker ++Pass @var{option} as an option to the linker. You can use this to ++supply system-specific linker options which GCC does not know how to ++recognize. ++ ++If you want to pass an option that takes a separate argument, you must use ++@option{-Xlinker} twice, once for the option and once for the argument. ++For example, to pass @option{-assert definitions}, you must write ++@samp{-Xlinker -assert -Xlinker definitions}. It does not work to write ++@option{-Xlinker "-assert definitions"}, because this passes the entire ++string as a single argument, which is not what the linker expects. ++ ++When using the GNU linker, it is usually more convenient to pass ++arguments to linker options using the @option{@var{option}=@var{value}} ++syntax than as separate arguments. For example, you can specify ++@samp{-Xlinker -Map=output.map} rather than ++@samp{-Xlinker -Map -Xlinker output.map}. Other linkers may not support ++this syntax for command-line options. ++ ++@item -Wl,@var{option} ++@opindex Wl ++Pass @var{option} as an option to the linker. If @var{option} contains ++commas, it is split into multiple options at the commas. You can use this ++syntax to pass an argument to the option. ++For example, @samp{-Wl,-Map,output.map} passes @samp{-Map output.map} to the ++linker. When using the GNU linker, you can also get the same effect with ++@samp{-Wl,-Map=output.map}. ++ ++@item -u @var{symbol} ++@opindex u ++Pretend the symbol @var{symbol} is undefined, to force linking of ++library modules to define it. You can use @option{-u} multiple times with ++different symbols to force loading of additional library modules. ++@end table ++ ++@node Directory Options ++@section Options for Directory Search ++@cindex directory options ++@cindex options, directory search ++@cindex search path ++ ++These options specify directories to search for header files, for ++libraries and for parts of the compiler: ++ ++@table @gcctabopt ++@item -I@var{dir} ++@opindex I ++Add the directory @var{dir} to the head of the list of directories to be ++searched for header files. This can be used to override a system header ++file, substituting your own version, since these directories are ++searched before the system header file directories. However, you should ++not use this option to add directories that contain vendor-supplied ++system header files (use @option{-isystem} for that). If you use more than ++one @option{-I} option, the directories are scanned in left-to-right ++order; the standard system directories come after. ++ ++If a standard system include directory, or a directory specified with ++@option{-isystem}, is also specified with @option{-I}, the @option{-I} ++option will be ignored. The directory will still be searched but as a ++system directory at its normal position in the system include chain. ++This is to ensure that GCC's procedure to fix buggy system headers and ++the ordering for the include_next directive are not inadvertently changed. ++If you really need to change the search order for system directories, ++use the @option{-nostdinc} and/or @option{-isystem} options. ++ ++@item -iquote@var{dir} ++@opindex iquote ++Add the directory @var{dir} to the head of the list of directories to ++be searched for header files only for the case of @samp{#include ++"@var{file}"}; they are not searched for @samp{#include <@var{file}>}, ++otherwise just like @option{-I}. ++ ++@item -L@var{dir} ++@opindex L ++Add directory @var{dir} to the list of directories to be searched ++for @option{-l}. ++ ++@item -B@var{prefix} ++@opindex B ++This option specifies where to find the executables, libraries, ++include files, and data files of the compiler itself. ++ ++The compiler driver program runs one or more of the subprograms ++@file{cpp}, @file{cc1}, @file{as} and @file{ld}. It tries ++@var{prefix} as a prefix for each program it tries to run, both with and ++without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}). ++ ++For each subprogram to be run, the compiler driver first tries the ++@option{-B} prefix, if any. If that name is not found, or if @option{-B} ++was not specified, the driver tries two standard prefixes, which are ++@file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of ++those results in a file name that is found, the unmodified program ++name is searched for using the directories specified in your ++@env{PATH} environment variable. ++ ++The compiler will check to see if the path provided by the @option{-B} ++refers to a directory, and if necessary it will add a directory ++separator character at the end of the path. ++ ++@option{-B} prefixes that effectively specify directory names also apply ++to libraries in the linker, because the compiler translates these ++options into @option{-L} options for the linker. They also apply to ++includes files in the preprocessor, because the compiler translates these ++options into @option{-isystem} options for the preprocessor. In this case, ++the compiler appends @samp{include} to the prefix. ++ ++The run-time support file @file{libgcc.a} can also be searched for using ++the @option{-B} prefix, if needed. If it is not found there, the two ++standard prefixes above are tried, and that is all. The file is left ++out of the link if it is not found by those means. ++ ++Another way to specify a prefix much like the @option{-B} prefix is to use ++the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment ++Variables}. ++ ++As a special kludge, if the path provided by @option{-B} is ++@file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to ++9, then it will be replaced by @file{[dir/]include}. This is to help ++with boot-strapping the compiler. ++ ++@item -specs=@var{file} ++@opindex specs ++Process @var{file} after the compiler reads in the standard @file{specs} ++file, in order to override the defaults that the @file{gcc} driver ++program uses when determining what switches to pass to @file{cc1}, ++@file{cc1plus}, @file{as}, @file{ld}, etc. More than one ++@option{-specs=@var{file}} can be specified on the command line, and they ++are processed in order, from left to right. ++ ++@item --sysroot=@var{dir} ++@opindex sysroot ++Use @var{dir} as the logical root directory for headers and libraries. ++For example, if the compiler would normally search for headers in ++@file{/usr/include} and libraries in @file{/usr/lib}, it will instead ++search @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}. ++ ++If you use both this option and the @option{-isysroot} option, then ++the @option{--sysroot} option will apply to libraries, but the ++@option{-isysroot} option will apply to header files. ++ ++The GNU linker (beginning with version 2.16) has the necessary support ++for this option. If your linker does not support this option, the ++header file aspect of @option{--sysroot} will still work, but the ++library aspect will not. ++ ++@item -I- ++@opindex I- ++This option has been deprecated. Please use @option{-iquote} instead for ++@option{-I} directories before the @option{-I-} and remove the @option{-I-}. ++Any directories you specify with @option{-I} options before the @option{-I-} ++option are searched only for the case of @samp{#include "@var{file}"}; ++they are not searched for @samp{#include <@var{file}>}. ++ ++If additional directories are specified with @option{-I} options after ++the @option{-I-}, these directories are searched for all @samp{#include} ++directives. (Ordinarily @emph{all} @option{-I} directories are used ++this way.) ++ ++In addition, the @option{-I-} option inhibits the use of the current ++directory (where the current input file came from) as the first search ++directory for @samp{#include "@var{file}"}. There is no way to ++override this effect of @option{-I-}. With @option{-I.} you can specify ++searching the directory which was current when the compiler was ++invoked. That is not exactly the same as what the preprocessor does ++by default, but it is often satisfactory. ++ ++@option{-I-} does not inhibit the use of the standard system directories ++for header files. Thus, @option{-I-} and @option{-nostdinc} are ++independent. ++@end table ++ ++@c man end ++ ++@node Spec Files ++@section Specifying subprocesses and the switches to pass to them ++@cindex Spec Files ++ ++@command{gcc} is a driver program. It performs its job by invoking a ++sequence of other programs to do the work of compiling, assembling and ++linking. GCC interprets its command-line parameters and uses these to ++deduce which programs it should invoke, and which command-line options ++it ought to place on their command lines. This behavior is controlled ++by @dfn{spec strings}. In most cases there is one spec string for each ++program that GCC can invoke, but a few programs have multiple spec ++strings to control their behavior. The spec strings built into GCC can ++be overridden by using the @option{-specs=} command-line switch to specify ++a spec file. ++ ++@dfn{Spec files} are plaintext files that are used to construct spec ++strings. They consist of a sequence of directives separated by blank ++lines. The type of directive is determined by the first non-whitespace ++character on the line and it can be one of the following: ++ ++@table @code ++@item %@var{command} ++Issues a @var{command} to the spec file processor. The commands that can ++appear here are: ++ ++@table @code ++@item %include <@var{file}> ++@cindex %include ++Search for @var{file} and insert its text at the current point in the ++specs file. ++ ++@item %include_noerr <@var{file}> ++@cindex %include_noerr ++Just like @samp{%include}, but do not generate an error message if the include ++file cannot be found. ++ ++@item %rename @var{old_name} @var{new_name} ++@cindex %rename ++Rename the spec string @var{old_name} to @var{new_name}. ++ ++@end table ++ ++@item *[@var{spec_name}]: ++This tells the compiler to create, override or delete the named spec ++string. All lines after this directive up to the next directive or ++blank line are considered to be the text for the spec string. If this ++results in an empty string then the spec will be deleted. (Or, if the ++spec did not exist, then nothing will happened.) Otherwise, if the spec ++does not currently exist a new spec will be created. If the spec does ++exist then its contents will be overridden by the text of this ++directive, unless the first character of that text is the @samp{+} ++character, in which case the text will be appended to the spec. ++ ++@item [@var{suffix}]: ++Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive ++and up to the next directive or blank line are considered to make up the ++spec string for the indicated suffix. When the compiler encounters an ++input file with the named suffix, it will processes the spec string in ++order to work out how to compile that file. For example: ++ ++@smallexample ++.ZZ: ++z-compile -input %i ++@end smallexample ++ ++This says that any input file whose name ends in @samp{.ZZ} should be ++passed to the program @samp{z-compile}, which should be invoked with the ++command-line switch @option{-input} and with the result of performing the ++@samp{%i} substitution. (See below.) ++ ++As an alternative to providing a spec string, the text that follows a ++suffix directive can be one of the following: ++ ++@table @code ++@item @@@var{language} ++This says that the suffix is an alias for a known @var{language}. This is ++similar to using the @option{-x} command-line switch to GCC to specify a ++language explicitly. For example: ++ ++@smallexample ++.ZZ: ++@@c++ ++@end smallexample ++ ++Says that .ZZ files are, in fact, C++ source files. ++ ++@item #@var{name} ++This causes an error messages saying: ++ ++@smallexample ++@var{name} compiler not installed on this system. ++@end smallexample ++@end table ++ ++GCC already has an extensive list of suffixes built into it. ++This directive will add an entry to the end of the list of suffixes, but ++since the list is searched from the end backwards, it is effectively ++possible to override earlier entries using this technique. ++ ++@end table ++ ++GCC has the following spec strings built into it. Spec files can ++override these strings or create their own. Note that individual ++targets can also add their own spec strings to this list. ++ ++@smallexample ++asm Options to pass to the assembler ++asm_final Options to pass to the assembler post-processor ++cpp Options to pass to the C preprocessor ++cc1 Options to pass to the C compiler ++cc1plus Options to pass to the C++ compiler ++endfile Object files to include at the end of the link ++link Options to pass to the linker ++lib Libraries to include on the command line to the linker ++libgcc Decides which GCC support library to pass to the linker ++linker Sets the name of the linker ++predefines Defines to be passed to the C preprocessor ++signed_char Defines to pass to CPP to say whether @code{char} is signed ++ by default ++startfile Object files to include at the start of the link ++@end smallexample ++ ++Here is a small example of a spec file: ++ ++@smallexample ++%rename lib old_lib ++ ++*lib: ++--start-group -lgcc -lc -leval1 --end-group %(old_lib) ++@end smallexample ++ ++This example renames the spec called @samp{lib} to @samp{old_lib} and ++then overrides the previous definition of @samp{lib} with a new one. ++The new definition adds in some extra command-line options before ++including the text of the old definition. ++ ++@dfn{Spec strings} are a list of command-line options to be passed to their ++corresponding program. In addition, the spec strings can contain ++@samp{%}-prefixed sequences to substitute variable text or to ++conditionally insert text into the command line. Using these constructs ++it is possible to generate quite complex command lines. ++ ++Here is a table of all defined @samp{%}-sequences for spec ++strings. Note that spaces are not generated automatically around the ++results of expanding these sequences. Therefore you can concatenate them ++together or combine them with constant text in a single argument. ++ ++@table @code ++@item %% ++Substitute one @samp{%} into the program name or argument. ++ ++@item %i ++Substitute the name of the input file being processed. ++ ++@item %b ++Substitute the basename of the input file being processed. ++This is the substring up to (and not including) the last period ++and not including the directory. ++ ++@item %B ++This is the same as @samp{%b}, but include the file suffix (text after ++the last period). ++ ++@item %d ++Marks the argument containing or following the @samp{%d} as a ++temporary file name, so that that file will be deleted if GCC exits ++successfully. Unlike @samp{%g}, this contributes no text to the ++argument. ++ ++@item %g@var{suffix} ++Substitute a file name that has suffix @var{suffix} and is chosen ++once per compilation, and mark the argument in the same way as ++@samp{%d}. To reduce exposure to denial-of-service attacks, the file ++name is now chosen in a way that is hard to predict even when previously ++chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s} ++might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches ++the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is ++treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g} ++was simply substituted with a file name chosen once per compilation, ++without regard to any appended suffix (which was therefore treated ++just like ordinary text), making such attacks more likely to succeed. ++ ++@item %u@var{suffix} ++Like @samp{%g}, but generates a new temporary file name even if ++@samp{%u@var{suffix}} was already seen. ++ ++@item %U@var{suffix} ++Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a ++new one if there is no such last file name. In the absence of any ++@samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share ++the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s} ++would involve the generation of two distinct file names, one ++for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was ++simply substituted with a file name chosen for the previous @samp{%u}, ++without regard to any appended suffix. ++ ++@item %j@var{suffix} ++Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is ++writable, and if save-temps is off; otherwise, substitute the name ++of a temporary file, just like @samp{%u}. This temporary file is not ++meant for communication between processes, but rather as a junk ++disposal mechanism. ++ ++@item %|@var{suffix} ++@itemx %m@var{suffix} ++Like @samp{%g}, except if @option{-pipe} is in effect. In that case ++@samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at ++all. These are the two most common ways to instruct a program that it ++should read from standard input or write to standard output. If you ++need something more elaborate you can use an @samp{%@{pipe:@code{X}@}} ++construct: see for example @file{f/lang-specs.h}. ++ ++@item %.@var{SUFFIX} ++Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args ++when it is subsequently output with @samp{%*}. @var{SUFFIX} is ++terminated by the next space or %. ++ ++@item %w ++Marks the argument containing or following the @samp{%w} as the ++designated output file of this compilation. This puts the argument ++into the sequence of arguments that @samp{%o} will substitute later. ++ ++@item %o ++Substitutes the names of all the output files, with spaces ++automatically placed around them. You should write spaces ++around the @samp{%o} as well or the results are undefined. ++@samp{%o} is for use in the specs for running the linker. ++Input files whose names have no recognized suffix are not compiled ++at all, but they are included among the output files, so they will ++be linked. ++ ++@item %O ++Substitutes the suffix for object files. Note that this is ++handled specially when it immediately follows @samp{%g, %u, or %U}, ++because of the need for those to form complete file names. The ++handling is such that @samp{%O} is treated exactly as if it had already ++been substituted, except that @samp{%g, %u, and %U} do not currently ++support additional @var{suffix} characters following @samp{%O} as they would ++following, for example, @samp{.o}. ++ ++@item %p ++Substitutes the standard macro predefinitions for the ++current target machine. Use this when running @code{cpp}. ++ ++@item %P ++Like @samp{%p}, but puts @samp{__} before and after the name of each ++predefined macro, except for macros that start with @samp{__} or with ++@samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO ++C@. ++ ++@item %I ++Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}), ++@option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}), ++@option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options) ++and @option{-imultilib} as necessary. ++ ++@item %s ++Current argument is the name of a library or startup file of some sort. ++Search for that file in a standard list of directories and substitute ++the full name found. ++ ++@item %e@var{str} ++Print @var{str} as an error message. @var{str} is terminated by a newline. ++Use this when inconsistent options are detected. ++ ++@item %(@var{name}) ++Substitute the contents of spec string @var{name} at this point. ++ ++@item %[@var{name}] ++Like @samp{%(@dots{})} but put @samp{__} around @option{-D} arguments. ++ ++@item %x@{@var{option}@} ++Accumulate an option for @samp{%X}. ++ ++@item %X ++Output the accumulated linker options specified by @option{-Wl} or a @samp{%x} ++spec string. ++ ++@item %Y ++Output the accumulated assembler options specified by @option{-Wa}. ++ ++@item %Z ++Output the accumulated preprocessor options specified by @option{-Wp}. ++ ++@item %a ++Process the @code{asm} spec. This is used to compute the ++switches to be passed to the assembler. ++ ++@item %A ++Process the @code{asm_final} spec. This is a spec string for ++passing switches to an assembler post-processor, if such a program is ++needed. ++ ++@item %l ++Process the @code{link} spec. This is the spec for computing the ++command line passed to the linker. Typically it will make use of the ++@samp{%L %G %S %D and %E} sequences. ++ ++@item %D ++Dump out a @option{-L} option for each directory that GCC believes might ++contain startup files. If the target supports multilibs then the ++current multilib directory will be prepended to each of these paths. ++ ++@item %L ++Process the @code{lib} spec. This is a spec string for deciding which ++libraries should be included on the command line to the linker. ++ ++@item %G ++Process the @code{libgcc} spec. This is a spec string for deciding ++which GCC support library should be included on the command line to the linker. ++ ++@item %S ++Process the @code{startfile} spec. This is a spec for deciding which ++object files should be the first ones passed to the linker. Typically ++this might be a file named @file{crt0.o}. ++ ++@item %E ++Process the @code{endfile} spec. This is a spec string that specifies ++the last object files that will be passed to the linker. ++ ++@item %C ++Process the @code{cpp} spec. This is used to construct the arguments ++to be passed to the C preprocessor. ++ ++@item %1 ++Process the @code{cc1} spec. This is used to construct the options to be ++passed to the actual C compiler (@samp{cc1}). ++ ++@item %2 ++Process the @code{cc1plus} spec. This is used to construct the options to be ++passed to the actual C++ compiler (@samp{cc1plus}). ++ ++@item %* ++Substitute the variable part of a matched option. See below. ++Note that each comma in the substituted string is replaced by ++a single space. ++ ++@item %<@code{S} ++Remove all occurrences of @code{-S} from the command line. Note---this ++command is position dependent. @samp{%} commands in the spec string ++before this one will see @code{-S}, @samp{%} commands in the spec string ++after this one will not. ++ ++@item %:@var{function}(@var{args}) ++Call the named function @var{function}, passing it @var{args}. ++@var{args} is first processed as a nested spec string, then split ++into an argument vector in the usual fashion. The function returns ++a string which is processed as if it had appeared literally as part ++of the current spec. ++ ++The following built-in spec functions are provided: ++ ++@table @code ++@item @code{getenv} ++The @code{getenv} spec function takes two arguments: an environment ++variable name and a string. If the environment variable is not ++defined, a fatal error is issued. Otherwise, the return value is the ++value of the environment variable concatenated with the string. For ++example, if @env{TOPDIR} is defined as @file{/path/to/top}, then: ++ ++@smallexample ++%:getenv(TOPDIR /include) ++@end smallexample ++ ++expands to @file{/path/to/top/include}. ++ ++@item @code{if-exists} ++The @code{if-exists} spec function takes one argument, an absolute ++pathname to a file. If the file exists, @code{if-exists} returns the ++pathname. Here is a small example of its usage: ++ ++@smallexample ++*startfile: ++crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s ++@end smallexample ++ ++@item @code{if-exists-else} ++The @code{if-exists-else} spec function is similar to the @code{if-exists} ++spec function, except that it takes two arguments. The first argument is ++an absolute pathname to a file. If the file exists, @code{if-exists-else} ++returns the pathname. If it does not exist, it returns the second argument. ++This way, @code{if-exists-else} can be used to select one file or another, ++based on the existence of the first. Here is a small example of its usage: ++ ++@smallexample ++*startfile: ++crt0%O%s %:if-exists(crti%O%s) \ ++%:if-exists-else(crtbeginT%O%s crtbegin%O%s) ++@end smallexample ++ ++@item @code{replace-outfile} ++The @code{replace-outfile} spec function takes two arguments. It looks for the ++first argument in the outfiles array and replaces it with the second argument. Here ++is a small example of its usage: ++ ++@smallexample ++%@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@} ++@end smallexample ++ ++@item @code{print-asm-header} ++The @code{print-asm-header} function takes no arguments and simply ++prints a banner like: ++ ++@smallexample ++Assembler options ++================= ++ ++Use "-Wa,OPTION" to pass "OPTION" to the assembler. ++@end smallexample ++ ++It is used to separate compiler options from assembler options ++in the @option{--target-help} output. ++@end table ++ ++@item %@{@code{S}@} ++Substitutes the @code{-S} switch, if that switch was given to GCC@. ++If that switch was not specified, this substitutes nothing. Note that ++the leading dash is omitted when specifying this option, and it is ++automatically inserted if the substitution is performed. Thus the spec ++string @samp{%@{foo@}} would match the command-line option @option{-foo} ++and would output the command line option @option{-foo}. ++ ++@item %W@{@code{S}@} ++Like %@{@code{S}@} but mark last argument supplied within as a file to be ++deleted on failure. ++ ++@item %@{@code{S}*@} ++Substitutes all the switches specified to GCC whose names start ++with @code{-S}, but which also take an argument. This is used for ++switches like @option{-o}, @option{-D}, @option{-I}, etc. ++GCC considers @option{-o foo} as being ++one switch whose names starts with @samp{o}. %@{o*@} would substitute this ++text, including the space. Thus two arguments would be generated. ++ ++@item %@{@code{S}*&@code{T}*@} ++Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options ++(the order of @code{S} and @code{T} in the spec is not significant). ++There can be any number of ampersand-separated variables; for each the ++wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}. ++ ++@item %@{@code{S}:@code{X}@} ++Substitutes @code{X}, if the @samp{-S} switch was given to GCC@. ++ ++@item %@{!@code{S}:@code{X}@} ++Substitutes @code{X}, if the @samp{-S} switch was @emph{not} given to GCC@. ++ ++@item %@{@code{S}*:@code{X}@} ++Substitutes @code{X} if one or more switches whose names start with ++@code{-S} are specified to GCC@. Normally @code{X} is substituted only ++once, no matter how many such switches appeared. However, if @code{%*} ++appears somewhere in @code{X}, then @code{X} will be substituted once ++for each matching switch, with the @code{%*} replaced by the part of ++that switch that matched the @code{*}. ++ ++@item %@{.@code{S}:@code{X}@} ++Substitutes @code{X}, if processing a file with suffix @code{S}. ++ ++@item %@{!.@code{S}:@code{X}@} ++Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}. ++ ++@item %@{,@code{S}:@code{X}@} ++Substitutes @code{X}, if processing a file for language @code{S}. ++ ++@item %@{!,@code{S}:@code{X}@} ++Substitutes @code{X}, if not processing a file for language @code{S}. ++ ++@item %@{@code{S}|@code{P}:@code{X}@} ++Substitutes @code{X} if either @code{-S} or @code{-P} was given to ++GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and ++@code{*} sequences as well, although they have a stronger binding than ++the @samp{|}. If @code{%*} appears in @code{X}, all of the ++alternatives must be starred, and only the first matching alternative ++is substituted. ++ ++For example, a spec string like this: ++ ++@smallexample ++%@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@} ++@end smallexample ++ ++will output the following command-line options from the following input ++command-line options: ++ ++@smallexample ++fred.c -foo -baz ++jim.d -bar -boggle ++-d fred.c -foo -baz -boggle ++-d jim.d -bar -baz -boggle ++@end smallexample ++ ++@item %@{S:X; T:Y; :D@} ++ ++If @code{S} was given to GCC, substitutes @code{X}; else if @code{T} was ++given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can ++be as many clauses as you need. This may be combined with @code{.}, ++@code{,}, @code{!}, @code{|}, and @code{*} as needed. ++ ++ ++@end table ++ ++The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar ++construct may contain other nested @samp{%} constructs or spaces, or ++even newlines. They are processed as usual, as described above. ++Trailing white space in @code{X} is ignored. White space may also ++appear anywhere on the left side of the colon in these constructs, ++except between @code{.} or @code{*} and the corresponding word. ++ ++The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are ++handled specifically in these constructs. If another value of ++@option{-O} or the negated form of a @option{-f}, @option{-m}, or ++@option{-W} switch is found later in the command line, the earlier ++switch value is ignored, except with @{@code{S}*@} where @code{S} is ++just one letter, which passes all matching options. ++ ++The character @samp{|} at the beginning of the predicate text is used to ++indicate that a command should be piped to the following command, but ++only if @option{-pipe} is specified. ++ ++It is built into GCC which switches take arguments and which do not. ++(You might think it would be useful to generalize this to allow each ++compiler's spec to say which switches take arguments. But this cannot ++be done in a consistent fashion. GCC cannot even decide which input ++files have been specified without knowing which switches take arguments, ++and it must know which input files to compile in order to tell which ++compilers to run). ++ ++GCC also knows implicitly that arguments starting in @option{-l} are to be ++treated as compiler output files, and passed to the linker in their ++proper position among the other output files. ++ ++@c man begin OPTIONS ++ ++@node Target Options ++@section Specifying Target Machine and Compiler Version ++@cindex target options ++@cindex cross compiling ++@cindex specifying machine version ++@cindex specifying compiler version and target machine ++@cindex compiler version, specifying ++@cindex target machine, specifying ++ ++The usual way to run GCC is to run the executable called @file{gcc}, or ++@file{<machine>-gcc} when cross-compiling, or ++@file{<machine>-gcc-<version>} to run a version other than the one that ++was installed last. Sometimes this is inconvenient, so GCC provides ++options that will switch to another cross-compiler or version. ++ ++@table @gcctabopt ++@item -b @var{machine} ++@opindex b ++The argument @var{machine} specifies the target machine for compilation. ++ ++The value to use for @var{machine} is the same as was specified as the ++machine type when configuring GCC as a cross-compiler. For ++example, if a cross-compiler was configured with @samp{configure ++arm-elf}, meaning to compile for an arm processor with elf binaries, ++then you would specify @option{-b arm-elf} to run that cross compiler. ++Because there are other options beginning with @option{-b}, the ++configuration must contain a hyphen, or @option{-b} alone should be one ++argument followed by the configuration in the next argument. ++ ++@item -V @var{version} ++@opindex V ++The argument @var{version} specifies which version of GCC to run. ++This is useful when multiple versions are installed. For example, ++@var{version} might be @samp{4.0}, meaning to run GCC version 4.0. ++@end table ++ ++The @option{-V} and @option{-b} options work by running the ++@file{<machine>-gcc-<version>} executable, so there's no real reason to ++use them if you can just run that directly. ++ ++@node Submodel Options ++@section Hardware Models and Configurations ++@cindex submodel options ++@cindex specifying hardware config ++@cindex hardware models and configurations, specifying ++@cindex machine dependent options ++ ++Earlier we discussed the standard option @option{-b} which chooses among ++different installed compilers for completely different target ++machines, such as VAX vs.@: 68000 vs.@: 80386. ++ ++In addition, each of these target machine types can have its own ++special options, starting with @samp{-m}, to choose among various ++hardware models or configurations---for example, 68010 vs 68020, ++floating coprocessor or none. A single installed version of the ++compiler can compile for any model or configuration, according to the ++options specified. ++ ++Some configurations of the compiler also support additional special ++options, usually for compatibility with other compilers on the same ++platform. ++ ++@c This list is ordered alphanumerically by subsection name. ++@c It should be the same order and spelling as these options are listed ++@c in Machine Dependent Options ++ ++@menu ++* ARC Options:: ++* ARM Options:: ++* AVR Options:: ++* Blackfin Options:: ++* CRIS Options:: ++* CRX Options:: ++* Darwin Options:: ++* DEC Alpha Options:: ++* DEC Alpha/VMS Options:: ++* FR30 Options:: ++* FRV Options:: ++* GNU/Linux Options:: ++* H8/300 Options:: ++* HPPA Options:: ++* i386 and x86-64 Options:: ++* i386 and x86-64 Windows Options:: ++* IA-64 Options:: ++* M32C Options:: ++* M32R/D Options:: ++* M680x0 Options:: ++* M68hc1x Options:: ++* MCore Options:: ++* MIPS Options:: ++* MMIX Options:: ++* MN10300 Options:: ++* PDP-11 Options:: ++* picoChip Options:: ++* PowerPC Options:: ++* RS/6000 and PowerPC Options:: ++* S/390 and zSeries Options:: ++* Score Options:: ++* SH Options:: ++* SPARC Options:: ++* SPU Options:: ++* System V Options:: ++* V850 Options:: ++* VAX Options:: ++* VxWorks Options:: ++* x86-64 Options:: ++* Xstormy16 Options:: ++* Xtensa Options:: ++* zSeries Options:: ++@end menu ++ ++@node ARC Options ++@subsection ARC Options ++@cindex ARC Options ++ ++These options are defined for ARC implementations: ++ ++@table @gcctabopt ++@item -EL ++@opindex EL ++Compile code for little endian mode. This is the default. ++ ++@item -EB ++@opindex EB ++Compile code for big endian mode. ++ ++@item -mmangle-cpu ++@opindex mmangle-cpu ++Prepend the name of the cpu to all public symbol names. ++In multiple-processor systems, there are many ARC variants with different ++instruction and register set characteristics. This flag prevents code ++compiled for one cpu to be linked with code compiled for another. ++No facility exists for handling variants that are ``almost identical''. ++This is an all or nothing option. ++ ++@item -mcpu=@var{cpu} ++@opindex mcpu ++Compile code for ARC variant @var{cpu}. ++Which variants are supported depend on the configuration. ++All variants support @option{-mcpu=base}, this is the default. ++ ++@item -mtext=@var{text-section} ++@itemx -mdata=@var{data-section} ++@itemx -mrodata=@var{readonly-data-section} ++@opindex mtext ++@opindex mdata ++@opindex mrodata ++Put functions, data, and readonly data in @var{text-section}, ++@var{data-section}, and @var{readonly-data-section} respectively ++by default. This can be overridden with the @code{section} attribute. ++@xref{Variable Attributes}. ++ ++@item -mfix-cortex-m3-ldrd ++@opindex mfix-cortex-m3-ldrd ++Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions ++with overlapping destination and base registers are used. This option avoids ++generating these instructions. This option is enabled by default when ++@option{-mcpu=cortex-m3} is specified. ++ ++@end table ++ ++@node ARM Options ++@subsection ARM Options ++@cindex ARM options ++ ++These @samp{-m} options are defined for Advanced RISC Machines (ARM) ++architectures: ++ ++@table @gcctabopt ++@item -mabi=@var{name} ++@opindex mabi ++Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu}, ++@samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}. ++ ++@item -mapcs-frame ++@opindex mapcs-frame ++Generate a stack frame that is compliant with the ARM Procedure Call ++Standard for all functions, even if this is not strictly necessary for ++correct execution of the code. Specifying @option{-fomit-frame-pointer} ++with this option will cause the stack frames not to be generated for ++leaf functions. The default is @option{-mno-apcs-frame}. ++ ++@item -mapcs ++@opindex mapcs ++This is a synonym for @option{-mapcs-frame}. ++ ++@ignore ++@c not currently implemented ++@item -mapcs-stack-check ++@opindex mapcs-stack-check ++Generate code to check the amount of stack space available upon entry to ++every function (that actually uses some stack space). If there is ++insufficient space available then either the function ++@samp{__rt_stkovf_split_small} or @samp{__rt_stkovf_split_big} will be ++called, depending upon the amount of stack space required. The run time ++system is required to provide these functions. The default is ++@option{-mno-apcs-stack-check}, since this produces smaller code. ++ ++@c not currently implemented ++@item -mapcs-float ++@opindex mapcs-float ++Pass floating point arguments using the float point registers. This is ++one of the variants of the APCS@. This option is recommended if the ++target hardware has a floating point unit or if a lot of floating point ++arithmetic is going to be performed by the code. The default is ++@option{-mno-apcs-float}, since integer only code is slightly increased in ++size if @option{-mapcs-float} is used. ++ ++@c not currently implemented ++@item -mapcs-reentrant ++@opindex mapcs-reentrant ++Generate reentrant, position independent code. The default is ++@option{-mno-apcs-reentrant}. ++@end ignore ++ ++@item -mthumb-interwork ++@opindex mthumb-interwork ++Generate code which supports calling between the ARM and Thumb ++instruction sets. Without this option the two instruction sets cannot ++be reliably used inside one program. The default is ++@option{-mno-thumb-interwork}, since slightly larger code is generated ++when @option{-mthumb-interwork} is specified. ++ ++@item -mno-sched-prolog ++@opindex mno-sched-prolog ++Prevent the reordering of instructions in the function prolog, or the ++merging of those instruction with the instructions in the function's ++body. This means that all functions will start with a recognizable set ++of instructions (or in fact one of a choice from a small set of ++different function prologues), and this information can be used to ++locate the start if functions inside an executable piece of code. The ++default is @option{-msched-prolog}. ++ ++@item -mfloat-abi=@var{name} ++@opindex mfloat-abi ++Specifies which floating-point ABI to use. Permissible values ++are: @samp{soft}, @samp{softfp} and @samp{hard}. ++ ++Specifying @samp{soft} causes GCC to generate output containing ++library calls for floating-point operations. ++@samp{softfp} allows the generation of code using hardware floating-point ++instructions, but still uses the soft-float calling conventions. ++@samp{hard} allows generation of floating-point instructions ++and uses FPU-specific calling conventions. ++ ++Using @option{-mfloat-abi=hard} with VFP coprocessors is not supported. ++Use @option{-mfloat-abi=softfp} with the appropriate @option{-mfpu} option ++to allow the compiler to generate code that makes use of the hardware ++floating-point capabilities for these CPUs. ++ ++The default depends on the specific target configuration. Note that ++the hard-float and soft-float ABIs are not link-compatible; you must ++compile your entire program with the same ABI, and link with a ++compatible set of libraries. ++ ++@item -mhard-float ++@opindex mhard-float ++Equivalent to @option{-mfloat-abi=hard}. ++ ++@item -msoft-float ++@opindex msoft-float ++Equivalent to @option{-mfloat-abi=soft}. ++ ++@item -mlittle-endian ++@opindex mlittle-endian ++Generate code for a processor running in little-endian mode. This is ++the default for all standard configurations. ++ ++@item -mbig-endian ++@opindex mbig-endian ++Generate code for a processor running in big-endian mode; the default is ++to compile code for a little-endian processor. ++ ++@item -mwords-little-endian ++@opindex mwords-little-endian ++This option only applies when generating code for big-endian processors. ++Generate code for a little-endian word order but a big-endian byte ++order. That is, a byte order of the form @samp{32107654}. Note: this ++option should only be used if you require compatibility with code for ++big-endian ARM processors generated by versions of the compiler prior to ++2.8. ++ ++@item -mcpu=@var{name} ++@opindex mcpu ++This specifies the name of the target ARM processor. GCC uses this name ++to determine what kind of instructions it can emit when generating ++assembly code. Permissible names are: @samp{arm2}, @samp{arm250}, ++@samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610}, ++@samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm}, ++@samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700}, ++@samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100}, ++@samp{arm720}, ++@samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s}, ++@samp{arm710t}, @samp{arm720t}, @samp{arm740t}, ++@samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100}, ++@samp{strongarm1110}, ++@samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920}, ++@samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s}, ++@samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi}, ++@samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s}, ++@samp{arm10e}, @samp{arm1020e}, @samp{arm1022e}, ++@samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp}, ++@samp{arm1156t2-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s}, ++@samp{cortex-a8}, @samp{cortex-a9}, ++@samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-m3}, ++@samp{cortex-m1}, ++@samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}. ++ ++@item -mtune=@var{name} ++@opindex mtune ++This option is very similar to the @option{-mcpu=} option, except that ++instead of specifying the actual target processor type, and hence ++restricting which instructions can be used, it specifies that GCC should ++tune the performance of the code as if the target were of the type ++specified in this option, but still choosing the instructions that it ++will generate based on the cpu specified by a @option{-mcpu=} option. ++For some ARM implementations better performance can be obtained by using ++this option. ++ ++@item -march=@var{name} ++@opindex march ++This specifies the name of the target ARM architecture. GCC uses this ++name to determine what kind of instructions it can emit when generating ++assembly code. This option can be used in conjunction with or instead ++of the @option{-mcpu=} option. Permissible names are: @samp{armv2}, ++@samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t}, ++@samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te}, ++@samp{armv6}, @samp{armv6j}, ++@samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m}, ++@samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, ++@samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}. ++ ++@item -mfpu=@var{name} ++@itemx -mfpe=@var{number} ++@itemx -mfp=@var{number} ++@opindex mfpu ++@opindex mfpe ++@opindex mfp ++This specifies what floating point hardware (or hardware emulation) is ++available on the target. Permissible names are: @samp{fpa}, @samp{fpe2}, ++@samp{fpe3}, @samp{maverick}, @samp{vfp}, @samp{vfpv3}, @samp{vfpv3-d16} and ++@samp{neon}. @option{-mfp} and @option{-mfpe} ++are synonyms for @option{-mfpu}=@samp{fpe}@var{number}, for compatibility ++with older versions of GCC@. ++ ++If @option{-msoft-float} is specified this specifies the format of ++floating point values. ++ ++@item -mstructure-size-boundary=@var{n} ++@opindex mstructure-size-boundary ++The size of all structures and unions will be rounded up to a multiple ++of the number of bits set by this option. Permissible values are 8, 32 ++and 64. The default value varies for different toolchains. For the COFF ++targeted toolchain the default value is 8. A value of 64 is only allowed ++if the underlying ABI supports it. ++ ++Specifying the larger number can produce faster, more efficient code, but ++can also increase the size of the program. Different values are potentially ++incompatible. Code compiled with one value cannot necessarily expect to ++work with code or libraries compiled with another value, if they exchange ++information using structures or unions. ++ ++@item -mabort-on-noreturn ++@opindex mabort-on-noreturn ++Generate a call to the function @code{abort} at the end of a ++@code{noreturn} function. It will be executed if the function tries to ++return. ++ ++@item -mlong-calls ++@itemx -mno-long-calls ++@opindex mlong-calls ++@opindex mno-long-calls ++Tells the compiler to perform function calls by first loading the ++address of the function into a register and then performing a subroutine ++call on this register. This switch is needed if the target function ++will lie outside of the 64 megabyte addressing range of the offset based ++version of subroutine call instruction. ++ ++Even if this switch is enabled, not all function calls will be turned ++into long calls. The heuristic is that static functions, functions ++which have the @samp{short-call} attribute, functions that are inside ++the scope of a @samp{#pragma no_long_calls} directive and functions whose ++definitions have already been compiled within the current compilation ++unit, will not be turned into long calls. The exception to this rule is ++that weak function definitions, functions with the @samp{long-call} ++attribute or the @samp{section} attribute, and functions that are within ++the scope of a @samp{#pragma long_calls} directive, will always be ++turned into long calls. ++ ++This feature is not enabled by default. Specifying ++@option{-mno-long-calls} will restore the default behavior, as will ++placing the function calls within the scope of a @samp{#pragma ++long_calls_off} directive. Note these switches have no effect on how ++the compiler generates code to handle function calls via function ++pointers. ++ ++@item -msingle-pic-base ++@opindex msingle-pic-base ++Treat the register used for PIC addressing as read-only, rather than ++loading it in the prologue for each function. The run-time system is ++responsible for initializing this register with an appropriate value ++before execution begins. ++ ++@item -mpic-register=@var{reg} ++@opindex mpic-register ++Specify the register to be used for PIC addressing. The default is R10 ++unless stack-checking is enabled, when R9 is used. ++ ++@item -mcirrus-fix-invalid-insns ++@opindex mcirrus-fix-invalid-insns ++@opindex mno-cirrus-fix-invalid-insns ++Insert NOPs into the instruction stream to in order to work around ++problems with invalid Maverick instruction combinations. This option ++is only valid if the @option{-mcpu=ep9312} option has been used to ++enable generation of instructions for the Cirrus Maverick floating ++point co-processor. This option is not enabled by default, since the ++problem is only present in older Maverick implementations. The default ++can be re-enabled by use of the @option{-mno-cirrus-fix-invalid-insns} ++switch. ++ ++@item -mpoke-function-name ++@opindex mpoke-function-name ++Write the name of each function into the text section, directly ++preceding the function prologue. The generated code is similar to this: ++ ++@smallexample ++ t0 ++ .ascii "arm_poke_function_name", 0 ++ .align ++ t1 ++ .word 0xff000000 + (t1 - t0) ++ arm_poke_function_name ++ mov ip, sp ++ stmfd sp!, @{fp, ip, lr, pc@} ++ sub fp, ip, #4 ++@end smallexample ++ ++When performing a stack backtrace, code can inspect the value of ++@code{pc} stored at @code{fp + 0}. If the trace function then looks at ++location @code{pc - 12} and the top 8 bits are set, then we know that ++there is a function name embedded immediately preceding this location ++and has length @code{((pc[-3]) & 0xff000000)}. ++ ++@item -mthumb ++@opindex mthumb ++Generate code for the Thumb instruction set. The default is to ++use the 32-bit ARM instruction set. ++This option automatically enables either 16-bit Thumb-1 or ++mixed 16/32-bit Thumb-2 instructions based on the @option{-mcpu=@var{name}} ++and @option{-march=@var{name}} options. ++ ++@item -mtpcs-frame ++@opindex mtpcs-frame ++Generate a stack frame that is compliant with the Thumb Procedure Call ++Standard for all non-leaf functions. (A leaf function is one that does ++not call any other functions.) The default is @option{-mno-tpcs-frame}. ++ ++@item -mtpcs-leaf-frame ++@opindex mtpcs-leaf-frame ++Generate a stack frame that is compliant with the Thumb Procedure Call ++Standard for all leaf functions. (A leaf function is one that does ++not call any other functions.) The default is @option{-mno-apcs-leaf-frame}. ++ ++@item -mcallee-super-interworking ++@opindex mcallee-super-interworking ++Gives all externally visible functions in the file being compiled an ARM ++instruction set header which switches to Thumb mode before executing the ++rest of the function. This allows these functions to be called from ++non-interworking code. ++ ++@item -mcaller-super-interworking ++@opindex mcaller-super-interworking ++Allows calls via function pointers (including virtual functions) to ++execute correctly regardless of whether the target code has been ++compiled for interworking or not. There is a small overhead in the cost ++of executing a function pointer if this option is enabled. ++ ++@item -mtp=@var{name} ++@opindex mtp ++Specify the access model for the thread local storage pointer. The valid ++models are @option{soft}, which generates calls to @code{__aeabi_read_tp}, ++@option{cp15}, which fetches the thread pointer from @code{cp15} directly ++(supported in the arm6k architecture), and @option{auto}, which uses the ++best available method for the selected processor. The default setting is ++@option{auto}. ++ ++@item -mword-relocations ++@opindex mword-relocations ++Only generate absolute relocations on word sized values (i.e. R_ARM_ABS32). ++This is enabled by default on targets (uClinux, SymbianOS) where the runtime ++loader imposes this restriction, and when @option{-fpic} or @option{-fPIC} ++is specified. ++ ++@end table ++ ++@node AVR Options ++@subsection AVR Options ++@cindex AVR Options ++ ++These options are defined for AVR implementations: ++ ++@table @gcctabopt ++@item -mmcu=@var{mcu} ++@opindex mmcu ++Specify ATMEL AVR instruction set or MCU type. ++ ++Instruction set avr1 is for the minimal AVR core, not supported by the C ++compiler, only for assembler programs (MCU types: at90s1200, attiny10, ++attiny11, attiny12, attiny15, attiny28). ++ ++Instruction set avr2 (default) is for the classic AVR core with up to ++8K program memory space (MCU types: at90s2313, at90s2323, attiny22, ++at90s2333, at90s2343, at90s4414, at90s4433, at90s4434, at90s8515, ++at90c8534, at90s8535). ++ ++Instruction set avr3 is for the classic AVR core with up to 128K program ++memory space (MCU types: atmega103, atmega603, at43usb320, at76c711). ++ ++Instruction set avr4 is for the enhanced AVR core with up to 8K program ++memory space (MCU types: atmega8, atmega83, atmega85). ++ ++Instruction set avr5 is for the enhanced AVR core with up to 128K program ++memory space (MCU types: atmega16, atmega161, atmega163, atmega32, atmega323, ++atmega64, atmega128, at43usb355, at94k). ++ ++@item -msize ++@opindex msize ++Output instruction sizes to the asm file. ++ ++@item -mno-interrupts ++@opindex mno-interrupts ++Generated code is not compatible with hardware interrupts. ++Code size will be smaller. ++ ++@item -mcall-prologues ++@opindex mcall-prologues ++Functions prologues/epilogues expanded as call to appropriate ++subroutines. Code size will be smaller. ++ ++@item -mno-tablejump ++@opindex mno-tablejump ++Do not generate tablejump insns which sometimes increase code size. ++The option is now deprecated in favor of the equivalent ++@option{-fno-jump-tables} ++ ++@item -mtiny-stack ++@opindex mtiny-stack ++Change only the low 8 bits of the stack pointer. ++ ++@item -mint8 ++@opindex mint8 ++Assume int to be 8 bit integer. This affects the sizes of all types: A ++char will be 1 byte, an int will be 1 byte, an long will be 2 bytes ++and long long will be 4 bytes. Please note that this option does not ++comply to the C standards, but it will provide you with smaller code ++size. ++@end table ++ ++@node Blackfin Options ++@subsection Blackfin Options ++@cindex Blackfin Options ++ ++@table @gcctabopt ++@item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} ++@opindex mcpu= ++Specifies the name of the target Blackfin processor. Currently, @var{cpu} ++can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518}, ++@samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526}, ++@samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533}, ++@samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539}, ++@samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549}, ++@samp{bf561}. ++The optional @var{sirevision} specifies the silicon revision of the target ++Blackfin processor. Any workarounds available for the targeted silicon revision ++will be enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled. ++If @var{sirevision} is @samp{any}, all workarounds for the targeted processor ++will be enabled. The @code{__SILICON_REVISION__} macro is defined to two ++hexadecimal digits representing the major and minor numbers in the silicon ++revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__} ++is not defined. If @var{sirevision} is @samp{any}, the ++@code{__SILICON_REVISION__} is defined to be @code{0xffff}. ++If this optional @var{sirevision} is not used, GCC assumes the latest known ++silicon revision of the targeted Blackfin processor. ++ ++Support for @samp{bf561} is incomplete. For @samp{bf561}, ++Only the processor macro is defined. ++Without this option, @samp{bf532} is used as the processor by default. ++The corresponding predefined processor macros for @var{cpu} is to ++be defined. And for @samp{bfin-elf} toolchain, this causes the hardware BSP ++provided by libgloss to be linked in if @option{-msim} is not given. ++ ++@item -msim ++@opindex msim ++Specifies that the program will be run on the simulator. This causes ++the simulator BSP provided by libgloss to be linked in. This option ++has effect only for @samp{bfin-elf} toolchain. ++Certain other options, such as @option{-mid-shared-library} and ++@option{-mfdpic}, imply @option{-msim}. ++ ++@item -momit-leaf-frame-pointer ++@opindex momit-leaf-frame-pointer ++Don't keep the frame pointer in a register for leaf functions. This ++avoids the instructions to save, set up and restore frame pointers and ++makes an extra register available in leaf functions. The option ++@option{-fomit-frame-pointer} removes the frame pointer for all functions ++which might make debugging harder. ++ ++@item -mspecld-anomaly ++@opindex mspecld-anomaly ++When enabled, the compiler will ensure that the generated code does not ++contain speculative loads after jump instructions. If this option is used, ++@code{__WORKAROUND_SPECULATIVE_LOADS} is defined. ++ ++@item -mno-specld-anomaly ++@opindex mno-specld-anomaly ++Don't generate extra code to prevent speculative loads from occurring. ++ ++@item -mcsync-anomaly ++@opindex mcsync-anomaly ++When enabled, the compiler will ensure that the generated code does not ++contain CSYNC or SSYNC instructions too soon after conditional branches. ++If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined. ++ ++@item -mno-csync-anomaly ++@opindex mno-csync-anomaly ++Don't generate extra code to prevent CSYNC or SSYNC instructions from ++occurring too soon after a conditional branch. ++ ++@item -mlow-64k ++@opindex mlow-64k ++When enabled, the compiler is free to take advantage of the knowledge that ++the entire program fits into the low 64k of memory. ++ ++@item -mno-low-64k ++@opindex mno-low-64k ++Assume that the program is arbitrarily large. This is the default. ++ ++@item -mstack-check-l1 ++@opindex mstack-check-l1 ++Do stack checking using information placed into L1 scratchpad memory by the ++uClinux kernel. ++ ++@item -mid-shared-library ++@opindex mid-shared-library ++Generate code that supports shared libraries via the library ID method. ++This allows for execute in place and shared libraries in an environment ++without virtual memory management. This option implies @option{-fPIC}. ++With a @samp{bfin-elf} target, this option implies @option{-msim}. ++ ++@item -mno-id-shared-library ++@opindex mno-id-shared-library ++Generate code that doesn't assume ID based shared libraries are being used. ++This is the default. ++ ++@item -mleaf-id-shared-library ++@opindex mleaf-id-shared-library ++Generate code that supports shared libraries via the library ID method, ++but assumes that this library or executable won't link against any other ++ID shared libraries. That allows the compiler to use faster code for jumps ++and calls. ++ ++@item -mno-leaf-id-shared-library ++@opindex mno-leaf-id-shared-library ++Do not assume that the code being compiled won't link against any ID shared ++libraries. Slower code will be generated for jump and call insns. ++ ++@item -mshared-library-id=n ++@opindex mshared-library-id ++Specified the identification number of the ID based shared library being ++compiled. Specifying a value of 0 will generate more compact code, specifying ++other values will force the allocation of that number to the current ++library but is no more space or time efficient than omitting this option. ++ ++@item -msep-data ++@opindex msep-data ++Generate code that allows the data segment to be located in a different ++area of memory from the text segment. This allows for execute in place in ++an environment without virtual memory management by eliminating relocations ++against the text section. ++ ++@item -mno-sep-data ++@opindex mno-sep-data ++Generate code that assumes that the data segment follows the text segment. ++This is the default. ++ ++@item -mlong-calls ++@itemx -mno-long-calls ++@opindex mlong-calls ++@opindex mno-long-calls ++Tells the compiler to perform function calls by first loading the ++address of the function into a register and then performing a subroutine ++call on this register. This switch is needed if the target function ++will lie outside of the 24 bit addressing range of the offset based ++version of subroutine call instruction. ++ ++This feature is not enabled by default. Specifying ++@option{-mno-long-calls} will restore the default behavior. Note these ++switches have no effect on how the compiler generates code to handle ++function calls via function pointers. ++ ++@item -mfast-fp ++@opindex mfast-fp ++Link with the fast floating-point library. This library relaxes some of ++the IEEE floating-point standard's rules for checking inputs against ++Not-a-Number (NAN), in the interest of performance. ++ ++@item -minline-plt ++@opindex minline-plt ++Enable inlining of PLT entries in function calls to functions that are ++not known to bind locally. It has no effect without @option{-mfdpic}. ++ ++@item -mmulticore ++@opindex mmulticore ++Build standalone application for multicore Blackfin processor. Proper ++start files and link scripts will be used to support multicore. ++This option defines @code{__BFIN_MULTICORE}. It can only be used with ++@option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}. It can be used with ++@option{-mcorea} or @option{-mcoreb}. If it's used without ++@option{-mcorea} or @option{-mcoreb}, single application/dual core ++programming model is used. In this model, the main function of Core B ++should be named as coreb_main. If it's used with @option{-mcorea} or ++@option{-mcoreb}, one application per core programming model is used. ++If this option is not used, single core application programming ++model is used. ++ ++@item -mcorea ++@opindex mcorea ++Build standalone application for Core A of BF561 when using ++one application per core programming model. Proper start files ++and link scripts will be used to support Core A. This option ++defines @code{__BFIN_COREA}. It must be used with @option{-mmulticore}. ++ ++@item -mcoreb ++@opindex mcoreb ++Build standalone application for Core B of BF561 when using ++one application per core programming model. Proper start files ++and link scripts will be used to support Core B. This option ++defines @code{__BFIN_COREB}. When this option is used, coreb_main ++should be used instead of main. It must be used with ++@option{-mmulticore}. ++ ++@item -msdram ++@opindex msdram ++Build standalone application for SDRAM. Proper start files and ++link scripts will be used to put the application into SDRAM. ++Loader should initialize SDRAM before loading the application ++into SDRAM. This option defines @code{__BFIN_SDRAM}. ++ ++@item -micplb ++@opindex micplb ++Assume that ICPLBs are enabled at runtime. This has an effect on certain ++anomaly workarounds. For Linux targets, the default is to assume ICPLBs ++are enabled; for standalone applications the default is off. ++@end table ++ ++@node CRIS Options ++@subsection CRIS Options ++@cindex CRIS Options ++ ++These options are defined specifically for the CRIS ports. ++ ++@table @gcctabopt ++@item -march=@var{architecture-type} ++@itemx -mcpu=@var{architecture-type} ++@opindex march ++@opindex mcpu ++Generate code for the specified architecture. The choices for ++@var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for ++respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@. ++Default is @samp{v0} except for cris-axis-linux-gnu, where the default is ++@samp{v10}. ++ ++@item -mtune=@var{architecture-type} ++@opindex mtune ++Tune to @var{architecture-type} everything applicable about the generated ++code, except for the ABI and the set of available instructions. The ++choices for @var{architecture-type} are the same as for ++@option{-march=@var{architecture-type}}. ++ ++@item -mmax-stack-frame=@var{n} ++@opindex mmax-stack-frame ++Warn when the stack frame of a function exceeds @var{n} bytes. ++ ++@item -metrax4 ++@itemx -metrax100 ++@opindex metrax4 ++@opindex metrax100 ++The options @option{-metrax4} and @option{-metrax100} are synonyms for ++@option{-march=v3} and @option{-march=v8} respectively. ++ ++@item -mmul-bug-workaround ++@itemx -mno-mul-bug-workaround ++@opindex mmul-bug-workaround ++@opindex mno-mul-bug-workaround ++Work around a bug in the @code{muls} and @code{mulu} instructions for CPU ++models where it applies. This option is active by default. ++ ++@item -mpdebug ++@opindex mpdebug ++Enable CRIS-specific verbose debug-related information in the assembly ++code. This option also has the effect to turn off the @samp{#NO_APP} ++formatted-code indicator to the assembler at the beginning of the ++assembly file. ++ ++@item -mcc-init ++@opindex mcc-init ++Do not use condition-code results from previous instruction; always emit ++compare and test instructions before use of condition codes. ++ ++@item -mno-side-effects ++@opindex mno-side-effects ++Do not emit instructions with side-effects in addressing modes other than ++post-increment. ++ ++@item -mstack-align ++@itemx -mno-stack-align ++@itemx -mdata-align ++@itemx -mno-data-align ++@itemx -mconst-align ++@itemx -mno-const-align ++@opindex mstack-align ++@opindex mno-stack-align ++@opindex mdata-align ++@opindex mno-data-align ++@opindex mconst-align ++@opindex mno-const-align ++These options (no-options) arranges (eliminate arrangements) for the ++stack-frame, individual data and constants to be aligned for the maximum ++single data access size for the chosen CPU model. The default is to ++arrange for 32-bit alignment. ABI details such as structure layout are ++not affected by these options. ++ ++@item -m32-bit ++@itemx -m16-bit ++@itemx -m8-bit ++@opindex m32-bit ++@opindex m16-bit ++@opindex m8-bit ++Similar to the stack- data- and const-align options above, these options ++arrange for stack-frame, writable data and constants to all be 32-bit, ++16-bit or 8-bit aligned. The default is 32-bit alignment. ++ ++@item -mno-prologue-epilogue ++@itemx -mprologue-epilogue ++@opindex mno-prologue-epilogue ++@opindex mprologue-epilogue ++With @option{-mno-prologue-epilogue}, the normal function prologue and ++epilogue that sets up the stack-frame are omitted and no return ++instructions or return sequences are generated in the code. Use this ++option only together with visual inspection of the compiled code: no ++warnings or errors are generated when call-saved registers must be saved, ++or storage for local variable needs to be allocated. ++ ++@item -mno-gotplt ++@itemx -mgotplt ++@opindex mno-gotplt ++@opindex mgotplt ++With @option{-fpic} and @option{-fPIC}, don't generate (do generate) ++instruction sequences that load addresses for functions from the PLT part ++of the GOT rather than (traditional on other architectures) calls to the ++PLT@. The default is @option{-mgotplt}. ++ ++@item -melf ++@opindex melf ++Legacy no-op option only recognized with the cris-axis-elf and ++cris-axis-linux-gnu targets. ++ ++@item -mlinux ++@opindex mlinux ++Legacy no-op option only recognized with the cris-axis-linux-gnu target. ++ ++@item -sim ++@opindex sim ++This option, recognized for the cris-axis-elf arranges ++to link with input-output functions from a simulator library. Code, ++initialized data and zero-initialized data are allocated consecutively. ++ ++@item -sim2 ++@opindex sim2 ++Like @option{-sim}, but pass linker options to locate initialized data at ++0x40000000 and zero-initialized data at 0x80000000. ++@end table ++ ++@node CRX Options ++@subsection CRX Options ++@cindex CRX Options ++ ++These options are defined specifically for the CRX ports. ++ ++@table @gcctabopt ++ ++@item -mmac ++@opindex mmac ++Enable the use of multiply-accumulate instructions. Disabled by default. ++ ++@item -mpush-args ++@opindex mpush-args ++Push instructions will be used to pass outgoing arguments when functions ++are called. Enabled by default. ++@end table ++ ++@node Darwin Options ++@subsection Darwin Options ++@cindex Darwin options ++ ++These options are defined for all architectures running the Darwin operating ++system. ++ ++FSF GCC on Darwin does not create ``fat'' object files; it will create ++an object file for the single architecture that it was built to ++target. Apple's GCC on Darwin does create ``fat'' files if multiple ++@option{-arch} options are used; it does so by running the compiler or ++linker multiple times and joining the results together with ++@file{lipo}. ++ ++The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or ++@samp{i686}) is determined by the flags that specify the ISA ++that GCC is targetting, like @option{-mcpu} or @option{-march}. The ++@option{-force_cpusubtype_ALL} option can be used to override this. ++ ++The Darwin tools vary in their behavior when presented with an ISA ++mismatch. The assembler, @file{as}, will only permit instructions to ++be used that are valid for the subtype of the file it is generating, ++so you cannot put 64-bit instructions in an @samp{ppc750} object file. ++The linker for shared libraries, @file{/usr/bin/libtool}, will fail ++and print an error if asked to create a shared library with a less ++restrictive subtype than its input files (for instance, trying to put ++a @samp{ppc970} object file in a @samp{ppc7400} library). The linker ++for executables, @file{ld}, will quietly give the executable the most ++restrictive subtype of any of its input files. ++ ++@table @gcctabopt ++@item -F@var{dir} ++@opindex F ++Add the framework directory @var{dir} to the head of the list of ++directories to be searched for header files. These directories are ++interleaved with those specified by @option{-I} options and are ++scanned in a left-to-right order. ++ ++A framework directory is a directory with frameworks in it. A ++framework is a directory with a @samp{"Headers"} and/or ++@samp{"PrivateHeaders"} directory contained directly in it that ends ++in @samp{".framework"}. The name of a framework is the name of this ++directory excluding the @samp{".framework"}. Headers associated with ++the framework are found in one of those two directories, with ++@samp{"Headers"} being searched first. A subframework is a framework ++directory that is in a framework's @samp{"Frameworks"} directory. ++Includes of subframework headers can only appear in a header of a ++framework that contains the subframework, or in a sibling subframework ++header. Two subframeworks are siblings if they occur in the same ++framework. A subframework should not have the same name as a ++framework, a warning will be issued if this is violated. Currently a ++subframework cannot have subframeworks, in the future, the mechanism ++may be extended to support this. The standard frameworks can be found ++in @samp{"/System/Library/Frameworks"} and ++@samp{"/Library/Frameworks"}. An example include looks like ++@code{#include <Framework/header.h>}, where @samp{Framework} denotes ++the name of the framework and header.h is found in the ++@samp{"PrivateHeaders"} or @samp{"Headers"} directory. ++ ++@item -iframework@var{dir} ++@opindex iframework ++Like @option{-F} except the directory is a treated as a system ++directory. The main difference between this @option{-iframework} and ++@option{-F} is that with @option{-iframework} the compiler does not ++warn about constructs contained within header files found via ++@var{dir}. This option is valid only for the C family of languages. ++ ++@item -gused ++@opindex gused ++Emit debugging information for symbols that are used. For STABS ++debugging format, this enables @option{-feliminate-unused-debug-symbols}. ++This is by default ON@. ++ ++@item -gfull ++@opindex gfull ++Emit debugging information for all symbols and types. ++ ++@item -mmacosx-version-min=@var{version} ++The earliest version of MacOS X that this executable will run on ++is @var{version}. Typical values of @var{version} include @code{10.1}, ++@code{10.2}, and @code{10.3.9}. ++ ++If the compiler was built to use the system's headers by default, ++then the default for this option is the system version on which the ++compiler is running, otherwise the default is to make choices which ++are compatible with as many systems and code bases as possible. ++ ++@item -mkernel ++@opindex mkernel ++Enable kernel development mode. The @option{-mkernel} option sets ++@option{-static}, @option{-fno-common}, @option{-fno-cxa-atexit}, ++@option{-fno-exceptions}, @option{-fno-non-call-exceptions}, ++@option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where ++applicable. This mode also sets @option{-mno-altivec}, ++@option{-msoft-float}, @option{-fno-builtin} and ++@option{-mlong-branch} for PowerPC targets. ++ ++@item -mone-byte-bool ++@opindex mone-byte-bool ++Override the defaults for @samp{bool} so that @samp{sizeof(bool)==1}. ++By default @samp{sizeof(bool)} is @samp{4} when compiling for ++Darwin/PowerPC and @samp{1} when compiling for Darwin/x86, so this ++option has no effect on x86. ++ ++@strong{Warning:} The @option{-mone-byte-bool} switch causes GCC ++to generate code that is not binary compatible with code generated ++without that switch. Using this switch may require recompiling all ++other modules in a program, including system libraries. Use this ++switch to conform to a non-default data model. ++ ++@item -mfix-and-continue ++@itemx -ffix-and-continue ++@itemx -findirect-data ++@opindex mfix-and-continue ++@opindex ffix-and-continue ++@opindex findirect-data ++Generate code suitable for fast turn around development. Needed to ++enable gdb to dynamically load @code{.o} files into already running ++programs. @option{-findirect-data} and @option{-ffix-and-continue} ++are provided for backwards compatibility. ++ ++@item -all_load ++@opindex all_load ++Loads all members of static archive libraries. ++See man ld(1) for more information. ++ ++@item -arch_errors_fatal ++@opindex arch_errors_fatal ++Cause the errors having to do with files that have the wrong architecture ++to be fatal. ++ ++@item -bind_at_load ++@opindex bind_at_load ++Causes the output file to be marked such that the dynamic linker will ++bind all undefined references when the file is loaded or launched. ++ ++@item -bundle ++@opindex bundle ++Produce a Mach-o bundle format file. ++See man ld(1) for more information. ++ ++@item -bundle_loader @var{executable} ++@opindex bundle_loader ++This option specifies the @var{executable} that will be loading the build ++output file being linked. See man ld(1) for more information. ++ ++@item -dynamiclib ++@opindex dynamiclib ++When passed this option, GCC will produce a dynamic library instead of ++an executable when linking, using the Darwin @file{libtool} command. ++ ++@item -force_cpusubtype_ALL ++@opindex force_cpusubtype_ALL ++This causes GCC's output file to have the @var{ALL} subtype, instead of ++one controlled by the @option{-mcpu} or @option{-march} option. ++ ++@item -allowable_client @var{client_name} ++@itemx -client_name ++@itemx -compatibility_version ++@itemx -current_version ++@itemx -dead_strip ++@itemx -dependency-file ++@itemx -dylib_file ++@itemx -dylinker_install_name ++@itemx -dynamic ++@itemx -exported_symbols_list ++@itemx -filelist ++@itemx -flat_namespace ++@itemx -force_flat_namespace ++@itemx -headerpad_max_install_names ++@itemx -image_base ++@itemx -init ++@itemx -install_name ++@itemx -keep_private_externs ++@itemx -multi_module ++@itemx -multiply_defined ++@itemx -multiply_defined_unused ++@itemx -noall_load ++@itemx -no_dead_strip_inits_and_terms ++@itemx -nofixprebinding ++@itemx -nomultidefs ++@itemx -noprebind ++@itemx -noseglinkedit ++@itemx -pagezero_size ++@itemx -prebind ++@itemx -prebind_all_twolevel_modules ++@itemx -private_bundle ++@itemx -read_only_relocs ++@itemx -sectalign ++@itemx -sectobjectsymbols ++@itemx -whyload ++@itemx -seg1addr ++@itemx -sectcreate ++@itemx -sectobjectsymbols ++@itemx -sectorder ++@itemx -segaddr ++@itemx -segs_read_only_addr ++@itemx -segs_read_write_addr ++@itemx -seg_addr_table ++@itemx -seg_addr_table_filename ++@itemx -seglinkedit ++@itemx -segprot ++@itemx -segs_read_only_addr ++@itemx -segs_read_write_addr ++@itemx -single_module ++@itemx -static ++@itemx -sub_library ++@itemx -sub_umbrella ++@itemx -twolevel_namespace ++@itemx -umbrella ++@itemx -undefined ++@itemx -unexported_symbols_list ++@itemx -weak_reference_mismatches ++@itemx -whatsloaded ++@opindex allowable_client ++@opindex client_name ++@opindex compatibility_version ++@opindex current_version ++@opindex dead_strip ++@opindex dependency-file ++@opindex dylib_file ++@opindex dylinker_install_name ++@opindex dynamic ++@opindex exported_symbols_list ++@opindex filelist ++@opindex flat_namespace ++@opindex force_flat_namespace ++@opindex headerpad_max_install_names ++@opindex image_base ++@opindex init ++@opindex install_name ++@opindex keep_private_externs ++@opindex multi_module ++@opindex multiply_defined ++@opindex multiply_defined_unused ++@opindex noall_load ++@opindex no_dead_strip_inits_and_terms ++@opindex nofixprebinding ++@opindex nomultidefs ++@opindex noprebind ++@opindex noseglinkedit ++@opindex pagezero_size ++@opindex prebind ++@opindex prebind_all_twolevel_modules ++@opindex private_bundle ++@opindex read_only_relocs ++@opindex sectalign ++@opindex sectobjectsymbols ++@opindex whyload ++@opindex seg1addr ++@opindex sectcreate ++@opindex sectobjectsymbols ++@opindex sectorder ++@opindex segaddr ++@opindex segs_read_only_addr ++@opindex segs_read_write_addr ++@opindex seg_addr_table ++@opindex seg_addr_table_filename ++@opindex seglinkedit ++@opindex segprot ++@opindex segs_read_only_addr ++@opindex segs_read_write_addr ++@opindex single_module ++@opindex static ++@opindex sub_library ++@opindex sub_umbrella ++@opindex twolevel_namespace ++@opindex umbrella ++@opindex undefined ++@opindex unexported_symbols_list ++@opindex weak_reference_mismatches ++@opindex whatsloaded ++These options are passed to the Darwin linker. The Darwin linker man page ++describes them in detail. ++@end table ++ ++@node DEC Alpha Options ++@subsection DEC Alpha Options ++ ++These @samp{-m} options are defined for the DEC Alpha implementations: ++ ++@table @gcctabopt ++@item -mno-soft-float ++@itemx -msoft-float ++@opindex mno-soft-float ++@opindex msoft-float ++Use (do not use) the hardware floating-point instructions for ++floating-point operations. When @option{-msoft-float} is specified, ++functions in @file{libgcc.a} will be used to perform floating-point ++operations. Unless they are replaced by routines that emulate the ++floating-point operations, or compiled in such a way as to call such ++emulations routines, these routines will issue floating-point ++operations. If you are compiling for an Alpha without floating-point ++operations, you must ensure that the library is built so as not to call ++them. ++ ++Note that Alpha implementations without floating-point operations are ++required to have floating-point registers. ++ ++@item -mfp-reg ++@itemx -mno-fp-regs ++@opindex mfp-reg ++@opindex mno-fp-regs ++Generate code that uses (does not use) the floating-point register set. ++@option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point ++register set is not used, floating point operands are passed in integer ++registers as if they were integers and floating-point results are passed ++in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence, ++so any function with a floating-point argument or return value called by code ++compiled with @option{-mno-fp-regs} must also be compiled with that ++option. ++ ++A typical use of this option is building a kernel that does not use, ++and hence need not save and restore, any floating-point registers. ++ ++@item -mieee ++@opindex mieee ++The Alpha architecture implements floating-point hardware optimized for ++maximum performance. It is mostly compliant with the IEEE floating ++point standard. However, for full compliance, software assistance is ++required. This option generates code fully IEEE compliant code ++@emph{except} that the @var{inexact-flag} is not maintained (see below). ++If this option is turned on, the preprocessor macro @code{_IEEE_FP} is ++defined during compilation. The resulting code is less efficient but is ++able to correctly support denormalized numbers and exceptional IEEE ++values such as not-a-number and plus/minus infinity. Other Alpha ++compilers call this option @option{-ieee_with_no_inexact}. ++ ++@item -mieee-with-inexact ++@opindex mieee-with-inexact ++This is like @option{-mieee} except the generated code also maintains ++the IEEE @var{inexact-flag}. Turning on this option causes the ++generated code to implement fully-compliant IEEE math. In addition to ++@code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor ++macro. On some Alpha implementations the resulting code may execute ++significantly slower than the code generated by default. Since there is ++very little code that depends on the @var{inexact-flag}, you should ++normally not specify this option. Other Alpha compilers call this ++option @option{-ieee_with_inexact}. ++ ++@item -mfp-trap-mode=@var{trap-mode} ++@opindex mfp-trap-mode ++This option controls what floating-point related traps are enabled. ++Other Alpha compilers call this option @option{-fptm @var{trap-mode}}. ++The trap mode can be set to one of four values: ++ ++@table @samp ++@item n ++This is the default (normal) setting. The only traps that are enabled ++are the ones that cannot be disabled in software (e.g., division by zero ++trap). ++ ++@item u ++In addition to the traps enabled by @samp{n}, underflow traps are enabled ++as well. ++ ++@item su ++Like @samp{u}, but the instructions are marked to be safe for software ++completion (see Alpha architecture manual for details). ++ ++@item sui ++Like @samp{su}, but inexact traps are enabled as well. ++@end table ++ ++@item -mfp-rounding-mode=@var{rounding-mode} ++@opindex mfp-rounding-mode ++Selects the IEEE rounding mode. Other Alpha compilers call this option ++@option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one ++of: ++ ++@table @samp ++@item n ++Normal IEEE rounding mode. Floating point numbers are rounded towards ++the nearest machine number or towards the even machine number in case ++of a tie. ++ ++@item m ++Round towards minus infinity. ++ ++@item c ++Chopped rounding mode. Floating point numbers are rounded towards zero. ++ ++@item d ++Dynamic rounding mode. A field in the floating point control register ++(@var{fpcr}, see Alpha architecture reference manual) controls the ++rounding mode in effect. The C library initializes this register for ++rounding towards plus infinity. Thus, unless your program modifies the ++@var{fpcr}, @samp{d} corresponds to round towards plus infinity. ++@end table ++ ++@item -mtrap-precision=@var{trap-precision} ++@opindex mtrap-precision ++In the Alpha architecture, floating point traps are imprecise. This ++means without software assistance it is impossible to recover from a ++floating trap and program execution normally needs to be terminated. ++GCC can generate code that can assist operating system trap handlers ++in determining the exact location that caused a floating point trap. ++Depending on the requirements of an application, different levels of ++precisions can be selected: ++ ++@table @samp ++@item p ++Program precision. This option is the default and means a trap handler ++can only identify which program caused a floating point exception. ++ ++@item f ++Function precision. The trap handler can determine the function that ++caused a floating point exception. ++ ++@item i ++Instruction precision. The trap handler can determine the exact ++instruction that caused a floating point exception. ++@end table ++ ++Other Alpha compilers provide the equivalent options called ++@option{-scope_safe} and @option{-resumption_safe}. ++ ++@item -mieee-conformant ++@opindex mieee-conformant ++This option marks the generated code as IEEE conformant. You must not ++use this option unless you also specify @option{-mtrap-precision=i} and either ++@option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect ++is to emit the line @samp{.eflag 48} in the function prologue of the ++generated assembly file. Under DEC Unix, this has the effect that ++IEEE-conformant math library routines will be linked in. ++ ++@item -mbuild-constants ++@opindex mbuild-constants ++Normally GCC examines a 32- or 64-bit integer constant to ++see if it can construct it from smaller constants in two or three ++instructions. If it cannot, it will output the constant as a literal and ++generate code to load it from the data segment at runtime. ++ ++Use this option to require GCC to construct @emph{all} integer constants ++using code, even if it takes more instructions (the maximum is six). ++ ++You would typically use this option to build a shared library dynamic ++loader. Itself a shared library, it must relocate itself in memory ++before it can find the variables and constants in its own data segment. ++ ++@item -malpha-as ++@itemx -mgas ++@opindex malpha-as ++@opindex mgas ++Select whether to generate code to be assembled by the vendor-supplied ++assembler (@option{-malpha-as}) or by the GNU assembler @option{-mgas}. ++ ++@item -mbwx ++@itemx -mno-bwx ++@itemx -mcix ++@itemx -mno-cix ++@itemx -mfix ++@itemx -mno-fix ++@itemx -mmax ++@itemx -mno-max ++@opindex mbwx ++@opindex mno-bwx ++@opindex mcix ++@opindex mno-cix ++@opindex mfix ++@opindex mno-fix ++@opindex mmax ++@opindex mno-max ++Indicate whether GCC should generate code to use the optional BWX, ++CIX, FIX and MAX instruction sets. The default is to use the instruction ++sets supported by the CPU type specified via @option{-mcpu=} option or that ++of the CPU on which GCC was built if none was specified. ++ ++@item -mfloat-vax ++@itemx -mfloat-ieee ++@opindex mfloat-vax ++@opindex mfloat-ieee ++Generate code that uses (does not use) VAX F and G floating point ++arithmetic instead of IEEE single and double precision. ++ ++@item -mexplicit-relocs ++@itemx -mno-explicit-relocs ++@opindex mexplicit-relocs ++@opindex mno-explicit-relocs ++Older Alpha assemblers provided no way to generate symbol relocations ++except via assembler macros. Use of these macros does not allow ++optimal instruction scheduling. GNU binutils as of version 2.12 ++supports a new syntax that allows the compiler to explicitly mark ++which relocations should apply to which instructions. This option ++is mostly useful for debugging, as GCC detects the capabilities of ++the assembler when it is built and sets the default accordingly. ++ ++@item -msmall-data ++@itemx -mlarge-data ++@opindex msmall-data ++@opindex mlarge-data ++When @option{-mexplicit-relocs} is in effect, static data is ++accessed via @dfn{gp-relative} relocations. When @option{-msmall-data} ++is used, objects 8 bytes long or smaller are placed in a @dfn{small data area} ++(the @code{.sdata} and @code{.sbss} sections) and are accessed via ++16-bit relocations off of the @code{$gp} register. This limits the ++size of the small data area to 64KB, but allows the variables to be ++directly accessed via a single instruction. ++ ++The default is @option{-mlarge-data}. With this option the data area ++is limited to just below 2GB@. Programs that require more than 2GB of ++data must use @code{malloc} or @code{mmap} to allocate the data in the ++heap instead of in the program's data segment. ++ ++When generating code for shared libraries, @option{-fpic} implies ++@option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}. ++ ++@item -msmall-text ++@itemx -mlarge-text ++@opindex msmall-text ++@opindex mlarge-text ++When @option{-msmall-text} is used, the compiler assumes that the ++code of the entire program (or shared library) fits in 4MB, and is ++thus reachable with a branch instruction. When @option{-msmall-data} ++is used, the compiler can assume that all local symbols share the ++same @code{$gp} value, and thus reduce the number of instructions ++required for a function call from 4 to 1. ++ ++The default is @option{-mlarge-text}. ++ ++@item -mcpu=@var{cpu_type} ++@opindex mcpu ++Set the instruction set and instruction scheduling parameters for ++machine type @var{cpu_type}. You can specify either the @samp{EV} ++style name or the corresponding chip number. GCC supports scheduling ++parameters for the EV4, EV5 and EV6 family of processors and will ++choose the default values for the instruction set from the processor ++you specify. If you do not specify a processor type, GCC will default ++to the processor on which the compiler was built. ++ ++Supported values for @var{cpu_type} are ++ ++@table @samp ++@item ev4 ++@itemx ev45 ++@itemx 21064 ++Schedules as an EV4 and has no instruction set extensions. ++ ++@item ev5 ++@itemx 21164 ++Schedules as an EV5 and has no instruction set extensions. ++ ++@item ev56 ++@itemx 21164a ++Schedules as an EV5 and supports the BWX extension. ++ ++@item pca56 ++@itemx 21164pc ++@itemx 21164PC ++Schedules as an EV5 and supports the BWX and MAX extensions. ++ ++@item ev6 ++@itemx 21264 ++Schedules as an EV6 and supports the BWX, FIX, and MAX extensions. ++ ++@item ev67 ++@itemx 21264a ++Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions. ++@end table ++ ++Native Linux/GNU toolchains also support the value @samp{native}, ++which selects the best architecture option for the host processor. ++@option{-mcpu=native} has no effect if GCC does not recognize ++the processor. ++ ++@item -mtune=@var{cpu_type} ++@opindex mtune ++Set only the instruction scheduling parameters for machine type ++@var{cpu_type}. The instruction set is not changed. ++ ++Native Linux/GNU toolchains also support the value @samp{native}, ++which selects the best architecture option for the host processor. ++@option{-mtune=native} has no effect if GCC does not recognize ++the processor. ++ ++@item -mmemory-latency=@var{time} ++@opindex mmemory-latency ++Sets the latency the scheduler should assume for typical memory ++references as seen by the application. This number is highly ++dependent on the memory access patterns used by the application ++and the size of the external cache on the machine. ++ ++Valid options for @var{time} are ++ ++@table @samp ++@item @var{number} ++A decimal number representing clock cycles. ++ ++@item L1 ++@itemx L2 ++@itemx L3 ++@itemx main ++The compiler contains estimates of the number of clock cycles for ++``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches ++(also called Dcache, Scache, and Bcache), as well as to main memory. ++Note that L3 is only valid for EV5. ++ ++@end table ++@end table ++ ++@node DEC Alpha/VMS Options ++@subsection DEC Alpha/VMS Options ++ ++These @samp{-m} options are defined for the DEC Alpha/VMS implementations: ++ ++@table @gcctabopt ++@item -mvms-return-codes ++@opindex mvms-return-codes ++Return VMS condition codes from main. The default is to return POSIX ++style condition (e.g.@: error) codes. ++@end table ++ ++@node FR30 Options ++@subsection FR30 Options ++@cindex FR30 Options ++ ++These options are defined specifically for the FR30 port. ++ ++@table @gcctabopt ++ ++@item -msmall-model ++@opindex msmall-model ++Use the small address space model. This can produce smaller code, but ++it does assume that all symbolic values and addresses will fit into a ++20-bit range. ++ ++@item -mno-lsim ++@opindex mno-lsim ++Assume that run-time support has been provided and so there is no need ++to include the simulator library (@file{libsim.a}) on the linker ++command line. ++ ++@end table ++ ++@node FRV Options ++@subsection FRV Options ++@cindex FRV Options ++ ++@table @gcctabopt ++@item -mgpr-32 ++@opindex mgpr-32 ++ ++Only use the first 32 general purpose registers. ++ ++@item -mgpr-64 ++@opindex mgpr-64 ++ ++Use all 64 general purpose registers. ++ ++@item -mfpr-32 ++@opindex mfpr-32 ++ ++Use only the first 32 floating point registers. ++ ++@item -mfpr-64 ++@opindex mfpr-64 ++ ++Use all 64 floating point registers ++ ++@item -mhard-float ++@opindex mhard-float ++ ++Use hardware instructions for floating point operations. ++ ++@item -msoft-float ++@opindex msoft-float ++ ++Use library routines for floating point operations. ++ ++@item -malloc-cc ++@opindex malloc-cc ++ ++Dynamically allocate condition code registers. ++ ++@item -mfixed-cc ++@opindex mfixed-cc ++ ++Do not try to dynamically allocate condition code registers, only ++use @code{icc0} and @code{fcc0}. ++ ++@item -mdword ++@opindex mdword ++ ++Change ABI to use double word insns. ++ ++@item -mno-dword ++@opindex mno-dword ++ ++Do not use double word instructions. ++ ++@item -mdouble ++@opindex mdouble ++ ++Use floating point double instructions. ++ ++@item -mno-double ++@opindex mno-double ++ ++Do not use floating point double instructions. ++ ++@item -mmedia ++@opindex mmedia ++ ++Use media instructions. ++ ++@item -mno-media ++@opindex mno-media ++ ++Do not use media instructions. ++ ++@item -mmuladd ++@opindex mmuladd ++ ++Use multiply and add/subtract instructions. ++ ++@item -mno-muladd ++@opindex mno-muladd ++ ++Do not use multiply and add/subtract instructions. ++ ++@item -mfdpic ++@opindex mfdpic ++ ++Select the FDPIC ABI, that uses function descriptors to represent ++pointers to functions. Without any PIC/PIE-related options, it ++implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it ++assumes GOT entries and small data are within a 12-bit range from the ++GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets ++are computed with 32 bits. ++With a @samp{bfin-elf} target, this option implies @option{-msim}. ++ ++@item -minline-plt ++@opindex minline-plt ++ ++Enable inlining of PLT entries in function calls to functions that are ++not known to bind locally. It has no effect without @option{-mfdpic}. ++It's enabled by default if optimizing for speed and compiling for ++shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an ++optimization option such as @option{-O3} or above is present in the ++command line. ++ ++@item -mTLS ++@opindex TLS ++ ++Assume a large TLS segment when generating thread-local code. ++ ++@item -mtls ++@opindex tls ++ ++Do not assume a large TLS segment when generating thread-local code. ++ ++@item -mgprel-ro ++@opindex mgprel-ro ++ ++Enable the use of @code{GPREL} relocations in the FDPIC ABI for data ++that is known to be in read-only sections. It's enabled by default, ++except for @option{-fpic} or @option{-fpie}: even though it may help ++make the global offset table smaller, it trades 1 instruction for 4. ++With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4, ++one of which may be shared by multiple symbols, and it avoids the need ++for a GOT entry for the referenced symbol, so it's more likely to be a ++win. If it is not, @option{-mno-gprel-ro} can be used to disable it. ++ ++@item -multilib-library-pic ++@opindex multilib-library-pic ++ ++Link with the (library, not FD) pic libraries. It's implied by ++@option{-mlibrary-pic}, as well as by @option{-fPIC} and ++@option{-fpic} without @option{-mfdpic}. You should never have to use ++it explicitly. ++ ++@item -mlinked-fp ++@opindex mlinked-fp ++ ++Follow the EABI requirement of always creating a frame pointer whenever ++a stack frame is allocated. This option is enabled by default and can ++be disabled with @option{-mno-linked-fp}. ++ ++@item -mlong-calls ++@opindex mlong-calls ++ ++Use indirect addressing to call functions outside the current ++compilation unit. This allows the functions to be placed anywhere ++within the 32-bit address space. ++ ++@item -malign-labels ++@opindex malign-labels ++ ++Try to align labels to an 8-byte boundary by inserting nops into the ++previous packet. This option only has an effect when VLIW packing ++is enabled. It doesn't create new packets; it merely adds nops to ++existing ones. ++ ++@item -mlibrary-pic ++@opindex mlibrary-pic ++ ++Generate position-independent EABI code. ++ ++@item -macc-4 ++@opindex macc-4 ++ ++Use only the first four media accumulator registers. ++ ++@item -macc-8 ++@opindex macc-8 ++ ++Use all eight media accumulator registers. ++ ++@item -mpack ++@opindex mpack ++ ++Pack VLIW instructions. ++ ++@item -mno-pack ++@opindex mno-pack ++ ++Do not pack VLIW instructions. ++ ++@item -mno-eflags ++@opindex mno-eflags ++ ++Do not mark ABI switches in e_flags. ++ ++@item -mcond-move ++@opindex mcond-move ++ ++Enable the use of conditional-move instructions (default). ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mno-cond-move ++@opindex mno-cond-move ++ ++Disable the use of conditional-move instructions. ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mscc ++@opindex mscc ++ ++Enable the use of conditional set instructions (default). ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mno-scc ++@opindex mno-scc ++ ++Disable the use of conditional set instructions. ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mcond-exec ++@opindex mcond-exec ++ ++Enable the use of conditional execution (default). ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mno-cond-exec ++@opindex mno-cond-exec ++ ++Disable the use of conditional execution. ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mvliw-branch ++@opindex mvliw-branch ++ ++Run a pass to pack branches into VLIW instructions (default). ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mno-vliw-branch ++@opindex mno-vliw-branch ++ ++Do not run a pass to pack branches into VLIW instructions. ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mmulti-cond-exec ++@opindex mmulti-cond-exec ++ ++Enable optimization of @code{&&} and @code{||} in conditional execution ++(default). ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mno-multi-cond-exec ++@opindex mno-multi-cond-exec ++ ++Disable optimization of @code{&&} and @code{||} in conditional execution. ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mnested-cond-exec ++@opindex mnested-cond-exec ++ ++Enable nested conditional execution optimizations (default). ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -mno-nested-cond-exec ++@opindex mno-nested-cond-exec ++ ++Disable nested conditional execution optimizations. ++ ++This switch is mainly for debugging the compiler and will likely be removed ++in a future version. ++ ++@item -moptimize-membar ++@opindex moptimize-membar ++ ++This switch removes redundant @code{membar} instructions from the ++compiler generated code. It is enabled by default. ++ ++@item -mno-optimize-membar ++@opindex mno-optimize-membar ++ ++This switch disables the automatic removal of redundant @code{membar} ++instructions from the generated code. ++ ++@item -mtomcat-stats ++@opindex mtomcat-stats ++ ++Cause gas to print out tomcat statistics. ++ ++@item -mcpu=@var{cpu} ++@opindex mcpu ++ ++Select the processor type for which to generate code. Possible values are ++@samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450}, ++@samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}. ++ ++@end table ++ ++@node GNU/Linux Options ++@subsection GNU/Linux Options ++ ++These @samp{-m} options are defined for GNU/Linux targets: ++ ++@table @gcctabopt ++@item -mglibc ++@opindex mglibc ++Use the GNU C library instead of uClibc. This is the default except ++on @samp{*-*-linux-*uclibc*} targets. ++ ++@item -muclibc ++@opindex muclibc ++Use uClibc instead of the GNU C library. This is the default on ++@samp{*-*-linux-*uclibc*} targets. ++@end table ++ ++@node H8/300 Options ++@subsection H8/300 Options ++ ++These @samp{-m} options are defined for the H8/300 implementations: ++ ++@table @gcctabopt ++@item -mrelax ++@opindex mrelax ++Shorten some address references at link time, when possible; uses the ++linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300, ++ld, Using ld}, for a fuller description. ++ ++@item -mh ++@opindex mh ++Generate code for the H8/300H@. ++ ++@item -ms ++@opindex ms ++Generate code for the H8S@. ++ ++@item -mn ++@opindex mn ++Generate code for the H8S and H8/300H in the normal mode. This switch ++must be used either with @option{-mh} or @option{-ms}. ++ ++@item -ms2600 ++@opindex ms2600 ++Generate code for the H8S/2600. This switch must be used with @option{-ms}. ++ ++@item -mint32 ++@opindex mint32 ++Make @code{int} data 32 bits by default. ++ ++@item -malign-300 ++@opindex malign-300 ++On the H8/300H and H8S, use the same alignment rules as for the H8/300. ++The default for the H8/300H and H8S is to align longs and floats on 4 ++byte boundaries. ++@option{-malign-300} causes them to be aligned on 2 byte boundaries. ++This option has no effect on the H8/300. ++@end table ++ ++@node HPPA Options ++@subsection HPPA Options ++@cindex HPPA Options ++ ++These @samp{-m} options are defined for the HPPA family of computers: ++ ++@table @gcctabopt ++@item -march=@var{architecture-type} ++@opindex march ++Generate code for the specified architecture. The choices for ++@var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA ++1.1, and @samp{2.0} for PA 2.0 processors. Refer to ++@file{/usr/lib/sched.models} on an HP-UX system to determine the proper ++architecture option for your machine. Code compiled for lower numbered ++architectures will run on higher numbered architectures, but not the ++other way around. ++ ++@item -mpa-risc-1-0 ++@itemx -mpa-risc-1-1 ++@itemx -mpa-risc-2-0 ++@opindex mpa-risc-1-0 ++@opindex mpa-risc-1-1 ++@opindex mpa-risc-2-0 ++Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively. ++ ++@item -mbig-switch ++@opindex mbig-switch ++Generate code suitable for big switch tables. Use this option only if ++the assembler/linker complain about out of range branches within a switch ++table. ++ ++@item -mjump-in-delay ++@opindex mjump-in-delay ++Fill delay slots of function calls with unconditional jump instructions ++by modifying the return pointer for the function call to be the target ++of the conditional jump. ++ ++@item -mdisable-fpregs ++@opindex mdisable-fpregs ++Prevent floating point registers from being used in any manner. This is ++necessary for compiling kernels which perform lazy context switching of ++floating point registers. If you use this option and attempt to perform ++floating point operations, the compiler will abort. ++ ++@item -mdisable-indexing ++@opindex mdisable-indexing ++Prevent the compiler from using indexing address modes. This avoids some ++rather obscure problems when compiling MIG generated code under MACH@. ++ ++@item -mno-space-regs ++@opindex mno-space-regs ++Generate code that assumes the target has no space registers. This allows ++GCC to generate faster indirect calls and use unscaled index address modes. ++ ++Such code is suitable for level 0 PA systems and kernels. ++ ++@item -mfast-indirect-calls ++@opindex mfast-indirect-calls ++Generate code that assumes calls never cross space boundaries. This ++allows GCC to emit code which performs faster indirect calls. ++ ++This option will not work in the presence of shared libraries or nested ++functions. ++ ++@item -mfixed-range=@var{register-range} ++@opindex mfixed-range ++Generate code treating the given register range as fixed registers. ++A fixed register is one that the register allocator can not use. This is ++useful when compiling kernel code. A register range is specified as ++two registers separated by a dash. Multiple register ranges can be ++specified separated by a comma. ++ ++@item -mlong-load-store ++@opindex mlong-load-store ++Generate 3-instruction load and store sequences as sometimes required by ++the HP-UX 10 linker. This is equivalent to the @samp{+k} option to ++the HP compilers. ++ ++@item -mportable-runtime ++@opindex mportable-runtime ++Use the portable calling conventions proposed by HP for ELF systems. ++ ++@item -mgas ++@opindex mgas ++Enable the use of assembler directives only GAS understands. ++ ++@item -mschedule=@var{cpu-type} ++@opindex mschedule ++Schedule code according to the constraints for the machine type ++@var{cpu-type}. The choices for @var{cpu-type} are @samp{700} ++@samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer ++to @file{/usr/lib/sched.models} on an HP-UX system to determine the ++proper scheduling option for your machine. The default scheduling is ++@samp{8000}. ++ ++@item -mlinker-opt ++@opindex mlinker-opt ++Enable the optimization pass in the HP-UX linker. Note this makes symbolic ++debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9 ++linkers in which they give bogus error messages when linking some programs. ++ ++@item -msoft-float ++@opindex msoft-float ++Generate output containing library calls for floating point. ++@strong{Warning:} the requisite libraries are not available for all HPPA ++targets. Normally the facilities of the machine's usual C compiler are ++used, but this cannot be done directly in cross-compilation. You must make ++your own arrangements to provide suitable library functions for ++cross-compilation. ++ ++@option{-msoft-float} changes the calling convention in the output file; ++therefore, it is only useful if you compile @emph{all} of a program with ++this option. In particular, you need to compile @file{libgcc.a}, the ++library that comes with GCC, with @option{-msoft-float} in order for ++this to work. ++ ++@item -msio ++@opindex msio ++Generate the predefine, @code{_SIO}, for server IO@. The default is ++@option{-mwsio}. This generates the predefines, @code{__hp9000s700}, ++@code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These ++options are available under HP-UX and HI-UX@. ++ ++@item -mgnu-ld ++@opindex gnu-ld ++Use GNU ld specific options. This passes @option{-shared} to ld when ++building a shared library. It is the default when GCC is configured, ++explicitly or implicitly, with the GNU linker. This option does not ++have any affect on which ld is called, it only changes what parameters ++are passed to that ld. The ld that is called is determined by the ++@option{--with-ld} configure option, GCC's program search path, and ++finally by the user's @env{PATH}. The linker used by GCC can be printed ++using @samp{which `gcc -print-prog-name=ld`}. This option is only available ++on the 64 bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}. ++ ++@item -mhp-ld ++@opindex hp-ld ++Use HP ld specific options. This passes @option{-b} to ld when building ++a shared library and passes @option{+Accept TypeMismatch} to ld on all ++links. It is the default when GCC is configured, explicitly or ++implicitly, with the HP linker. This option does not have any affect on ++which ld is called, it only changes what parameters are passed to that ++ld. The ld that is called is determined by the @option{--with-ld} ++configure option, GCC's program search path, and finally by the user's ++@env{PATH}. The linker used by GCC can be printed using @samp{which ++`gcc -print-prog-name=ld`}. This option is only available on the 64 bit ++HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}. ++ ++@item -mlong-calls ++@opindex mno-long-calls ++Generate code that uses long call sequences. This ensures that a call ++is always able to reach linker generated stubs. The default is to generate ++long calls only when the distance from the call site to the beginning ++of the function or translation unit, as the case may be, exceeds a ++predefined limit set by the branch type being used. The limits for ++normal calls are 7,600,000 and 240,000 bytes, respectively for the ++PA 2.0 and PA 1.X architectures. Sibcalls are always limited at ++240,000 bytes. ++ ++Distances are measured from the beginning of functions when using the ++@option{-ffunction-sections} option, or when using the @option{-mgas} ++and @option{-mno-portable-runtime} options together under HP-UX with ++the SOM linker. ++ ++It is normally not desirable to use this option as it will degrade ++performance. However, it may be useful in large applications, ++particularly when partial linking is used to build the application. ++ ++The types of long calls used depends on the capabilities of the ++assembler and linker, and the type of code being generated. The ++impact on systems that support long absolute calls, and long pic ++symbol-difference or pc-relative calls should be relatively small. ++However, an indirect call is used on 32-bit ELF systems in pic code ++and it is quite long. ++ ++@item -munix=@var{unix-std} ++@opindex march ++Generate compiler predefines and select a startfile for the specified ++UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95} ++and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95} ++is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX ++11.11 and later. The default values are @samp{93} for HP-UX 10.00, ++@samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11 ++and later. ++ ++@option{-munix=93} provides the same predefines as GCC 3.3 and 3.4. ++@option{-munix=95} provides additional predefines for @code{XOPEN_UNIX} ++and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}. ++@option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX}, ++@code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and ++@code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}. ++ ++It is @emph{important} to note that this option changes the interfaces ++for various library routines. It also affects the operational behavior ++of the C library. Thus, @emph{extreme} care is needed in using this ++option. ++ ++Library code that is intended to operate with more than one UNIX ++standard must test, set and restore the variable @var{__xpg4_extended_mask} ++as appropriate. Most GNU software doesn't provide this capability. ++ ++@item -nolibdld ++@opindex nolibdld ++Suppress the generation of link options to search libdld.sl when the ++@option{-static} option is specified on HP-UX 10 and later. ++ ++@item -static ++@opindex static ++The HP-UX implementation of setlocale in libc has a dependency on ++libdld.sl. There isn't an archive version of libdld.sl. Thus, ++when the @option{-static} option is specified, special link options ++are needed to resolve this dependency. ++ ++On HP-UX 10 and later, the GCC driver adds the necessary options to ++link with libdld.sl when the @option{-static} option is specified. ++This causes the resulting binary to be dynamic. On the 64-bit port, ++the linkers generate dynamic binaries by default in any case. The ++@option{-nolibdld} option can be used to prevent the GCC driver from ++adding these link options. ++ ++@item -threads ++@opindex threads ++Add support for multithreading with the @dfn{dce thread} library ++under HP-UX@. This option sets flags for both the preprocessor and ++linker. ++@end table ++ ++@node i386 and x86-64 Options ++@subsection Intel 386 and AMD x86-64 Options ++@cindex i386 Options ++@cindex x86-64 Options ++@cindex Intel 386 Options ++@cindex AMD x86-64 Options ++ ++These @samp{-m} options are defined for the i386 and x86-64 family of ++computers: ++ ++@table @gcctabopt ++@item -mtune=@var{cpu-type} ++@opindex mtune ++Tune to @var{cpu-type} everything applicable about the generated code, except ++for the ABI and the set of available instructions. The choices for ++@var{cpu-type} are: ++@table @emph ++@item generic ++Produce code optimized for the most common IA32/AMD64/EM64T processors. ++If you know the CPU on which your code will run, then you should use ++the corresponding @option{-mtune} option instead of ++@option{-mtune=generic}. But, if you do not know exactly what CPU users ++of your application will have, then you should use this option. ++ ++As new processors are deployed in the marketplace, the behavior of this ++option will change. Therefore, if you upgrade to a newer version of ++GCC, the code generated option will change to reflect the processors ++that were most common when that version of GCC was released. ++ ++There is no @option{-march=generic} option because @option{-march} ++indicates the instruction set the compiler can use, and there is no ++generic instruction set applicable to all processors. In contrast, ++@option{-mtune} indicates the processor (or, in this case, collection of ++processors) for which the code is optimized. ++@item native ++This selects the CPU to tune for at compilation time by determining ++the processor type of the compiling machine. Using @option{-mtune=native} ++will produce code optimized for the local machine under the constraints ++of the selected instruction set. Using @option{-march=native} will ++enable all instruction subsets supported by the local machine (hence ++the result might not run on different machines). ++@item i386 ++Original Intel's i386 CPU@. ++@item i486 ++Intel's i486 CPU@. (No scheduling is implemented for this chip.) ++@item i586, pentium ++Intel Pentium CPU with no MMX support. ++@item pentium-mmx ++Intel PentiumMMX CPU based on Pentium core with MMX instruction set support. ++@item pentiumpro ++Intel PentiumPro CPU@. ++@item i686 ++Same as @code{generic}, but when used as @code{march} option, PentiumPro ++instruction set will be used, so the code will run on all i686 family chips. ++@item pentium2 ++Intel Pentium2 CPU based on PentiumPro core with MMX instruction set support. ++@item pentium3, pentium3m ++Intel Pentium3 CPU based on PentiumPro core with MMX and SSE instruction set ++support. ++@item pentium-m ++Low power version of Intel Pentium3 CPU with MMX, SSE and SSE2 instruction set ++support. Used by Centrino notebooks. ++@item pentium4, pentium4m ++Intel Pentium4 CPU with MMX, SSE and SSE2 instruction set support. ++@item prescott ++Improved version of Intel Pentium4 CPU with MMX, SSE, SSE2 and SSE3 instruction ++set support. ++@item nocona ++Improved version of Intel Pentium4 CPU with 64-bit extensions, MMX, SSE, ++SSE2 and SSE3 instruction set support. ++@item core2 ++Intel Core2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3 ++instruction set support. ++@item k6 ++AMD K6 CPU with MMX instruction set support. ++@item k6-2, k6-3 ++Improved versions of AMD K6 CPU with MMX and 3dNOW!@: instruction set support. ++@item athlon, athlon-tbird ++AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!@: and SSE prefetch instructions ++support. ++@item athlon-4, athlon-xp, athlon-mp ++Improved AMD Athlon CPU with MMX, 3dNOW!, enhanced 3dNOW!@: and full SSE ++instruction set support. ++@item k8, opteron, athlon64, athlon-fx ++AMD K8 core based CPUs with x86-64 instruction set support. (This supersets ++MMX, SSE, SSE2, 3dNOW!, enhanced 3dNOW!@: and 64-bit instruction set extensions.) ++@item k8-sse3, opteron-sse3, athlon64-sse3 ++Improved versions of k8, opteron and athlon64 with SSE3 instruction set support. ++@item amdfam10, barcelona ++AMD Family 10h core based CPUs with x86-64 instruction set support. (This ++supersets MMX, SSE, SSE2, SSE3, SSE4A, 3dNOW!, enhanced 3dNOW!, ABM and 64-bit ++instruction set extensions.) ++@item winchip-c6 ++IDT Winchip C6 CPU, dealt in same way as i486 with additional MMX instruction ++set support. ++@item winchip2 ++IDT Winchip2 CPU, dealt in same way as i486 with additional MMX and 3dNOW!@: ++instruction set support. ++@item c3 ++Via C3 CPU with MMX and 3dNOW!@: instruction set support. (No scheduling is ++implemented for this chip.) ++@item c3-2 ++Via C3-2 CPU with MMX and SSE instruction set support. (No scheduling is ++implemented for this chip.) ++@item geode ++Embedded AMD CPU with MMX and 3dNOW! instruction set support. ++@end table ++ ++While picking a specific @var{cpu-type} will schedule things appropriately ++for that particular chip, the compiler will not generate any code that ++does not run on the i386 without the @option{-march=@var{cpu-type}} option ++being used. ++ ++@item -march=@var{cpu-type} ++@opindex march ++Generate instructions for the machine type @var{cpu-type}. The choices ++for @var{cpu-type} are the same as for @option{-mtune}. Moreover, ++specifying @option{-march=@var{cpu-type}} implies @option{-mtune=@var{cpu-type}}. ++ ++@item -mcpu=@var{cpu-type} ++@opindex mcpu ++A deprecated synonym for @option{-mtune}. ++ ++@item -mfpmath=@var{unit} ++@opindex march ++Generate floating point arithmetics for selected unit @var{unit}. The choices ++for @var{unit} are: ++ ++@table @samp ++@item 387 ++Use the standard 387 floating point coprocessor present majority of chips and ++emulated otherwise. Code compiled with this option will run almost everywhere. ++The temporary results are computed in 80bit precision instead of precision ++specified by the type resulting in slightly different results compared to most ++of other chips. See @option{-ffloat-store} for more detailed description. ++ ++This is the default choice for i386 compiler. ++ ++@item sse ++Use scalar floating point instructions present in the SSE instruction set. ++This instruction set is supported by Pentium3 and newer chips, in the AMD line ++by Athlon-4, Athlon-xp and Athlon-mp chips. The earlier version of SSE ++instruction set supports only single precision arithmetics, thus the double and ++extended precision arithmetics is still done using 387. Later version, present ++only in Pentium4 and the future AMD x86-64 chips supports double precision ++arithmetics too. ++ ++For the i386 compiler, you need to use @option{-march=@var{cpu-type}}, @option{-msse} ++or @option{-msse2} switches to enable SSE extensions and make this option ++effective. For the x86-64 compiler, these extensions are enabled by default. ++ ++The resulting code should be considerably faster in the majority of cases and avoid ++the numerical instability problems of 387 code, but may break some existing ++code that expects temporaries to be 80bit. ++ ++This is the default choice for the x86-64 compiler. ++ ++@item sse,387 ++@itemx sse+387 ++@itemx both ++Attempt to utilize both instruction sets at once. This effectively double the ++amount of available registers and on chips with separate execution units for ++387 and SSE the execution resources too. Use this option with care, as it is ++still experimental, because the GCC register allocator does not model separate ++functional units well resulting in instable performance. ++@end table ++ ++@item -masm=@var{dialect} ++@opindex masm=@var{dialect} ++Output asm instructions using selected @var{dialect}. Supported ++choices are @samp{intel} or @samp{att} (the default one). Darwin does ++not support @samp{intel}. ++ ++@item -mieee-fp ++@itemx -mno-ieee-fp ++@opindex mieee-fp ++@opindex mno-ieee-fp ++Control whether or not the compiler uses IEEE floating point ++comparisons. These handle correctly the case where the result of a ++comparison is unordered. ++ ++@item -msoft-float ++@opindex msoft-float ++Generate output containing library calls for floating point. ++@strong{Warning:} the requisite libraries are not part of GCC@. ++Normally the facilities of the machine's usual C compiler are used, but ++this can't be done directly in cross-compilation. You must make your ++own arrangements to provide suitable library functions for ++cross-compilation. ++ ++On machines where a function returns floating point results in the 80387 ++register stack, some floating point opcodes may be emitted even if ++@option{-msoft-float} is used. ++ ++@item -mno-fp-ret-in-387 ++@opindex mno-fp-ret-in-387 ++Do not use the FPU registers for return values of functions. ++ ++The usual calling convention has functions return values of types ++@code{float} and @code{double} in an FPU register, even if there ++is no FPU@. The idea is that the operating system should emulate ++an FPU@. ++ ++The option @option{-mno-fp-ret-in-387} causes such values to be returned ++in ordinary CPU registers instead. ++ ++@item -mno-fancy-math-387 ++@opindex mno-fancy-math-387 ++Some 387 emulators do not support the @code{sin}, @code{cos} and ++@code{sqrt} instructions for the 387. Specify this option to avoid ++generating those instructions. This option is the default on FreeBSD, ++OpenBSD and NetBSD@. This option is overridden when @option{-march} ++indicates that the target cpu will always have an FPU and so the ++instruction will not need emulation. As of revision 2.6.1, these ++instructions are not generated unless you also use the ++@option{-funsafe-math-optimizations} switch. ++ ++@item -malign-double ++@itemx -mno-align-double ++@opindex malign-double ++@opindex mno-align-double ++Control whether GCC aligns @code{double}, @code{long double}, and ++@code{long long} variables on a two word boundary or a one word ++boundary. Aligning @code{double} variables on a two word boundary will ++produce code that runs somewhat faster on a @samp{Pentium} at the ++expense of more memory. ++ ++On x86-64, @option{-malign-double} is enabled by default. ++ ++@strong{Warning:} if you use the @option{-malign-double} switch, ++structures containing the above types will be aligned differently than ++the published application binary interface specifications for the 386 ++and will not be binary compatible with structures in code compiled ++without that switch. ++ ++@item -m96bit-long-double ++@itemx -m128bit-long-double ++@opindex m96bit-long-double ++@opindex m128bit-long-double ++These switches control the size of @code{long double} type. The i386 ++application binary interface specifies the size to be 96 bits, ++so @option{-m96bit-long-double} is the default in 32 bit mode. ++ ++Modern architectures (Pentium and newer) would prefer @code{long double} ++to be aligned to an 8 or 16 byte boundary. In arrays or structures ++conforming to the ABI, this would not be possible. So specifying a ++@option{-m128bit-long-double} will align @code{long double} ++to a 16 byte boundary by padding the @code{long double} with an additional ++32 bit zero. ++ ++In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as ++its ABI specifies that @code{long double} is to be aligned on 16 byte boundary. ++ ++Notice that neither of these options enable any extra precision over the x87 ++standard of 80 bits for a @code{long double}. ++ ++@strong{Warning:} if you override the default value for your target ABI, the ++structures and arrays containing @code{long double} variables will change ++their size as well as function calling convention for function taking ++@code{long double} will be modified. Hence they will not be binary ++compatible with arrays or structures in code compiled without that switch. ++ ++@item -mlarge-data-threshold=@var{number} ++@opindex mlarge-data-threshold=@var{number} ++When @option{-mcmodel=medium} is specified, the data greater than ++@var{threshold} are placed in large data section. This value must be the ++same across all object linked into the binary and defaults to 65535. ++ ++@item -mrtd ++@opindex mrtd ++Use a different function-calling convention, in which functions that ++take a fixed number of arguments return with the @code{ret} @var{num} ++instruction, which pops their arguments while returning. This saves one ++instruction in the caller since there is no need to pop the arguments ++there. ++ ++You can specify that an individual function is called with this calling ++sequence with the function attribute @samp{stdcall}. You can also ++override the @option{-mrtd} option by using the function attribute ++@samp{cdecl}. @xref{Function Attributes}. ++ ++@strong{Warning:} this calling convention is incompatible with the one ++normally used on Unix, so you cannot use it if you need to call ++libraries compiled with the Unix compiler. ++ ++Also, you must provide function prototypes for all functions that ++take variable numbers of arguments (including @code{printf}); ++otherwise incorrect code will be generated for calls to those ++functions. ++ ++In addition, seriously incorrect code will result if you call a ++function with too many arguments. (Normally, extra arguments are ++harmlessly ignored.) ++ ++@item -mregparm=@var{num} ++@opindex mregparm ++Control how many registers are used to pass integer arguments. By ++default, no registers are used to pass arguments, and at most 3 ++registers can be used. You can control this behavior for a specific ++function by using the function attribute @samp{regparm}. ++@xref{Function Attributes}. ++ ++@strong{Warning:} if you use this switch, and ++@var{num} is nonzero, then you must build all modules with the same ++value, including any libraries. This includes the system libraries and ++startup modules. ++ ++@item -msseregparm ++@opindex msseregparm ++Use SSE register passing conventions for float and double arguments ++and return values. You can control this behavior for a specific ++function by using the function attribute @samp{sseregparm}. ++@xref{Function Attributes}. ++ ++@strong{Warning:} if you use this switch then you must build all ++modules with the same value, including any libraries. This includes ++the system libraries and startup modules. ++ ++@item -mpc32 ++@itemx -mpc64 ++@itemx -mpc80 ++@opindex mpc32 ++@opindex mpc64 ++@opindex mpc80 ++ ++Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32} ++is specified, the significands of results of floating-point operations are ++rounded to 24 bits (single precision); @option{-mpc64} rounds the ++significands of results of floating-point operations to 53 bits (double ++precision) and @option{-mpc80} rounds the significands of results of ++floating-point operations to 64 bits (extended double precision), which is ++the default. When this option is used, floating-point operations in higher ++precisions are not available to the programmer without setting the FPU ++control word explicitly. ++ ++Setting the rounding of floating-point operations to less than the default ++80 bits can speed some programs by 2% or more. Note that some mathematical ++libraries assume that extended precision (80 bit) floating-point operations ++are enabled by default; routines in such libraries could suffer significant ++loss of accuracy, typically through so-called "catastrophic cancellation", ++when this option is used to set the precision to less than extended precision. ++ ++@item -mstackrealign ++@opindex mstackrealign ++Realign the stack at entry. On the Intel x86, the @option{-mstackrealign} ++option will generate an alternate prologue and epilogue that realigns the ++runtime stack if necessary. This supports mixing legacy codes that keep ++a 4-byte aligned stack with modern codes that keep a 16-byte stack for ++SSE compatibility. See also the attribute @code{force_align_arg_pointer}, ++applicable to individual functions. ++ ++@item -mpreferred-stack-boundary=@var{num} ++@opindex mpreferred-stack-boundary ++Attempt to keep the stack boundary aligned to a 2 raised to @var{num} ++byte boundary. If @option{-mpreferred-stack-boundary} is not specified, ++the default is 4 (16 bytes or 128 bits). ++ ++@item -mincoming-stack-boundary=@var{num} ++@opindex mincoming-stack-boundary ++Assume the incoming stack is aligned to a 2 raised to @var{num} byte ++boundary. If @option{-mincoming-stack-boundary} is not specified, ++the one specified by @option{-mpreferred-stack-boundary} will be used. ++ ++On Pentium and PentiumPro, @code{double} and @code{long double} values ++should be aligned to an 8 byte boundary (see @option{-malign-double}) or ++suffer significant run time performance penalties. On Pentium III, the ++Streaming SIMD Extension (SSE) data type @code{__m128} may not work ++properly if it is not 16 byte aligned. ++ ++To ensure proper alignment of this values on the stack, the stack boundary ++must be as aligned as that required by any value stored on the stack. ++Further, every function must be generated such that it keeps the stack ++aligned. Thus calling a function compiled with a higher preferred ++stack boundary from a function compiled with a lower preferred stack ++boundary will most likely misalign the stack. It is recommended that ++libraries that use callbacks always use the default setting. ++ ++This extra alignment does consume extra stack space, and generally ++increases code size. Code that is sensitive to stack space usage, such ++as embedded systems and operating system kernels, may want to reduce the ++preferred alignment to @option{-mpreferred-stack-boundary=2}. ++ ++@item -mmmx ++@itemx -mno-mmx ++@itemx -msse ++@itemx -mno-sse ++@itemx -msse2 ++@itemx -mno-sse2 ++@itemx -msse3 ++@itemx -mno-sse3 ++@itemx -mssse3 ++@itemx -mno-ssse3 ++@itemx -msse4.1 ++@itemx -mno-sse4.1 ++@itemx -msse4.2 ++@itemx -mno-sse4.2 ++@itemx -msse4 ++@itemx -mno-sse4 ++@itemx -mavx ++@itemx -mno-avx ++@itemx -maes ++@itemx -mno-aes ++@itemx -mpclmul ++@itemx -mno-pclmul ++@itemx -msse4a ++@itemx -mno-sse4a ++@itemx -msse5 ++@itemx -mno-sse5 ++@itemx -m3dnow ++@itemx -mno-3dnow ++@itemx -mpopcnt ++@itemx -mno-popcnt ++@itemx -mabm ++@itemx -mno-abm ++@opindex mmmx ++@opindex mno-mmx ++@opindex msse ++@opindex mno-sse ++@opindex m3dnow ++@opindex mno-3dnow ++These switches enable or disable the use of instructions in the MMX, ++SSE, SSE2, SSE3, SSSE3, SSE4.1, AVX, AES, PCLMUL, SSE4A, SSE5, ABM or ++3DNow!@: extended instruction sets. ++These extensions are also available as built-in functions: see ++@ref{X86 Built-in Functions}, for details of the functions enabled and ++disabled by these switches. ++ ++To have SSE/SSE2 instructions generated automatically from floating-point ++code (as opposed to 387 instructions), see @option{-mfpmath=sse}. ++ ++GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it ++generates new AVX instructions or AVX equivalence for all SSEx instructions ++when needed. ++ ++These options will enable GCC to use these extended instructions in ++generated code, even without @option{-mfpmath=sse}. Applications which ++perform runtime CPU detection must compile separate files for each ++supported architecture, using the appropriate flags. In particular, ++the file containing the CPU detection code should be compiled without ++these options. ++ ++@item -mcld ++@opindex mcld ++This option instructs GCC to emit a @code{cld} instruction in the prologue ++of functions that use string instructions. String instructions depend on ++the DF flag to select between autoincrement or autodecrement mode. While the ++ABI specifies the DF flag to be cleared on function entry, some operating ++systems violate this specification by not clearing the DF flag in their ++exception dispatchers. The exception handler can be invoked with the DF flag ++set which leads to wrong direction mode, when string instructions are used. ++This option can be enabled by default on 32-bit x86 targets by configuring ++GCC with the @option{--enable-cld} configure option. Generation of @code{cld} ++instructions can be suppressed with the @option{-mno-cld} compiler option ++in this case. ++ ++@item -mcx16 ++@opindex mcx16 ++This option will enable GCC to use CMPXCHG16B instruction in generated code. ++CMPXCHG16B allows for atomic operations on 128-bit double quadword (or oword) ++data types. This is useful for high resolution counters that could be updated ++by multiple processors (or cores). This instruction is generated as part of ++atomic built-in functions: see @ref{Atomic Builtins} for details. ++ ++@item -msahf ++@opindex msahf ++This option will enable GCC to use SAHF instruction in generated 64-bit code. ++Early Intel CPUs with Intel 64 lacked LAHF and SAHF instructions supported ++by AMD64 until introduction of Pentium 4 G1 step in December 2005. LAHF and ++SAHF are load and store instructions, respectively, for certain status flags. ++In 64-bit mode, SAHF instruction is used to optimize @code{fmod}, @code{drem} ++or @code{remainder} built-in functions: see @ref{Other Builtins} for details. ++ ++@item -mrecip ++@opindex mrecip ++This option will enable GCC to use RCPSS and RSQRTSS instructions (and their ++vectorized variants RCPPS and RSQRTPS) with an additional Newton-Raphson step ++to increase precision instead of DIVSS and SQRTSS (and their vectorized ++variants) for single precision floating point arguments. These instructions ++are generated only when @option{-funsafe-math-optimizations} is enabled ++together with @option{-finite-math-only} and @option{-fno-trapping-math}. ++Note that while the throughput of the sequence is higher than the throughput ++of the non-reciprocal instruction, the precision of the sequence can be ++decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994). ++ ++@item -mveclibabi=@var{type} ++@opindex mveclibabi ++Specifies the ABI type to use for vectorizing intrinsics using an ++external library. Supported types are @code{svml} for the Intel short ++vector math library and @code{acml} for the AMD math core library style ++of interfacing. GCC will currently emit calls to @code{vmldExp2}, ++@code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2}, ++@code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2}, ++@code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2}, ++@code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2}, ++@code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104}, ++@code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4}, ++@code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4}, ++@code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4}, ++@code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding ++function type when @option{-mveclibabi=svml} is used and @code{__vrd2_sin}, ++@code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2}, ++@code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf}, ++@code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f}, ++@code{__vrs4_log10f} and @code{__vrs4_powf} for corresponding function type ++when @option{-mveclibabi=acml} is used. Both @option{-ftree-vectorize} and ++@option{-funsafe-math-optimizations} have to be enabled. A SVML or ACML ABI ++compatible library will have to be specified at link time. ++ ++@item -mpush-args ++@itemx -mno-push-args ++@opindex mpush-args ++@opindex mno-push-args ++Use PUSH operations to store outgoing parameters. This method is shorter ++and usually equally fast as method using SUB/MOV operations and is enabled ++by default. In some cases disabling it may improve performance because of ++improved scheduling and reduced dependencies. ++ ++@item -maccumulate-outgoing-args ++@opindex maccumulate-outgoing-args ++If enabled, the maximum amount of space required for outgoing arguments will be ++computed in the function prologue. This is faster on most modern CPUs ++because of reduced dependencies, improved scheduling and reduced stack usage ++when preferred stack boundary is not equal to 2. The drawback is a notable ++increase in code size. This switch implies @option{-mno-push-args}. ++ ++@item -mthreads ++@opindex mthreads ++Support thread-safe exception handling on @samp{Mingw32}. Code that relies ++on thread-safe exception handling must compile and link all code with the ++@option{-mthreads} option. When compiling, @option{-mthreads} defines ++@option{-D_MT}; when linking, it links in a special thread helper library ++@option{-lmingwthrd} which cleans up per thread exception handling data. ++ ++@item -mno-align-stringops ++@opindex mno-align-stringops ++Do not align destination of inlined string operations. This switch reduces ++code size and improves performance in case the destination is already aligned, ++but GCC doesn't know about it. ++ ++@item -minline-all-stringops ++@opindex minline-all-stringops ++By default GCC inlines string operations only when destination is known to be ++aligned at least to 4 byte boundary. This enables more inlining, increase code ++size, but may improve performance of code that depends on fast memcpy, strlen ++and memset for short lengths. ++ ++@item -minline-stringops-dynamically ++@opindex minline-stringops-dynamically ++For string operation of unknown size, inline runtime checks so for small ++blocks inline code is used, while for large blocks library call is used. ++ ++@item -mstringop-strategy=@var{alg} ++@opindex mstringop-strategy=@var{alg} ++Overwrite internal decision heuristic about particular algorithm to inline ++string operation with. The allowed values are @code{rep_byte}, ++@code{rep_4byte}, @code{rep_8byte} for expanding using i386 @code{rep} prefix ++of specified size, @code{byte_loop}, @code{loop}, @code{unrolled_loop} for ++expanding inline loop, @code{libcall} for always expanding library call. ++ ++@item -momit-leaf-frame-pointer ++@opindex momit-leaf-frame-pointer ++Don't keep the frame pointer in a register for leaf functions. This ++avoids the instructions to save, set up and restore frame pointers and ++makes an extra register available in leaf functions. The option ++@option{-fomit-frame-pointer} removes the frame pointer for all functions ++which might make debugging harder. ++ ++@item -mtls-direct-seg-refs ++@itemx -mno-tls-direct-seg-refs ++@opindex mtls-direct-seg-refs ++Controls whether TLS variables may be accessed with offsets from the ++TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit), ++or whether the thread base pointer must be added. Whether or not this ++is legal depends on the operating system, and whether it maps the ++segment to cover the entire TLS area. ++ ++For systems that use GNU libc, the default is on. ++ ++@item -mfused-madd ++@itemx -mno-fused-madd ++@opindex mfused-madd ++Enable automatic generation of fused floating point multiply-add instructions ++if the ISA supports such instructions. The -mfused-madd option is on by ++default. The fused multiply-add instructions have a different ++rounding behavior compared to executing a multiply followed by an add. ++ ++@item -msse2avx ++@itemx -mno-sse2avx ++@opindex msse2avx ++Specify that the assembler should encode SSE instructions with VEX ++prefix. The option @option{-mavx} turns this on by default. ++@end table ++ ++These @samp{-m} switches are supported in addition to the above ++on AMD x86-64 processors in 64-bit environments. ++ ++@table @gcctabopt ++@item -m32 ++@itemx -m64 ++@opindex m32 ++@opindex m64 ++Generate code for a 32-bit or 64-bit environment. ++The 32-bit environment sets int, long and pointer to 32 bits and ++generates code that runs on any i386 system. ++The 64-bit environment sets int to 32 bits and long and pointer ++to 64 bits and generates code for AMD's x86-64 architecture. For ++darwin only the -m64 option turns off the @option{-fno-pic} and ++@option{-mdynamic-no-pic} options. ++ ++@item -mno-red-zone ++@opindex no-red-zone ++Do not use a so called red zone for x86-64 code. The red zone is mandated ++by the x86-64 ABI, it is a 128-byte area beyond the location of the ++stack pointer that will not be modified by signal or interrupt handlers ++and therefore can be used for temporary data without adjusting the stack ++pointer. The flag @option{-mno-red-zone} disables this red zone. ++ ++@item -mcmodel=small ++@opindex mcmodel=small ++Generate code for the small code model: the program and its symbols must ++be linked in the lower 2 GB of the address space. Pointers are 64 bits. ++Programs can be statically or dynamically linked. This is the default ++code model. ++ ++@item -mcmodel=kernel ++@opindex mcmodel=kernel ++Generate code for the kernel code model. The kernel runs in the ++negative 2 GB of the address space. ++This model has to be used for Linux kernel code. ++ ++@item -mcmodel=medium ++@opindex mcmodel=medium ++Generate code for the medium model: The program is linked in the lower 2 ++GB of the address space. Small symbols are also placed there. Symbols ++with sizes larger than @option{-mlarge-data-threshold} are put into ++large data or bss sections and can be located above 2GB. Programs can ++be statically or dynamically linked. ++ ++@item -mcmodel=large ++@opindex mcmodel=large ++Generate code for the large model: This model makes no assumptions ++about addresses and sizes of sections. ++@end table ++ ++@node i386 and x86-64 Windows Options ++@subsection i386 and x86-64 Windows Options ++@cindex i386 and x86-64 Windows Options ++ ++These additional options are available for Windows targets: ++ ++@table @gcctabopt ++@item -mconsole ++@opindex mconsole ++This option is available for Cygwin and MinGW targets. It ++specifies that a console application is to be generated, by ++instructing the linker to set the PE header subsystem type ++required for console applications. ++This is the default behaviour for Cygwin and MinGW targets. ++ ++@item -mcygwin ++@opindex mcygwin ++This option is available for Cygwin targets. It specifies that ++the Cygwin internal interface is to be used for predefined ++preprocessor macros, C runtime libraries and related linker ++paths and options. For Cygwin targets this is the default behaviour. ++This option is deprecated and will be removed in a future release. ++ ++@item -mno-cygwin ++@opindex mno-cygwin ++This option is available for Cygwin targets. It specifies that ++the MinGW internal interface is to be used instead of Cygwin's, by ++setting MinGW-related predefined macros and linker paths and default ++library options. ++This option is deprecated and will be removed in a future release. ++ ++@item -mdll ++@opindex mdll ++This option is available for Cygwin and MinGW targets. It ++specifies that a DLL - a dynamic link library - is to be ++generated, enabling the selection of the required runtime ++startup object and entry point. ++ ++@item -mnop-fun-dllimport ++@opindex mnop-fun-dllimport ++This option is available for Cygwin and MinGW targets. It ++specifies that the dllimport attribute should be ignored. ++ ++@item -mthread ++@opindex mthread ++This option is available for MinGW targets. It specifies ++that MinGW-specific thread support is to be used. ++ ++@item -mwin32 ++@opindex mwin32 ++This option is available for Cygwin and MinGW targets. It ++specifies that the typical Windows pre-defined macros are to ++be set in the pre-processor, but does not influence the choice ++of runtime library/startup code. ++ ++@item -mwindows ++@opindex mwindows ++This option is available for Cygwin and MinGW targets. It ++specifies that a GUI application is to be generated by ++instructing the linker to set the PE header subsystem type ++appropriately. ++@end table ++ ++See also under @ref{i386 and x86-64 Options} for standard options. ++ ++@node IA-64 Options ++@subsection IA-64 Options ++@cindex IA-64 Options ++ ++These are the @samp{-m} options defined for the Intel IA-64 architecture. ++ ++@table @gcctabopt ++@item -mbig-endian ++@opindex mbig-endian ++Generate code for a big endian target. This is the default for HP-UX@. ++ ++@item -mlittle-endian ++@opindex mlittle-endian ++Generate code for a little endian target. This is the default for AIX5 ++and GNU/Linux. ++ ++@item -mgnu-as ++@itemx -mno-gnu-as ++@opindex mgnu-as ++@opindex mno-gnu-as ++Generate (or don't) code for the GNU assembler. This is the default. ++@c Also, this is the default if the configure option @option{--with-gnu-as} ++@c is used. ++ ++@item -mgnu-ld ++@itemx -mno-gnu-ld ++@opindex mgnu-ld ++@opindex mno-gnu-ld ++Generate (or don't) code for the GNU linker. This is the default. ++@c Also, this is the default if the configure option @option{--with-gnu-ld} ++@c is used. ++ ++@item -mno-pic ++@opindex mno-pic ++Generate code that does not use a global pointer register. The result ++is not position independent code, and violates the IA-64 ABI@. ++ ++@item -mvolatile-asm-stop ++@itemx -mno-volatile-asm-stop ++@opindex mvolatile-asm-stop ++@opindex mno-volatile-asm-stop ++Generate (or don't) a stop bit immediately before and after volatile asm ++statements. ++ ++@item -mregister-names ++@itemx -mno-register-names ++@opindex mregister-names ++@opindex mno-register-names ++Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for ++the stacked registers. This may make assembler output more readable. ++ ++@item -mno-sdata ++@itemx -msdata ++@opindex mno-sdata ++@opindex msdata ++Disable (or enable) optimizations that use the small data section. This may ++be useful for working around optimizer bugs. ++ ++@item -mconstant-gp ++@opindex mconstant-gp ++Generate code that uses a single constant global pointer value. This is ++useful when compiling kernel code. ++ ++@item -mauto-pic ++@opindex mauto-pic ++Generate code that is self-relocatable. This implies @option{-mconstant-gp}. ++This is useful when compiling firmware code. ++ ++@item -minline-float-divide-min-latency ++@opindex minline-float-divide-min-latency ++Generate code for inline divides of floating point values ++using the minimum latency algorithm. ++ ++@item -minline-float-divide-max-throughput ++@opindex minline-float-divide-max-throughput ++Generate code for inline divides of floating point values ++using the maximum throughput algorithm. ++ ++@item -minline-int-divide-min-latency ++@opindex minline-int-divide-min-latency ++Generate code for inline divides of integer values ++using the minimum latency algorithm. ++ ++@item -minline-int-divide-max-throughput ++@opindex minline-int-divide-max-throughput ++Generate code for inline divides of integer values ++using the maximum throughput algorithm. ++ ++@item -minline-sqrt-min-latency ++@opindex minline-sqrt-min-latency ++Generate code for inline square roots ++using the minimum latency algorithm. ++ ++@item -minline-sqrt-max-throughput ++@opindex minline-sqrt-max-throughput ++Generate code for inline square roots ++using the maximum throughput algorithm. ++ ++@item -mno-dwarf2-asm ++@itemx -mdwarf2-asm ++@opindex mno-dwarf2-asm ++@opindex mdwarf2-asm ++Don't (or do) generate assembler code for the DWARF2 line number debugging ++info. This may be useful when not using the GNU assembler. ++ ++@item -mearly-stop-bits ++@itemx -mno-early-stop-bits ++@opindex mearly-stop-bits ++@opindex mno-early-stop-bits ++Allow stop bits to be placed earlier than immediately preceding the ++instruction that triggered the stop bit. This can improve instruction ++scheduling, but does not always do so. ++ ++@item -mfixed-range=@var{register-range} ++@opindex mfixed-range ++Generate code treating the given register range as fixed registers. ++A fixed register is one that the register allocator can not use. This is ++useful when compiling kernel code. A register range is specified as ++two registers separated by a dash. Multiple register ranges can be ++specified separated by a comma. ++ ++@item -mtls-size=@var{tls-size} ++@opindex mtls-size ++Specify bit size of immediate TLS offsets. Valid values are 14, 22, and ++64. ++ ++@item -mtune=@var{cpu-type} ++@opindex mtune ++Tune the instruction scheduling for a particular CPU, Valid values are ++itanium, itanium1, merced, itanium2, and mckinley. ++ ++@item -mt ++@itemx -pthread ++@opindex mt ++@opindex pthread ++Add support for multithreading using the POSIX threads library. This ++option sets flags for both the preprocessor and linker. It does ++not affect the thread safety of object code produced by the compiler or ++that of libraries supplied with it. These are HP-UX specific flags. ++ ++@item -milp32 ++@itemx -mlp64 ++@opindex milp32 ++@opindex mlp64 ++Generate code for a 32-bit or 64-bit environment. ++The 32-bit environment sets int, long and pointer to 32 bits. ++The 64-bit environment sets int to 32 bits and long and pointer ++to 64 bits. These are HP-UX specific flags. ++ ++@item -mno-sched-br-data-spec ++@itemx -msched-br-data-spec ++@opindex mno-sched-br-data-spec ++@opindex msched-br-data-spec ++(Dis/En)able data speculative scheduling before reload. ++This will result in generation of the ld.a instructions and ++the corresponding check instructions (ld.c / chk.a). ++The default is 'disable'. ++ ++@item -msched-ar-data-spec ++@itemx -mno-sched-ar-data-spec ++@opindex msched-ar-data-spec ++@opindex mno-sched-ar-data-spec ++(En/Dis)able data speculative scheduling after reload. ++This will result in generation of the ld.a instructions and ++the corresponding check instructions (ld.c / chk.a). ++The default is 'enable'. ++ ++@item -mno-sched-control-spec ++@itemx -msched-control-spec ++@opindex mno-sched-control-spec ++@opindex msched-control-spec ++(Dis/En)able control speculative scheduling. This feature is ++available only during region scheduling (i.e.@: before reload). ++This will result in generation of the ld.s instructions and ++the corresponding check instructions chk.s . ++The default is 'disable'. ++ ++@item -msched-br-in-data-spec ++@itemx -mno-sched-br-in-data-spec ++@opindex msched-br-in-data-spec ++@opindex mno-sched-br-in-data-spec ++(En/Dis)able speculative scheduling of the instructions that ++are dependent on the data speculative loads before reload. ++This is effective only with @option{-msched-br-data-spec} enabled. ++The default is 'enable'. ++ ++@item -msched-ar-in-data-spec ++@itemx -mno-sched-ar-in-data-spec ++@opindex msched-ar-in-data-spec ++@opindex mno-sched-ar-in-data-spec ++(En/Dis)able speculative scheduling of the instructions that ++are dependent on the data speculative loads after reload. ++This is effective only with @option{-msched-ar-data-spec} enabled. ++The default is 'enable'. ++ ++@item -msched-in-control-spec ++@itemx -mno-sched-in-control-spec ++@opindex msched-in-control-spec ++@opindex mno-sched-in-control-spec ++(En/Dis)able speculative scheduling of the instructions that ++are dependent on the control speculative loads. ++This is effective only with @option{-msched-control-spec} enabled. ++The default is 'enable'. ++ ++@item -msched-ldc ++@itemx -mno-sched-ldc ++@opindex msched-ldc ++@opindex mno-sched-ldc ++(En/Dis)able use of simple data speculation checks ld.c . ++If disabled, only chk.a instructions will be emitted to check ++data speculative loads. ++The default is 'enable'. ++ ++@item -mno-sched-control-ldc ++@itemx -msched-control-ldc ++@opindex mno-sched-control-ldc ++@opindex msched-control-ldc ++(Dis/En)able use of ld.c instructions to check control speculative loads. ++If enabled, in case of control speculative load with no speculatively ++scheduled dependent instructions this load will be emitted as ld.sa and ++ld.c will be used to check it. ++The default is 'disable'. ++ ++@item -mno-sched-spec-verbose ++@itemx -msched-spec-verbose ++@opindex mno-sched-spec-verbose ++@opindex msched-spec-verbose ++(Dis/En)able printing of the information about speculative motions. ++ ++@item -mno-sched-prefer-non-data-spec-insns ++@itemx -msched-prefer-non-data-spec-insns ++@opindex mno-sched-prefer-non-data-spec-insns ++@opindex msched-prefer-non-data-spec-insns ++If enabled, data speculative instructions will be chosen for schedule ++only if there are no other choices at the moment. This will make ++the use of the data speculation much more conservative. ++The default is 'disable'. ++ ++@item -mno-sched-prefer-non-control-spec-insns ++@itemx -msched-prefer-non-control-spec-insns ++@opindex mno-sched-prefer-non-control-spec-insns ++@opindex msched-prefer-non-control-spec-insns ++If enabled, control speculative instructions will be chosen for schedule ++only if there are no other choices at the moment. This will make ++the use of the control speculation much more conservative. ++The default is 'disable'. ++ ++@item -mno-sched-count-spec-in-critical-path ++@itemx -msched-count-spec-in-critical-path ++@opindex mno-sched-count-spec-in-critical-path ++@opindex msched-count-spec-in-critical-path ++If enabled, speculative dependencies will be considered during ++computation of the instructions priorities. This will make the use of the ++speculation a bit more conservative. ++The default is 'disable'. ++ ++@end table ++ ++@node M32C Options ++@subsection M32C Options ++@cindex M32C options ++ ++@table @gcctabopt ++@item -mcpu=@var{name} ++@opindex mcpu= ++Select the CPU for which code is generated. @var{name} may be one of ++@samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to ++/60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for ++the M32C/80 series. ++ ++@item -msim ++@opindex msim ++Specifies that the program will be run on the simulator. This causes ++an alternate runtime library to be linked in which supports, for ++example, file I/O@. You must not use this option when generating ++programs that will run on real hardware; you must provide your own ++runtime library for whatever I/O functions are needed. ++ ++@item -memregs=@var{number} ++@opindex memregs= ++Specifies the number of memory-based pseudo-registers GCC will use ++during code generation. These pseudo-registers will be used like real ++registers, so there is a tradeoff between GCC's ability to fit the ++code into available registers, and the performance penalty of using ++memory instead of registers. Note that all modules in a program must ++be compiled with the same value for this option. Because of that, you ++must not use this option with the default runtime libraries gcc ++builds. ++ ++@end table ++ ++@node M32R/D Options ++@subsection M32R/D Options ++@cindex M32R/D options ++ ++These @option{-m} options are defined for Renesas M32R/D architectures: ++ ++@table @gcctabopt ++@item -m32r2 ++@opindex m32r2 ++Generate code for the M32R/2@. ++ ++@item -m32rx ++@opindex m32rx ++Generate code for the M32R/X@. ++ ++@item -m32r ++@opindex m32r ++Generate code for the M32R@. This is the default. ++ ++@item -mmodel=small ++@opindex mmodel=small ++Assume all objects live in the lower 16MB of memory (so that their addresses ++can be loaded with the @code{ld24} instruction), and assume all subroutines ++are reachable with the @code{bl} instruction. ++This is the default. ++ ++The addressability of a particular object can be set with the ++@code{model} attribute. ++ ++@item -mmodel=medium ++@opindex mmodel=medium ++Assume objects may be anywhere in the 32-bit address space (the compiler ++will generate @code{seth/add3} instructions to load their addresses), and ++assume all subroutines are reachable with the @code{bl} instruction. ++ ++@item -mmodel=large ++@opindex mmodel=large ++Assume objects may be anywhere in the 32-bit address space (the compiler ++will generate @code{seth/add3} instructions to load their addresses), and ++assume subroutines may not be reachable with the @code{bl} instruction ++(the compiler will generate the much slower @code{seth/add3/jl} ++instruction sequence). ++ ++@item -msdata=none ++@opindex msdata=none ++Disable use of the small data area. Variables will be put into ++one of @samp{.data}, @samp{bss}, or @samp{.rodata} (unless the ++@code{section} attribute has been specified). ++This is the default. ++ ++The small data area consists of sections @samp{.sdata} and @samp{.sbss}. ++Objects may be explicitly put in the small data area with the ++@code{section} attribute using one of these sections. ++ ++@item -msdata=sdata ++@opindex msdata=sdata ++Put small global and static data in the small data area, but do not ++generate special code to reference them. ++ ++@item -msdata=use ++@opindex msdata=use ++Put small global and static data in the small data area, and generate ++special instructions to reference them. ++ ++@item -G @var{num} ++@opindex G ++@cindex smaller data references ++Put global and static objects less than or equal to @var{num} bytes ++into the small data or bss sections instead of the normal data or bss ++sections. The default value of @var{num} is 8. ++The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use} ++for this option to have any effect. ++ ++All modules should be compiled with the same @option{-G @var{num}} value. ++Compiling with different values of @var{num} may or may not work; if it ++doesn't the linker will give an error message---incorrect code will not be ++generated. ++ ++@item -mdebug ++@opindex mdebug ++Makes the M32R specific code in the compiler display some statistics ++that might help in debugging programs. ++ ++@item -malign-loops ++@opindex malign-loops ++Align all loops to a 32-byte boundary. ++ ++@item -mno-align-loops ++@opindex mno-align-loops ++Do not enforce a 32-byte alignment for loops. This is the default. ++ ++@item -missue-rate=@var{number} ++@opindex missue-rate=@var{number} ++Issue @var{number} instructions per cycle. @var{number} can only be 1 ++or 2. ++ ++@item -mbranch-cost=@var{number} ++@opindex mbranch-cost=@var{number} ++@var{number} can only be 1 or 2. If it is 1 then branches will be ++preferred over conditional code, if it is 2, then the opposite will ++apply. ++ ++@item -mflush-trap=@var{number} ++@opindex mflush-trap=@var{number} ++Specifies the trap number to use to flush the cache. The default is ++12. Valid numbers are between 0 and 15 inclusive. ++ ++@item -mno-flush-trap ++@opindex mno-flush-trap ++Specifies that the cache cannot be flushed by using a trap. ++ ++@item -mflush-func=@var{name} ++@opindex mflush-func=@var{name} ++Specifies the name of the operating system function to call to flush ++the cache. The default is @emph{_flush_cache}, but a function call ++will only be used if a trap is not available. ++ ++@item -mno-flush-func ++@opindex mno-flush-func ++Indicates that there is no OS function for flushing the cache. ++ ++@end table ++ ++@node M680x0 Options ++@subsection M680x0 Options ++@cindex M680x0 options ++ ++These are the @samp{-m} options defined for M680x0 and ColdFire processors. ++The default settings depend on which architecture was selected when ++the compiler was configured; the defaults for the most common choices ++are given below. ++ ++@table @gcctabopt ++@item -march=@var{arch} ++@opindex march ++Generate code for a specific M680x0 or ColdFire instruction set ++architecture. Permissible values of @var{arch} for M680x0 ++architectures are: @samp{68000}, @samp{68010}, @samp{68020}, ++@samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire ++architectures are selected according to Freescale's ISA classification ++and the permissible values are: @samp{isaa}, @samp{isaaplus}, ++@samp{isab} and @samp{isac}. ++ ++gcc defines a macro @samp{__mcf@var{arch}__} whenever it is generating ++code for a ColdFire target. The @var{arch} in this macro is one of the ++@option{-march} arguments given above. ++ ++When used together, @option{-march} and @option{-mtune} select code ++that runs on a family of similar processors but that is optimized ++for a particular microarchitecture. ++ ++@item -mcpu=@var{cpu} ++@opindex mcpu ++Generate code for a specific M680x0 or ColdFire processor. ++The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020}, ++@samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332} ++and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table ++below, which also classifies the CPUs into families: ++ ++@multitable @columnfractions 0.20 0.80 ++@item @strong{Family} @tab @strong{@samp{-mcpu} arguments} ++@item @samp{51qe} @tab @samp{51qe} ++@item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206} ++@item @samp{5206e} @tab @samp{5206e} ++@item @samp{5208} @tab @samp{5207} @samp{5208} ++@item @samp{5211a} @tab @samp{5210a} @samp{5211a} ++@item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213} ++@item @samp{5216} @tab @samp{5214} @samp{5216} ++@item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235} ++@item @samp{5225} @tab @samp{5224} @samp{5225} ++@item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x} ++@item @samp{5249} @tab @samp{5249} ++@item @samp{5250} @tab @samp{5250} ++@item @samp{5271} @tab @samp{5270} @samp{5271} ++@item @samp{5272} @tab @samp{5272} ++@item @samp{5275} @tab @samp{5274} @samp{5275} ++@item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x} ++@item @samp{5307} @tab @samp{5307} ++@item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x} ++@item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x} ++@item @samp{5407} @tab @samp{5407} ++@item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485} ++@end multitable ++ ++@option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if ++@var{arch} is compatible with @var{cpu}. Other combinations of ++@option{-mcpu} and @option{-march} are rejected. ++ ++gcc defines the macro @samp{__mcf_cpu_@var{cpu}} when ColdFire target ++@var{cpu} is selected. It also defines @samp{__mcf_family_@var{family}}, ++where the value of @var{family} is given by the table above. ++ ++@item -mtune=@var{tune} ++@opindex mtune ++Tune the code for a particular microarchitecture, within the ++constraints set by @option{-march} and @option{-mcpu}. ++The M680x0 microarchitectures are: @samp{68000}, @samp{68010}, ++@samp{68020}, @samp{68030}, @samp{68040}, @samp{68060} ++and @samp{cpu32}. The ColdFire microarchitectures ++are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}. ++ ++You can also use @option{-mtune=68020-40} for code that needs ++to run relatively well on 68020, 68030 and 68040 targets. ++@option{-mtune=68020-60} is similar but includes 68060 targets ++as well. These two options select the same tuning decisions as ++@option{-m68020-40} and @option{-m68020-60} respectively. ++ ++gcc defines the macros @samp{__mc@var{arch}} and @samp{__mc@var{arch}__} ++when tuning for 680x0 architecture @var{arch}. It also defines ++@samp{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std} ++option is used. If gcc is tuning for a range of architectures, ++as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60}, ++it defines the macros for every architecture in the range. ++ ++gcc also defines the macro @samp{__m@var{uarch}__} when tuning for ++ColdFire microarchitecture @var{uarch}, where @var{uarch} is one ++of the arguments given above. ++ ++@item -m68000 ++@itemx -mc68000 ++@opindex m68000 ++@opindex mc68000 ++Generate output for a 68000. This is the default ++when the compiler is configured for 68000-based systems. ++It is equivalent to @option{-march=68000}. ++ ++Use this option for microcontrollers with a 68000 or EC000 core, ++including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356. ++ ++@item -m68010 ++@opindex m68010 ++Generate output for a 68010. This is the default ++when the compiler is configured for 68010-based systems. ++It is equivalent to @option{-march=68010}. ++ ++@item -m68020 ++@itemx -mc68020 ++@opindex m68020 ++@opindex mc68020 ++Generate output for a 68020. This is the default ++when the compiler is configured for 68020-based systems. ++It is equivalent to @option{-march=68020}. ++ ++@item -m68030 ++@opindex m68030 ++Generate output for a 68030. This is the default when the compiler is ++configured for 68030-based systems. It is equivalent to ++@option{-march=68030}. ++ ++@item -m68040 ++@opindex m68040 ++Generate output for a 68040. This is the default when the compiler is ++configured for 68040-based systems. It is equivalent to ++@option{-march=68040}. ++ ++This option inhibits the use of 68881/68882 instructions that have to be ++emulated by software on the 68040. Use this option if your 68040 does not ++have code to emulate those instructions. ++ ++@item -m68060 ++@opindex m68060 ++Generate output for a 68060. This is the default when the compiler is ++configured for 68060-based systems. It is equivalent to ++@option{-march=68060}. ++ ++This option inhibits the use of 68020 and 68881/68882 instructions that ++have to be emulated by software on the 68060. Use this option if your 68060 ++does not have code to emulate those instructions. ++ ++@item -mcpu32 ++@opindex mcpu32 ++Generate output for a CPU32. This is the default ++when the compiler is configured for CPU32-based systems. ++It is equivalent to @option{-march=cpu32}. ++ ++Use this option for microcontrollers with a ++CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334, ++68336, 68340, 68341, 68349 and 68360. ++ ++@item -m5200 ++@opindex m5200 ++Generate output for a 520X ColdFire CPU@. This is the default ++when the compiler is configured for 520X-based systems. ++It is equivalent to @option{-mcpu=5206}, and is now deprecated ++in favor of that option. ++ ++Use this option for microcontroller with a 5200 core, including ++the MCF5202, MCF5203, MCF5204 and MCF5206. ++ ++@item -m5206e ++@opindex m5206e ++Generate output for a 5206e ColdFire CPU@. The option is now ++deprecated in favor of the equivalent @option{-mcpu=5206e}. ++ ++@item -m528x ++@opindex m528x ++Generate output for a member of the ColdFire 528X family. ++The option is now deprecated in favor of the equivalent ++@option{-mcpu=528x}. ++ ++@item -m5307 ++@opindex m5307 ++Generate output for a ColdFire 5307 CPU@. The option is now deprecated ++in favor of the equivalent @option{-mcpu=5307}. ++ ++@item -m5407 ++@opindex m5407 ++Generate output for a ColdFire 5407 CPU@. The option is now deprecated ++in favor of the equivalent @option{-mcpu=5407}. ++ ++@item -mcfv4e ++@opindex mcfv4e ++Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x). ++This includes use of hardware floating point instructions. ++The option is equivalent to @option{-mcpu=547x}, and is now ++deprecated in favor of that option. ++ ++@item -m68020-40 ++@opindex m68020-40 ++Generate output for a 68040, without using any of the new instructions. ++This results in code which can run relatively efficiently on either a ++68020/68881 or a 68030 or a 68040. The generated code does use the ++68881 instructions that are emulated on the 68040. ++ ++The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}. ++ ++@item -m68020-60 ++@opindex m68020-60 ++Generate output for a 68060, without using any of the new instructions. ++This results in code which can run relatively efficiently on either a ++68020/68881 or a 68030 or a 68040. The generated code does use the ++68881 instructions that are emulated on the 68060. ++ ++The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}. ++ ++@item -mhard-float ++@itemx -m68881 ++@opindex mhard-float ++@opindex m68881 ++Generate floating-point instructions. This is the default for 68020 ++and above, and for ColdFire devices that have an FPU@. It defines the ++macro @samp{__HAVE_68881__} on M680x0 targets and @samp{__mcffpu__} ++on ColdFire targets. ++ ++@item -msoft-float ++@opindex msoft-float ++Do not generate floating-point instructions; use library calls instead. ++This is the default for 68000, 68010, and 68832 targets. It is also ++the default for ColdFire devices that have no FPU. ++ ++@item -mdiv ++@itemx -mno-div ++@opindex mdiv ++@opindex mno-div ++Generate (do not generate) ColdFire hardware divide and remainder ++instructions. If @option{-march} is used without @option{-mcpu}, ++the default is ``on'' for ColdFire architectures and ``off'' for M680x0 ++architectures. Otherwise, the default is taken from the target CPU ++(either the default CPU, or the one specified by @option{-mcpu}). For ++example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for ++@option{-mcpu=5206e}. ++ ++gcc defines the macro @samp{__mcfhwdiv__} when this option is enabled. ++ ++@item -mshort ++@opindex mshort ++Consider type @code{int} to be 16 bits wide, like @code{short int}. ++Additionally, parameters passed on the stack are also aligned to a ++16-bit boundary even on targets whose API mandates promotion to 32-bit. ++ ++@item -mno-short ++@opindex mno-short ++Do not consider type @code{int} to be 16 bits wide. This is the default. ++ ++@item -mnobitfield ++@itemx -mno-bitfield ++@opindex mnobitfield ++@opindex mno-bitfield ++Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32} ++and @option{-m5200} options imply @w{@option{-mnobitfield}}. ++ ++@item -mbitfield ++@opindex mbitfield ++Do use the bit-field instructions. The @option{-m68020} option implies ++@option{-mbitfield}. This is the default if you use a configuration ++designed for a 68020. ++ ++@item -mrtd ++@opindex mrtd ++Use a different function-calling convention, in which functions ++that take a fixed number of arguments return with the @code{rtd} ++instruction, which pops their arguments while returning. This ++saves one instruction in the caller since there is no need to pop ++the arguments there. ++ ++This calling convention is incompatible with the one normally ++used on Unix, so you cannot use it if you need to call libraries ++compiled with the Unix compiler. ++ ++Also, you must provide function prototypes for all functions that ++take variable numbers of arguments (including @code{printf}); ++otherwise incorrect code will be generated for calls to those ++functions. ++ ++In addition, seriously incorrect code will result if you call a ++function with too many arguments. (Normally, extra arguments are ++harmlessly ignored.) ++ ++The @code{rtd} instruction is supported by the 68010, 68020, 68030, ++68040, 68060 and CPU32 processors, but not by the 68000 or 5200. ++ ++@item -mno-rtd ++@opindex mno-rtd ++Do not use the calling conventions selected by @option{-mrtd}. ++This is the default. ++ ++@item -malign-int ++@itemx -mno-align-int ++@opindex malign-int ++@opindex mno-align-int ++Control whether GCC aligns @code{int}, @code{long}, @code{long long}, ++@code{float}, @code{double}, and @code{long double} variables on a 32-bit ++boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}). ++Aligning variables on 32-bit boundaries produces code that runs somewhat ++faster on processors with 32-bit busses at the expense of more memory. ++ ++@strong{Warning:} if you use the @option{-malign-int} switch, GCC will ++align structures containing the above types differently than ++most published application binary interface specifications for the m68k. ++ ++@item -mpcrel ++@opindex mpcrel ++Use the pc-relative addressing mode of the 68000 directly, instead of ++using a global offset table. At present, this option implies @option{-fpic}, ++allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is ++not presently supported with @option{-mpcrel}, though this could be supported for ++68020 and higher processors. ++ ++@item -mno-strict-align ++@itemx -mstrict-align ++@opindex mno-strict-align ++@opindex mstrict-align ++Do not (do) assume that unaligned memory references will be handled by ++the system. ++ ++@item -msep-data ++Generate code that allows the data segment to be located in a different ++area of memory from the text segment. This allows for execute in place in ++an environment without virtual memory management. This option implies ++@option{-fPIC}. ++ ++@item -mno-sep-data ++Generate code that assumes that the data segment follows the text segment. ++This is the default. ++ ++@item -mid-shared-library ++Generate code that supports shared libraries via the library ID method. ++This allows for execute in place and shared libraries in an environment ++without virtual memory management. This option implies @option{-fPIC}. ++ ++@item -mno-id-shared-library ++Generate code that doesn't assume ID based shared libraries are being used. ++This is the default. ++ ++@item -mshared-library-id=n ++Specified the identification number of the ID based shared library being ++compiled. Specifying a value of 0 will generate more compact code, specifying ++other values will force the allocation of that number to the current ++library but is no more space or time efficient than omitting this option. ++ ++@item -mxgot ++@itemx -mno-xgot ++@opindex mxgot ++@opindex mno-xgot ++When generating position-independent code for ColdFire, generate code ++that works if the GOT has more than 8192 entries. This code is ++larger and slower than code generated without this option. On M680x0 ++processors, this option is not needed; @option{-fPIC} suffices. ++ ++GCC normally uses a single instruction to load values from the GOT@. ++While this is relatively efficient, it only works if the GOT ++is smaller than about 64k. Anything larger causes the linker ++to report an error such as: ++ ++@cindex relocation truncated to fit (ColdFire) ++@smallexample ++relocation truncated to fit: R_68K_GOT16O foobar ++@end smallexample ++ ++If this happens, you should recompile your code with @option{-mxgot}. ++It should then work with very large GOTs. However, code generated with ++@option{-mxgot} is less efficient, since it takes 4 instructions to fetch ++the value of a global symbol. ++ ++Note that some linkers, including newer versions of the GNU linker, ++can create multiple GOTs and sort GOT entries. If you have such a linker, ++you should only need to use @option{-mxgot} when compiling a single ++object file that accesses more than 8192 GOT entries. Very few do. ++ ++These options have no effect unless GCC is generating ++position-independent code. ++ ++@end table ++ ++@node M68hc1x Options ++@subsection M68hc1x Options ++@cindex M68hc1x options ++ ++These are the @samp{-m} options defined for the 68hc11 and 68hc12 ++microcontrollers. The default values for these options depends on ++which style of microcontroller was selected when the compiler was configured; ++the defaults for the most common choices are given below. ++ ++@table @gcctabopt ++@item -m6811 ++@itemx -m68hc11 ++@opindex m6811 ++@opindex m68hc11 ++Generate output for a 68HC11. This is the default ++when the compiler is configured for 68HC11-based systems. ++ ++@item -m6812 ++@itemx -m68hc12 ++@opindex m6812 ++@opindex m68hc12 ++Generate output for a 68HC12. This is the default ++when the compiler is configured for 68HC12-based systems. ++ ++@item -m68S12 ++@itemx -m68hcs12 ++@opindex m68S12 ++@opindex m68hcs12 ++Generate output for a 68HCS12. ++ ++@item -mauto-incdec ++@opindex mauto-incdec ++Enable the use of 68HC12 pre and post auto-increment and auto-decrement ++addressing modes. ++ ++@item -minmax ++@itemx -nominmax ++@opindex minmax ++@opindex mnominmax ++Enable the use of 68HC12 min and max instructions. ++ ++@item -mlong-calls ++@itemx -mno-long-calls ++@opindex mlong-calls ++@opindex mno-long-calls ++Treat all calls as being far away (near). If calls are assumed to be ++far away, the compiler will use the @code{call} instruction to ++call a function and the @code{rtc} instruction for returning. ++ ++@item -mshort ++@opindex mshort ++Consider type @code{int} to be 16 bits wide, like @code{short int}. ++ ++@item -msoft-reg-count=@var{count} ++@opindex msoft-reg-count ++Specify the number of pseudo-soft registers which are used for the ++code generation. The maximum number is 32. Using more pseudo-soft ++register may or may not result in better code depending on the program. ++The default is 4 for 68HC11 and 2 for 68HC12. ++ ++@end table ++ ++@node MCore Options ++@subsection MCore Options ++@cindex MCore options ++ ++These are the @samp{-m} options defined for the Motorola M*Core ++processors. ++ ++@table @gcctabopt ++ ++@item -mhardlit ++@itemx -mno-hardlit ++@opindex mhardlit ++@opindex mno-hardlit ++Inline constants into the code stream if it can be done in two ++instructions or less. ++ ++@item -mdiv ++@itemx -mno-div ++@opindex mdiv ++@opindex mno-div ++Use the divide instruction. (Enabled by default). ++ ++@item -mrelax-immediate ++@itemx -mno-relax-immediate ++@opindex mrelax-immediate ++@opindex mno-relax-immediate ++Allow arbitrary sized immediates in bit operations. ++ ++@item -mwide-bitfields ++@itemx -mno-wide-bitfields ++@opindex mwide-bitfields ++@opindex mno-wide-bitfields ++Always treat bit-fields as int-sized. ++ ++@item -m4byte-functions ++@itemx -mno-4byte-functions ++@opindex m4byte-functions ++@opindex mno-4byte-functions ++Force all functions to be aligned to a four byte boundary. ++ ++@item -mcallgraph-data ++@itemx -mno-callgraph-data ++@opindex mcallgraph-data ++@opindex mno-callgraph-data ++Emit callgraph information. ++ ++@item -mslow-bytes ++@itemx -mno-slow-bytes ++@opindex mslow-bytes ++@opindex mno-slow-bytes ++Prefer word access when reading byte quantities. ++ ++@item -mlittle-endian ++@itemx -mbig-endian ++@opindex mlittle-endian ++@opindex mbig-endian ++Generate code for a little endian target. ++ ++@item -m210 ++@itemx -m340 ++@opindex m210 ++@opindex m340 ++Generate code for the 210 processor. ++ ++@item -mno-lsim ++@opindex no-lsim ++Assume that run-time support has been provided and so omit the ++simulator library (@file{libsim.a)} from the linker command line. ++ ++@item -mstack-increment=@var{size} ++@opindex mstack-increment ++Set the maximum amount for a single stack increment operation. Large ++values can increase the speed of programs which contain functions ++that need a large amount of stack space, but they can also trigger a ++segmentation fault if the stack is extended too much. The default ++value is 0x1000. ++ ++@end table ++ ++@node MIPS Options ++@subsection MIPS Options ++@cindex MIPS options ++ ++@table @gcctabopt ++ ++@item -EB ++@opindex EB ++Generate big-endian code. ++ ++@item -EL ++@opindex EL ++Generate little-endian code. This is the default for @samp{mips*el-*-*} ++configurations. ++ ++@item -march=@var{arch} ++@opindex march ++Generate code that will run on @var{arch}, which can be the name of a ++generic MIPS ISA, or the name of a particular processor. ++The ISA names are: ++@samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4}, ++@samp{mips32}, @samp{mips32r2}, @samp{mips64} and @samp{mips64r2}. ++The processor names are: ++@samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc}, ++@samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd}, ++@samp{5kc}, @samp{5kf}, ++@samp{20kc}, ++@samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1}, ++@samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1}, ++@samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, ++@samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2}, ++@samp{loongson2e}, @samp{loongson2f}, ++@samp{m4k}, ++@samp{octeon}, ++@samp{orion}, ++@samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400}, ++@samp{r4600}, @samp{r4650}, @samp{r6000}, @samp{r8000}, ++@samp{rm7000}, @samp{rm9000}, ++@samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000}, ++@samp{sb1}, ++@samp{sr71000}, ++@samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300}, ++@samp{vr5000}, @samp{vr5400}, @samp{vr5500} ++and @samp{xlr}. ++The special value @samp{from-abi} selects the ++most compatible architecture for the selected ABI (that is, ++@samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@. ++ ++Native Linux/GNU toolchains also support the value @samp{native}, ++which selects the best architecture option for the host processor. ++@option{-march=native} has no effect if GCC does not recognize ++the processor. ++ ++In processor names, a final @samp{000} can be abbreviated as @samp{k} ++(for example, @samp{-march=r2k}). Prefixes are optional, and ++@samp{vr} may be written @samp{r}. ++ ++Names of the form @samp{@var{n}f2_1} refer to processors with ++FPUs clocked at half the rate of the core, names of the form ++@samp{@var{n}f1_1} refer to processors with FPUs clocked at the same ++rate as the core, and names of the form @samp{@var{n}f3_2} refer to ++processors with FPUs clocked a ratio of 3:2 with respect to the core. ++For compatibility reasons, @samp{@var{n}f} is accepted as a synonym ++for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are ++accepted as synonyms for @samp{@var{n}f1_1}. ++ ++GCC defines two macros based on the value of this option. The first ++is @samp{_MIPS_ARCH}, which gives the name of target architecture, as ++a string. The second has the form @samp{_MIPS_ARCH_@var{foo}}, ++where @var{foo} is the capitalized value of @samp{_MIPS_ARCH}@. ++For example, @samp{-march=r2000} will set @samp{_MIPS_ARCH} ++to @samp{"r2000"} and define the macro @samp{_MIPS_ARCH_R2000}. ++ ++Note that the @samp{_MIPS_ARCH} macro uses the processor names given ++above. In other words, it will have the full prefix and will not ++abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi}, ++the macro names the resolved architecture (either @samp{"mips1"} or ++@samp{"mips3"}). It names the default architecture when no ++@option{-march} option is given. ++ ++@item -mtune=@var{arch} ++@opindex mtune ++Optimize for @var{arch}. Among other things, this option controls ++the way instructions are scheduled, and the perceived cost of arithmetic ++operations. The list of @var{arch} values is the same as for ++@option{-march}. ++ ++When this option is not used, GCC will optimize for the processor ++specified by @option{-march}. By using @option{-march} and ++@option{-mtune} together, it is possible to generate code that will ++run on a family of processors, but optimize the code for one ++particular member of that family. ++ ++@samp{-mtune} defines the macros @samp{_MIPS_TUNE} and ++@samp{_MIPS_TUNE_@var{foo}}, which work in the same way as the ++@samp{-march} ones described above. ++ ++@item -mips1 ++@opindex mips1 ++Equivalent to @samp{-march=mips1}. ++ ++@item -mips2 ++@opindex mips2 ++Equivalent to @samp{-march=mips2}. ++ ++@item -mips3 ++@opindex mips3 ++Equivalent to @samp{-march=mips3}. ++ ++@item -mips4 ++@opindex mips4 ++Equivalent to @samp{-march=mips4}. ++ ++@item -mips32 ++@opindex mips32 ++Equivalent to @samp{-march=mips32}. ++ ++@item -mips32r2 ++@opindex mips32r2 ++Equivalent to @samp{-march=mips32r2}. ++ ++@item -mips64 ++@opindex mips64 ++Equivalent to @samp{-march=mips64}. ++ ++@item -mips64r2 ++@opindex mips64r2 ++Equivalent to @samp{-march=mips64r2}. ++ ++@item -mips16 ++@itemx -mno-mips16 ++@opindex mips16 ++@opindex mno-mips16 ++Generate (do not generate) MIPS16 code. If GCC is targetting a ++MIPS32 or MIPS64 architecture, it will make use of the MIPS16e ASE@. ++ ++MIPS16 code generation can also be controlled on a per-function basis ++by means of @code{mips16} and @code{nomips16} attributes. ++@xref{Function Attributes}, for more information. ++ ++@item -mflip-mips16 ++@opindex mflip-mips16 ++Generate MIPS16 code on alternating functions. This option is provided ++for regression testing of mixed MIPS16/non-MIPS16 code generation, and is ++not intended for ordinary use in compiling user code. ++ ++@item -minterlink-mips16 ++@itemx -mno-interlink-mips16 ++@opindex minterlink-mips16 ++@opindex mno-interlink-mips16 ++Require (do not require) that non-MIPS16 code be link-compatible with ++MIPS16 code. ++ ++For example, non-MIPS16 code cannot jump directly to MIPS16 code; ++it must either use a call or an indirect jump. @option{-minterlink-mips16} ++therefore disables direct jumps unless GCC knows that the target of the ++jump is not MIPS16. ++ ++@item -mabi=32 ++@itemx -mabi=o64 ++@itemx -mabi=n32 ++@itemx -mabi=64 ++@itemx -mabi=eabi ++@opindex mabi=32 ++@opindex mabi=o64 ++@opindex mabi=n32 ++@opindex mabi=64 ++@opindex mabi=eabi ++Generate code for the given ABI@. ++ ++Note that the EABI has a 32-bit and a 64-bit variant. GCC normally ++generates 64-bit code when you select a 64-bit architecture, but you ++can use @option{-mgp32} to get 32-bit code instead. ++ ++For information about the O64 ABI, see ++@w{@uref{http://gcc.gnu.org/projects/mipso64-abi.html}}. ++ ++GCC supports a variant of the o32 ABI in which floating-point registers ++are 64 rather than 32 bits wide. You can select this combination with ++@option{-mabi=32} @option{-mfp64}. This ABI relies on the @samp{mthc1} ++and @samp{mfhc1} instructions and is therefore only supported for ++MIPS32R2 processors. ++ ++The register assignments for arguments and return values remain the ++same, but each scalar value is passed in a single 64-bit register ++rather than a pair of 32-bit registers. For example, scalar ++floating-point values are returned in @samp{$f0} only, not a ++@samp{$f0}/@samp{$f1} pair. The set of call-saved registers also ++remains the same, but all 64 bits are saved. ++ ++@item -mabicalls ++@itemx -mno-abicalls ++@opindex mabicalls ++@opindex mno-abicalls ++Generate (do not generate) code that is suitable for SVR4-style ++dynamic objects. @option{-mabicalls} is the default for SVR4-based ++systems. ++ ++@item -mshared ++@itemx -mno-shared ++Generate (do not generate) code that is fully position-independent, ++and that can therefore be linked into shared libraries. This option ++only affects @option{-mabicalls}. ++ ++All @option{-mabicalls} code has traditionally been position-independent, ++regardless of options like @option{-fPIC} and @option{-fpic}. However, ++as an extension, the GNU toolchain allows executables to use absolute ++accesses for locally-binding symbols. It can also use shorter GP ++initialization sequences and generate direct calls to locally-defined ++functions. This mode is selected by @option{-mno-shared}. ++ ++@option{-mno-shared} depends on binutils 2.16 or higher and generates ++objects that can only be linked by the GNU linker. However, the option ++does not affect the ABI of the final executable; it only affects the ABI ++of relocatable objects. Using @option{-mno-shared} will generally make ++executables both smaller and quicker. ++ ++@option{-mshared} is the default. ++ ++@item -mplt ++@itemx -mno-plt ++@opindex mplt ++@opindex mno-plt ++Assume (do not assume) that the static and dynamic linkers ++support PLTs and copy relocations. This option only affects ++@samp{-mno-shared -mabicalls}. For the n64 ABI, this option ++has no effect without @samp{-msym32}. ++ ++You can make @option{-mplt} the default by configuring ++GCC with @option{--with-mips-plt}. The default is ++@option{-mno-plt} otherwise. ++ ++@item -mxgot ++@itemx -mno-xgot ++@opindex mxgot ++@opindex mno-xgot ++Lift (do not lift) the usual restrictions on the size of the global ++offset table. ++ ++GCC normally uses a single instruction to load values from the GOT@. ++While this is relatively efficient, it will only work if the GOT ++is smaller than about 64k. Anything larger will cause the linker ++to report an error such as: ++ ++@cindex relocation truncated to fit (MIPS) ++@smallexample ++relocation truncated to fit: R_MIPS_GOT16 foobar ++@end smallexample ++ ++If this happens, you should recompile your code with @option{-mxgot}. ++It should then work with very large GOTs, although it will also be ++less efficient, since it will take three instructions to fetch the ++value of a global symbol. ++ ++Note that some linkers can create multiple GOTs. If you have such a ++linker, you should only need to use @option{-mxgot} when a single object ++file accesses more than 64k's worth of GOT entries. Very few do. ++ ++These options have no effect unless GCC is generating position ++independent code. ++ ++@item -mgp32 ++@opindex mgp32 ++Assume that general-purpose registers are 32 bits wide. ++ ++@item -mgp64 ++@opindex mgp64 ++Assume that general-purpose registers are 64 bits wide. ++ ++@item -mfp32 ++@opindex mfp32 ++Assume that floating-point registers are 32 bits wide. ++ ++@item -mfp64 ++@opindex mfp64 ++Assume that floating-point registers are 64 bits wide. ++ ++@item -mhard-float ++@opindex mhard-float ++Use floating-point coprocessor instructions. ++ ++@item -msoft-float ++@opindex msoft-float ++Do not use floating-point coprocessor instructions. Implement ++floating-point calculations using library calls instead. ++ ++@item -msingle-float ++@opindex msingle-float ++Assume that the floating-point coprocessor only supports single-precision ++operations. ++ ++@item -mdouble-float ++@opindex mdouble-float ++Assume that the floating-point coprocessor supports double-precision ++operations. This is the default. ++ ++@item -mllsc ++@itemx -mno-llsc ++@opindex mllsc ++@opindex mno-llsc ++Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to ++implement atomic memory built-in functions. When neither option is ++specified, GCC will use the instructions if the target architecture ++supports them. ++ ++@option{-mllsc} is useful if the runtime environment can emulate the ++instructions and @option{-mno-llsc} can be useful when compiling for ++nonstandard ISAs. You can make either option the default by ++configuring GCC with @option{--with-llsc} and @option{--without-llsc} ++respectively. @option{--with-llsc} is the default for some ++configurations; see the installation documentation for details. ++ ++@item -mdsp ++@itemx -mno-dsp ++@opindex mdsp ++@opindex mno-dsp ++Use (do not use) revision 1 of the MIPS DSP ASE@. ++@xref{MIPS DSP Built-in Functions}. This option defines the ++preprocessor macro @samp{__mips_dsp}. It also defines ++@samp{__mips_dsp_rev} to 1. ++ ++@item -mdspr2 ++@itemx -mno-dspr2 ++@opindex mdspr2 ++@opindex mno-dspr2 ++Use (do not use) revision 2 of the MIPS DSP ASE@. ++@xref{MIPS DSP Built-in Functions}. This option defines the ++preprocessor macros @samp{__mips_dsp} and @samp{__mips_dspr2}. ++It also defines @samp{__mips_dsp_rev} to 2. ++ ++@item -msmartmips ++@itemx -mno-smartmips ++@opindex msmartmips ++@opindex mno-smartmips ++Use (do not use) the MIPS SmartMIPS ASE. ++ ++@item -mpaired-single ++@itemx -mno-paired-single ++@opindex mpaired-single ++@opindex mno-paired-single ++Use (do not use) paired-single floating-point instructions. ++@xref{MIPS Paired-Single Support}. This option requires ++hardware floating-point support to be enabled. ++ ++@item -mdmx ++@itemx -mno-mdmx ++@opindex mdmx ++@opindex mno-mdmx ++Use (do not use) MIPS Digital Media Extension instructions. ++This option can only be used when generating 64-bit code and requires ++hardware floating-point support to be enabled. ++ ++@item -mips3d ++@itemx -mno-mips3d ++@opindex mips3d ++@opindex mno-mips3d ++Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}. ++The option @option{-mips3d} implies @option{-mpaired-single}. ++ ++@item -mmt ++@itemx -mno-mt ++@opindex mmt ++@opindex mno-mt ++Use (do not use) MT Multithreading instructions. ++ ++@item -mlong64 ++@opindex mlong64 ++Force @code{long} types to be 64 bits wide. See @option{-mlong32} for ++an explanation of the default and the way that the pointer size is ++determined. ++ ++@item -mlong32 ++@opindex mlong32 ++Force @code{long}, @code{int}, and pointer types to be 32 bits wide. ++ ++The default size of @code{int}s, @code{long}s and pointers depends on ++the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI ++uses 64-bit @code{long}s, as does the 64-bit EABI; the others use ++32-bit @code{long}s. Pointers are the same size as @code{long}s, ++or the same size as integer registers, whichever is smaller. ++ ++@item -msym32 ++@itemx -mno-sym32 ++@opindex msym32 ++@opindex mno-sym32 ++Assume (do not assume) that all symbols have 32-bit values, regardless ++of the selected ABI@. This option is useful in combination with ++@option{-mabi=64} and @option{-mno-abicalls} because it allows GCC ++to generate shorter and faster references to symbolic addresses. ++ ++@item -G @var{num} ++@opindex G ++Put definitions of externally-visible data in a small data section ++if that data is no bigger than @var{num} bytes. GCC can then access ++the data more efficiently; see @option{-mgpopt} for details. ++ ++The default @option{-G} option depends on the configuration. ++ ++@item -mlocal-sdata ++@itemx -mno-local-sdata ++@opindex mlocal-sdata ++@opindex mno-local-sdata ++Extend (do not extend) the @option{-G} behavior to local data too, ++such as to static variables in C@. @option{-mlocal-sdata} is the ++default for all configurations. ++ ++If the linker complains that an application is using too much small data, ++you might want to try rebuilding the less performance-critical parts with ++@option{-mno-local-sdata}. You might also want to build large ++libraries with @option{-mno-local-sdata}, so that the libraries leave ++more room for the main program. ++ ++@item -mextern-sdata ++@itemx -mno-extern-sdata ++@opindex mextern-sdata ++@opindex mno-extern-sdata ++Assume (do not assume) that externally-defined data will be in ++a small data section if that data is within the @option{-G} limit. ++@option{-mextern-sdata} is the default for all configurations. ++ ++If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G ++@var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var} ++that is no bigger than @var{num} bytes, you must make sure that @var{Var} ++is placed in a small data section. If @var{Var} is defined by another ++module, you must either compile that module with a high-enough ++@option{-G} setting or attach a @code{section} attribute to @var{Var}'s ++definition. If @var{Var} is common, you must link the application ++with a high-enough @option{-G} setting. ++ ++The easiest way of satisfying these restrictions is to compile ++and link every module with the same @option{-G} option. However, ++you may wish to build a library that supports several different ++small data limits. You can do this by compiling the library with ++the highest supported @option{-G} setting and additionally using ++@option{-mno-extern-sdata} to stop the library from making assumptions ++about externally-defined data. ++ ++@item -mgpopt ++@itemx -mno-gpopt ++@opindex mgpopt ++@opindex mno-gpopt ++Use (do not use) GP-relative accesses for symbols that are known to be ++in a small data section; see @option{-G}, @option{-mlocal-sdata} and ++@option{-mextern-sdata}. @option{-mgpopt} is the default for all ++configurations. ++ ++@option{-mno-gpopt} is useful for cases where the @code{$gp} register ++might not hold the value of @code{_gp}. For example, if the code is ++part of a library that might be used in a boot monitor, programs that ++call boot monitor routines will pass an unknown value in @code{$gp}. ++(In such situations, the boot monitor itself would usually be compiled ++with @option{-G0}.) ++ ++@option{-mno-gpopt} implies @option{-mno-local-sdata} and ++@option{-mno-extern-sdata}. ++ ++@item -membedded-data ++@itemx -mno-embedded-data ++@opindex membedded-data ++@opindex mno-embedded-data ++Allocate variables to the read-only data section first if possible, then ++next in the small data section if possible, otherwise in data. This gives ++slightly slower code than the default, but reduces the amount of RAM required ++when executing, and thus may be preferred for some embedded systems. ++ ++@item -muninit-const-in-rodata ++@itemx -mno-uninit-const-in-rodata ++@opindex muninit-const-in-rodata ++@opindex mno-uninit-const-in-rodata ++Put uninitialized @code{const} variables in the read-only data section. ++This option is only meaningful in conjunction with @option{-membedded-data}. ++ ++@item -mcode-readable=@var{setting} ++@opindex mcode-readable ++Specify whether GCC may generate code that reads from executable sections. ++There are three possible settings: ++ ++@table @gcctabopt ++@item -mcode-readable=yes ++Instructions may freely access executable sections. This is the ++default setting. ++ ++@item -mcode-readable=pcrel ++MIPS16 PC-relative load instructions can access executable sections, ++but other instructions must not do so. This option is useful on 4KSc ++and 4KSd processors when the code TLBs have the Read Inhibit bit set. ++It is also useful on processors that can be configured to have a dual ++instruction/data SRAM interface and that, like the M4K, automatically ++redirect PC-relative loads to the instruction RAM. ++ ++@item -mcode-readable=no ++Instructions must not access executable sections. This option can be ++useful on targets that are configured to have a dual instruction/data ++SRAM interface but that (unlike the M4K) do not automatically redirect ++PC-relative loads to the instruction RAM. ++@end table ++ ++@item -msplit-addresses ++@itemx -mno-split-addresses ++@opindex msplit-addresses ++@opindex mno-split-addresses ++Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler ++relocation operators. This option has been superseded by ++@option{-mexplicit-relocs} but is retained for backwards compatibility. ++ ++@item -mexplicit-relocs ++@itemx -mno-explicit-relocs ++@opindex mexplicit-relocs ++@opindex mno-explicit-relocs ++Use (do not use) assembler relocation operators when dealing with symbolic ++addresses. The alternative, selected by @option{-mno-explicit-relocs}, ++is to use assembler macros instead. ++ ++@option{-mexplicit-relocs} is the default if GCC was configured ++to use an assembler that supports relocation operators. ++ ++@item -mcheck-zero-division ++@itemx -mno-check-zero-division ++@opindex mcheck-zero-division ++@opindex mno-check-zero-division ++Trap (do not trap) on integer division by zero. ++ ++The default is @option{-mcheck-zero-division}. ++ ++@item -mdivide-traps ++@itemx -mdivide-breaks ++@opindex mdivide-traps ++@opindex mdivide-breaks ++MIPS systems check for division by zero by generating either a ++conditional trap or a break instruction. Using traps results in ++smaller code, but is only supported on MIPS II and later. Also, some ++versions of the Linux kernel have a bug that prevents trap from ++generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to ++allow conditional traps on architectures that support them and ++@option{-mdivide-breaks} to force the use of breaks. ++ ++The default is usually @option{-mdivide-traps}, but this can be ++overridden at configure time using @option{--with-divide=breaks}. ++Divide-by-zero checks can be completely disabled using ++@option{-mno-check-zero-division}. ++ ++@item -mmemcpy ++@itemx -mno-memcpy ++@opindex mmemcpy ++@opindex mno-memcpy ++Force (do not force) the use of @code{memcpy()} for non-trivial block ++moves. The default is @option{-mno-memcpy}, which allows GCC to inline ++most constant-sized copies. ++ ++@item -mlong-calls ++@itemx -mno-long-calls ++@opindex mlong-calls ++@opindex mno-long-calls ++Disable (do not disable) use of the @code{jal} instruction. Calling ++functions using @code{jal} is more efficient but requires the caller ++and callee to be in the same 256 megabyte segment. ++ ++This option has no effect on abicalls code. The default is ++@option{-mno-long-calls}. ++ ++@item -mmad ++@itemx -mno-mad ++@opindex mmad ++@opindex mno-mad ++Enable (disable) use of the @code{mad}, @code{madu} and @code{mul} ++instructions, as provided by the R4650 ISA@. ++ ++@item -mfused-madd ++@itemx -mno-fused-madd ++@opindex mfused-madd ++@opindex mno-fused-madd ++Enable (disable) use of the floating point multiply-accumulate ++instructions, when they are available. The default is ++@option{-mfused-madd}. ++ ++When multiply-accumulate instructions are used, the intermediate ++product is calculated to infinite precision and is not subject to ++the FCSR Flush to Zero bit. This may be undesirable in some ++circumstances. ++ ++@item -nocpp ++@opindex nocpp ++Tell the MIPS assembler to not run its preprocessor over user ++assembler files (with a @samp{.s} suffix) when assembling them. ++ ++@item -mfix-r4000 ++@itemx -mno-fix-r4000 ++@opindex mfix-r4000 ++@opindex mno-fix-r4000 ++Work around certain R4000 CPU errata: ++@itemize @minus ++@item ++A double-word or a variable shift may give an incorrect result if executed ++immediately after starting an integer division. ++@item ++A double-word or a variable shift may give an incorrect result if executed ++while an integer multiplication is in progress. ++@item ++An integer division may give an incorrect result if started in a delay slot ++of a taken branch or a jump. ++@end itemize ++ ++@item -mfix-r4400 ++@itemx -mno-fix-r4400 ++@opindex mfix-r4400 ++@opindex mno-fix-r4400 ++Work around certain R4400 CPU errata: ++@itemize @minus ++@item ++A double-word or a variable shift may give an incorrect result if executed ++immediately after starting an integer division. ++@end itemize ++ ++@item -mfix-r10000 ++@itemx -mno-fix-r10000 ++@opindex mfix-r10000 ++@opindex mno-fix-r10000 ++Work around certain R10000 errata: ++@itemize @minus ++@item ++@code{ll}/@code{sc} sequences may not behave atomically on revisions ++prior to 3.0. They may deadlock on revisions 2.6 and earlier. ++@end itemize ++ ++This option can only be used if the target architecture supports ++branch-likely instructions. @option{-mfix-r10000} is the default when ++@option{-march=r10000} is used; @option{-mno-fix-r10000} is the default ++otherwise. ++ ++@item -mfix-vr4120 ++@itemx -mno-fix-vr4120 ++@opindex mfix-vr4120 ++Work around certain VR4120 errata: ++@itemize @minus ++@item ++@code{dmultu} does not always produce the correct result. ++@item ++@code{div} and @code{ddiv} do not always produce the correct result if one ++of the operands is negative. ++@end itemize ++The workarounds for the division errata rely on special functions in ++@file{libgcc.a}. At present, these functions are only provided by ++the @code{mips64vr*-elf} configurations. ++ ++Other VR4120 errata require a nop to be inserted between certain pairs of ++instructions. These errata are handled by the assembler, not by GCC itself. ++ ++@item -mfix-vr4130 ++@opindex mfix-vr4130 ++Work around the VR4130 @code{mflo}/@code{mfhi} errata. The ++workarounds are implemented by the assembler rather than by GCC, ++although GCC will avoid using @code{mflo} and @code{mfhi} if the ++VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi} ++instructions are available instead. ++ ++@item -mfix-sb1 ++@itemx -mno-fix-sb1 ++@opindex mfix-sb1 ++Work around certain SB-1 CPU core errata. ++(This flag currently works around the SB-1 revision 2 ++``F1'' and ``F2'' floating point errata.) ++ ++@item -mr10k-cache-barrier=@var{setting} ++@opindex mr10k-cache-barrier ++Specify whether GCC should insert cache barriers to avoid the ++side-effects of speculation on R10K processors. ++ ++In common with many processors, the R10K tries to predict the outcome ++of a conditional branch and speculatively executes instructions from ++the ``taken'' branch. It later aborts these instructions if the ++predicted outcome was wrong. However, on the R10K, even aborted ++instructions can have side effects. ++ ++This problem only affects kernel stores and, depending on the system, ++kernel loads. As an example, a speculatively-executed store may load ++the target memory into cache and mark the cache line as dirty, even if ++the store itself is later aborted. If a DMA operation writes to the ++same area of memory before the ``dirty'' line is flushed, the cached ++data will overwrite the DMA-ed data. See the R10K processor manual ++for a full description, including other potential problems. ++ ++One workaround is to insert cache barrier instructions before every memory ++access that might be speculatively executed and that might have side ++effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}} ++controls GCC's implementation of this workaround. It assumes that ++aborted accesses to any byte in the following regions will not have ++side effects: ++ ++@enumerate ++@item ++the memory occupied by the current function's stack frame; ++ ++@item ++the memory occupied by an incoming stack argument; ++ ++@item ++the memory occupied by an object with a link-time-constant address. ++@end enumerate ++ ++It is the kernel's responsibility to ensure that speculative ++accesses to these regions are indeed safe. ++ ++If the input program contains a function declaration such as: ++ ++@smallexample ++void foo (void); ++@end smallexample ++ ++then the implementation of @code{foo} must allow @code{j foo} and ++@code{jal foo} to be executed speculatively. GCC honors this ++restriction for functions it compiles itself. It expects non-GCC ++functions (such as hand-written assembly code) to do the same. ++ ++The option has three forms: ++ ++@table @gcctabopt ++@item -mr10k-cache-barrier=load-store ++Insert a cache barrier before a load or store that might be ++speculatively executed and that might have side effects even ++if aborted. ++ ++@item -mr10k-cache-barrier=store ++Insert a cache barrier before a store that might be speculatively ++executed and that might have side effects even if aborted. ++ ++@item -mr10k-cache-barrier=none ++Disable the insertion of cache barriers. This is the default setting. ++@end table ++ ++@item -mflush-func=@var{func} ++@itemx -mno-flush-func ++@opindex mflush-func ++Specifies the function to call to flush the I and D caches, or to not ++call any such function. If called, the function must take the same ++arguments as the common @code{_flush_func()}, that is, the address of the ++memory range for which the cache is being flushed, the size of the ++memory range, and the number 3 (to flush both caches). The default ++depends on the target GCC was configured for, but commonly is either ++@samp{_flush_func} or @samp{__cpu_flush}. ++ ++@item mbranch-cost=@var{num} ++@opindex mbranch-cost ++Set the cost of branches to roughly @var{num} ``simple'' instructions. ++This cost is only a heuristic and is not guaranteed to produce ++consistent results across releases. A zero cost redundantly selects ++the default, which is based on the @option{-mtune} setting. ++ ++@item -mbranch-likely ++@itemx -mno-branch-likely ++@opindex mbranch-likely ++@opindex mno-branch-likely ++Enable or disable use of Branch Likely instructions, regardless of the ++default for the selected architecture. By default, Branch Likely ++instructions may be generated if they are supported by the selected ++architecture. An exception is for the MIPS32 and MIPS64 architectures ++and processors which implement those architectures; for those, Branch ++Likely instructions will not be generated by default because the MIPS32 ++and MIPS64 architectures specifically deprecate their use. ++ ++@item -mfp-exceptions ++@itemx -mno-fp-exceptions ++@opindex mfp-exceptions ++Specifies whether FP exceptions are enabled. This affects how we schedule ++FP instructions for some processors. The default is that FP exceptions are ++enabled. ++ ++For instance, on the SB-1, if FP exceptions are disabled, and we are emitting ++64-bit code, then we can use both FP pipes. Otherwise, we can only use one ++FP pipe. ++ ++@item -mvr4130-align ++@itemx -mno-vr4130-align ++@opindex mvr4130-align ++The VR4130 pipeline is two-way superscalar, but can only issue two ++instructions together if the first one is 8-byte aligned. When this ++option is enabled, GCC will align pairs of instructions that it ++thinks should execute in parallel. ++ ++This option only has an effect when optimizing for the VR4130. ++It normally makes code faster, but at the expense of making it bigger. ++It is enabled by default at optimization level @option{-O3}. ++@end table ++ ++@node MMIX Options ++@subsection MMIX Options ++@cindex MMIX Options ++ ++These options are defined for the MMIX: ++ ++@table @gcctabopt ++@item -mlibfuncs ++@itemx -mno-libfuncs ++@opindex mlibfuncs ++@opindex mno-libfuncs ++Specify that intrinsic library functions are being compiled, passing all ++values in registers, no matter the size. ++ ++@item -mepsilon ++@itemx -mno-epsilon ++@opindex mepsilon ++@opindex mno-epsilon ++Generate floating-point comparison instructions that compare with respect ++to the @code{rE} epsilon register. ++ ++@item -mabi=mmixware ++@itemx -mabi=gnu ++@opindex mabi-mmixware ++@opindex mabi=gnu ++Generate code that passes function parameters and return values that (in ++the called function) are seen as registers @code{$0} and up, as opposed to ++the GNU ABI which uses global registers @code{$231} and up. ++ ++@item -mzero-extend ++@itemx -mno-zero-extend ++@opindex mzero-extend ++@opindex mno-zero-extend ++When reading data from memory in sizes shorter than 64 bits, use (do not ++use) zero-extending load instructions by default, rather than ++sign-extending ones. ++ ++@item -mknuthdiv ++@itemx -mno-knuthdiv ++@opindex mknuthdiv ++@opindex mno-knuthdiv ++Make the result of a division yielding a remainder have the same sign as ++the divisor. With the default, @option{-mno-knuthdiv}, the sign of the ++remainder follows the sign of the dividend. Both methods are ++arithmetically valid, the latter being almost exclusively used. ++ ++@item -mtoplevel-symbols ++@itemx -mno-toplevel-symbols ++@opindex mtoplevel-symbols ++@opindex mno-toplevel-symbols ++Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly ++code can be used with the @code{PREFIX} assembly directive. ++ ++@item -melf ++@opindex melf ++Generate an executable in the ELF format, rather than the default ++@samp{mmo} format used by the @command{mmix} simulator. ++ ++@item -mbranch-predict ++@itemx -mno-branch-predict ++@opindex mbranch-predict ++@opindex mno-branch-predict ++Use (do not use) the probable-branch instructions, when static branch ++prediction indicates a probable branch. ++ ++@item -mbase-addresses ++@itemx -mno-base-addresses ++@opindex mbase-addresses ++@opindex mno-base-addresses ++Generate (do not generate) code that uses @emph{base addresses}. Using a ++base address automatically generates a request (handled by the assembler ++and the linker) for a constant to be set up in a global register. The ++register is used for one or more base address requests within the range 0 ++to 255 from the value held in the register. The generally leads to short ++and fast code, but the number of different data items that can be ++addressed is limited. This means that a program that uses lots of static ++data may require @option{-mno-base-addresses}. ++ ++@item -msingle-exit ++@itemx -mno-single-exit ++@opindex msingle-exit ++@opindex mno-single-exit ++Force (do not force) generated code to have a single exit point in each ++function. ++@end table ++ ++@node MN10300 Options ++@subsection MN10300 Options ++@cindex MN10300 options ++ ++These @option{-m} options are defined for Matsushita MN10300 architectures: ++ ++@table @gcctabopt ++@item -mmult-bug ++@opindex mmult-bug ++Generate code to avoid bugs in the multiply instructions for the MN10300 ++processors. This is the default. ++ ++@item -mno-mult-bug ++@opindex mno-mult-bug ++Do not generate code to avoid bugs in the multiply instructions for the ++MN10300 processors. ++ ++@item -mam33 ++@opindex mam33 ++Generate code which uses features specific to the AM33 processor. ++ ++@item -mno-am33 ++@opindex mno-am33 ++Do not generate code which uses features specific to the AM33 processor. This ++is the default. ++ ++@item -mreturn-pointer-on-d0 ++@opindex mreturn-pointer-on-d0 ++When generating a function which returns a pointer, return the pointer ++in both @code{a0} and @code{d0}. Otherwise, the pointer is returned ++only in a0, and attempts to call such functions without a prototype ++would result in errors. Note that this option is on by default; use ++@option{-mno-return-pointer-on-d0} to disable it. ++ ++@item -mno-crt0 ++@opindex mno-crt0 ++Do not link in the C run-time initialization object file. ++ ++@item -mrelax ++@opindex mrelax ++Indicate to the linker that it should perform a relaxation optimization pass ++to shorten branches, calls and absolute memory addresses. This option only ++has an effect when used on the command line for the final link step. ++ ++This option makes symbolic debugging impossible. ++@end table ++ ++@node PDP-11 Options ++@subsection PDP-11 Options ++@cindex PDP-11 Options ++ ++These options are defined for the PDP-11: ++ ++@table @gcctabopt ++@item -mfpu ++@opindex mfpu ++Use hardware FPP floating point. This is the default. (FIS floating ++point on the PDP-11/40 is not supported.) ++ ++@item -msoft-float ++@opindex msoft-float ++Do not use hardware floating point. ++ ++@item -mac0 ++@opindex mac0 ++Return floating-point results in ac0 (fr0 in Unix assembler syntax). ++ ++@item -mno-ac0 ++@opindex mno-ac0 ++Return floating-point results in memory. This is the default. ++ ++@item -m40 ++@opindex m40 ++Generate code for a PDP-11/40. ++ ++@item -m45 ++@opindex m45 ++Generate code for a PDP-11/45. This is the default. ++ ++@item -m10 ++@opindex m10 ++Generate code for a PDP-11/10. ++ ++@item -mbcopy-builtin ++@opindex bcopy-builtin ++Use inline @code{movmemhi} patterns for copying memory. This is the ++default. ++ ++@item -mbcopy ++@opindex mbcopy ++Do not use inline @code{movmemhi} patterns for copying memory. ++ ++@item -mint16 ++@itemx -mno-int32 ++@opindex mint16 ++@opindex mno-int32 ++Use 16-bit @code{int}. This is the default. ++ ++@item -mint32 ++@itemx -mno-int16 ++@opindex mint32 ++@opindex mno-int16 ++Use 32-bit @code{int}. ++ ++@item -mfloat64 ++@itemx -mno-float32 ++@opindex mfloat64 ++@opindex mno-float32 ++Use 64-bit @code{float}. This is the default. ++ ++@item -mfloat32 ++@itemx -mno-float64 ++@opindex mfloat32 ++@opindex mno-float64 ++Use 32-bit @code{float}. ++ ++@item -mabshi ++@opindex mabshi ++Use @code{abshi2} pattern. This is the default. ++ ++@item -mno-abshi ++@opindex mno-abshi ++Do not use @code{abshi2} pattern. ++ ++@item -mbranch-expensive ++@opindex mbranch-expensive ++Pretend that branches are expensive. This is for experimenting with ++code generation only. ++ ++@item -mbranch-cheap ++@opindex mbranch-cheap ++Do not pretend that branches are expensive. This is the default. ++ ++@item -msplit ++@opindex msplit ++Generate code for a system with split I&D@. ++ ++@item -mno-split ++@opindex mno-split ++Generate code for a system without split I&D@. This is the default. ++ ++@item -munix-asm ++@opindex munix-asm ++Use Unix assembler syntax. This is the default when configured for ++@samp{pdp11-*-bsd}. ++ ++@item -mdec-asm ++@opindex mdec-asm ++Use DEC assembler syntax. This is the default when configured for any ++PDP-11 target other than @samp{pdp11-*-bsd}. ++@end table ++ ++@node picoChip Options ++@subsection picoChip Options ++@cindex picoChip options ++ ++These @samp{-m} options are defined for picoChip implementations: ++ ++@table @gcctabopt ++ ++@item -mae=@var{ae_type} ++@opindex mcpu ++Set the instruction set, register set, and instruction scheduling ++parameters for array element type @var{ae_type}. Supported values ++for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}. ++ ++@option{-mae=ANY} selects a completely generic AE type. Code ++generated with this option will run on any of the other AE types. The ++code will not be as efficient as it would be if compiled for a specific ++AE type, and some types of operation (e.g., multiplication) will not ++work properly on all types of AE. ++ ++@option{-mae=MUL} selects a MUL AE type. This is the most useful AE type ++for compiled code, and is the default. ++ ++@option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this ++option may suffer from poor performance of byte (char) manipulation, ++since the DSP AE does not provide hardware support for byte load/stores. ++ ++@item -msymbol-as-address ++Enable the compiler to directly use a symbol name as an address in a ++load/store instruction, without first loading it into a ++register. Typically, the use of this option will generate larger ++programs, which run faster than when the option isn't used. However, the ++results vary from program to program, so it is left as a user option, ++rather than being permanently enabled. ++ ++@item -mno-inefficient-warnings ++Disables warnings about the generation of inefficient code. These ++warnings can be generated, for example, when compiling code which ++performs byte-level memory operations on the MAC AE type. The MAC AE has ++no hardware support for byte-level memory operations, so all byte ++load/stores must be synthesized from word load/store operations. This is ++inefficient and a warning will be generated indicating to the programmer ++that they should rewrite the code to avoid byte operations, or to target ++an AE type which has the necessary hardware support. This option enables ++the warning to be turned off. ++ ++@end table ++ ++@node PowerPC Options ++@subsection PowerPC Options ++@cindex PowerPC options ++ ++These are listed under @xref{RS/6000 and PowerPC Options}. ++ ++@node RS/6000 and PowerPC Options ++@subsection IBM RS/6000 and PowerPC Options ++@cindex RS/6000 and PowerPC Options ++@cindex IBM RS/6000 and PowerPC Options ++ ++These @samp{-m} options are defined for the IBM RS/6000 and PowerPC: ++@table @gcctabopt ++@item -mpower ++@itemx -mno-power ++@itemx -mpower2 ++@itemx -mno-power2 ++@itemx -mpowerpc ++@itemx -mno-powerpc ++@itemx -mpowerpc-gpopt ++@itemx -mno-powerpc-gpopt ++@itemx -mpowerpc-gfxopt ++@itemx -mno-powerpc-gfxopt ++@itemx -mpowerpc64 ++@itemx -mno-powerpc64 ++@itemx -mmfcrf ++@itemx -mno-mfcrf ++@itemx -mpopcntb ++@itemx -mno-popcntb ++@itemx -mfprnd ++@itemx -mno-fprnd ++@itemx -mcmpb ++@itemx -mno-cmpb ++@itemx -mmfpgpr ++@itemx -mno-mfpgpr ++@itemx -mhard-dfp ++@itemx -mno-hard-dfp ++@opindex mpower ++@opindex mno-power ++@opindex mpower2 ++@opindex mno-power2 ++@opindex mpowerpc ++@opindex mno-powerpc ++@opindex mpowerpc-gpopt ++@opindex mno-powerpc-gpopt ++@opindex mpowerpc-gfxopt ++@opindex mno-powerpc-gfxopt ++@opindex mpowerpc64 ++@opindex mno-powerpc64 ++@opindex mmfcrf ++@opindex mno-mfcrf ++@opindex mpopcntb ++@opindex mno-popcntb ++@opindex mfprnd ++@opindex mno-fprnd ++@opindex mcmpb ++@opindex mno-cmpb ++@opindex mmfpgpr ++@opindex mno-mfpgpr ++@opindex mhard-dfp ++@opindex mno-hard-dfp ++GCC supports two related instruction set architectures for the ++RS/6000 and PowerPC@. The @dfn{POWER} instruction set are those ++instructions supported by the @samp{rios} chip set used in the original ++RS/6000 systems and the @dfn{PowerPC} instruction set is the ++architecture of the Freescale MPC5xx, MPC6xx, MPC8xx microprocessors, and ++the IBM 4xx, 6xx, and follow-on microprocessors. ++ ++Neither architecture is a subset of the other. However there is a ++large common subset of instructions supported by both. An MQ ++register is included in processors supporting the POWER architecture. ++ ++You use these options to specify which instructions are available on the ++processor you are using. The default value of these options is ++determined when configuring GCC@. Specifying the ++@option{-mcpu=@var{cpu_type}} overrides the specification of these ++options. We recommend you use the @option{-mcpu=@var{cpu_type}} option ++rather than the options listed above. ++ ++The @option{-mpower} option allows GCC to generate instructions that ++are found only in the POWER architecture and to use the MQ register. ++Specifying @option{-mpower2} implies @option{-power} and also allows GCC ++to generate instructions that are present in the POWER2 architecture but ++not the original POWER architecture. ++ ++The @option{-mpowerpc} option allows GCC to generate instructions that ++are found only in the 32-bit subset of the PowerPC architecture. ++Specifying @option{-mpowerpc-gpopt} implies @option{-mpowerpc} and also allows ++GCC to use the optional PowerPC architecture instructions in the ++General Purpose group, including floating-point square root. Specifying ++@option{-mpowerpc-gfxopt} implies @option{-mpowerpc} and also allows GCC to ++use the optional PowerPC architecture instructions in the Graphics ++group, including floating-point select. ++ ++The @option{-mmfcrf} option allows GCC to generate the move from ++condition register field instruction implemented on the POWER4 ++processor and other processors that support the PowerPC V2.01 ++architecture. ++The @option{-mpopcntb} option allows GCC to generate the popcount and ++double precision FP reciprocal estimate instruction implemented on the ++POWER5 processor and other processors that support the PowerPC V2.02 ++architecture. ++The @option{-mfprnd} option allows GCC to generate the FP round to ++integer instructions implemented on the POWER5+ processor and other ++processors that support the PowerPC V2.03 architecture. ++The @option{-mcmpb} option allows GCC to generate the compare bytes ++instruction implemented on the POWER6 processor and other processors ++that support the PowerPC V2.05 architecture. ++The @option{-mmfpgpr} option allows GCC to generate the FP move to/from ++general purpose register instructions implemented on the POWER6X ++processor and other processors that support the extended PowerPC V2.05 ++architecture. ++The @option{-mhard-dfp} option allows GCC to generate the decimal floating ++point instructions implemented on some POWER processors. ++ ++The @option{-mpowerpc64} option allows GCC to generate the additional ++64-bit instructions that are found in the full PowerPC64 architecture ++and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to ++@option{-mno-powerpc64}. ++ ++If you specify both @option{-mno-power} and @option{-mno-powerpc}, GCC ++will use only the instructions in the common subset of both ++architectures plus some special AIX common-mode calls, and will not use ++the MQ register. Specifying both @option{-mpower} and @option{-mpowerpc} ++permits GCC to use any instruction from either architecture and to ++allow use of the MQ register; specify this for the Motorola MPC601. ++ ++@item -mnew-mnemonics ++@itemx -mold-mnemonics ++@opindex mnew-mnemonics ++@opindex mold-mnemonics ++Select which mnemonics to use in the generated assembler code. With ++@option{-mnew-mnemonics}, GCC uses the assembler mnemonics defined for ++the PowerPC architecture. With @option{-mold-mnemonics} it uses the ++assembler mnemonics defined for the POWER architecture. Instructions ++defined in only one architecture have only one mnemonic; GCC uses that ++mnemonic irrespective of which of these options is specified. ++ ++GCC defaults to the mnemonics appropriate for the architecture in ++use. Specifying @option{-mcpu=@var{cpu_type}} sometimes overrides the ++value of these option. Unless you are building a cross-compiler, you ++should normally not specify either @option{-mnew-mnemonics} or ++@option{-mold-mnemonics}, but should instead accept the default. ++ ++@item -mcpu=@var{cpu_type} ++@opindex mcpu ++Set architecture type, register usage, choice of mnemonics, and ++instruction scheduling parameters for machine type @var{cpu_type}. ++Supported values for @var{cpu_type} are @samp{401}, @samp{403}, ++@samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp}, ++@samp{505}, @samp{601}, @samp{602}, @samp{603}, @samp{603e}, @samp{604}, ++@samp{604e}, @samp{620}, @samp{630}, @samp{740}, @samp{7400}, ++@samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823}, ++@samp{860}, @samp{970}, @samp{8540}, @samp{e300c2}, @samp{e300c3}, ++@samp{e500mc}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5}, ++@samp{power}, @samp{power2}, @samp{power3}, @samp{power4}, ++@samp{power5}, @samp{power5+}, @samp{power6}, @samp{power6x}, @samp{power7} ++@samp{common}, @samp{powerpc}, @samp{powerpc64}, @samp{rios}, ++@samp{rios1}, @samp{rios2}, @samp{rsc}, and @samp{rs64}. ++ ++@option{-mcpu=common} selects a completely generic processor. Code ++generated under this option will run on any POWER or PowerPC processor. ++GCC will use only the instructions in the common subset of both ++architectures, and will not use the MQ register. GCC assumes a generic ++processor model for scheduling purposes. ++ ++@option{-mcpu=power}, @option{-mcpu=power2}, @option{-mcpu=powerpc}, and ++@option{-mcpu=powerpc64} specify generic POWER, POWER2, pure 32-bit ++PowerPC (i.e., not MPC601), and 64-bit PowerPC architecture machine ++types, with an appropriate, generic processor model assumed for ++scheduling purposes. ++ ++The other options specify a specific processor. Code generated under ++those options will run best on that processor, and may not run at all on ++others. ++ ++The @option{-mcpu} options automatically enable or disable the ++following options: ++ ++@gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol ++-mnew-mnemonics -mpopcntb -mpower -mpower2 -mpowerpc64 @gol ++-mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol ++-msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr} ++ ++The particular options set for any particular CPU will vary between ++compiler versions, depending on what setting seems to produce optimal ++code for that CPU; it doesn't necessarily reflect the actual hardware's ++capabilities. If you wish to set an individual option to a particular ++value, you may specify it after the @option{-mcpu} option, like ++@samp{-mcpu=970 -mno-altivec}. ++ ++On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are ++not enabled or disabled by the @option{-mcpu} option at present because ++AIX does not have full support for these options. You may still ++enable or disable them individually if you're sure it'll work in your ++environment. ++ ++@item -mtune=@var{cpu_type} ++@opindex mtune ++Set the instruction scheduling parameters for machine type ++@var{cpu_type}, but do not set the architecture type, register usage, or ++choice of mnemonics, as @option{-mcpu=@var{cpu_type}} would. The same ++values for @var{cpu_type} are used for @option{-mtune} as for ++@option{-mcpu}. If both are specified, the code generated will use the ++architecture, registers, and mnemonics set by @option{-mcpu}, but the ++scheduling parameters set by @option{-mtune}. ++ ++@item -mswdiv ++@itemx -mno-swdiv ++@opindex mswdiv ++@opindex mno-swdiv ++Generate code to compute division as reciprocal estimate and iterative ++refinement, creating opportunities for increased throughput. This ++feature requires: optional PowerPC Graphics instruction set for single ++precision and FRE instruction for double precision, assuming divides ++cannot generate user-visible traps, and the domain values not include ++Infinities, denormals or zero denominator. ++ ++@item -maltivec ++@itemx -mno-altivec ++@opindex maltivec ++@opindex mno-altivec ++Generate code that uses (does not use) AltiVec instructions, and also ++enable the use of built-in functions that allow more direct access to ++the AltiVec instruction set. You may also need to set ++@option{-mabi=altivec} to adjust the current ABI with AltiVec ABI ++enhancements. ++ ++@item -mvrsave ++@itemx -mno-vrsave ++@opindex mvrsave ++@opindex mno-vrsave ++Generate VRSAVE instructions when generating AltiVec code. ++ ++@item -mgen-cell-microcode ++@opindex mgen-cell-microcode ++Generate Cell microcode instructions ++ ++@item -mwarn-cell-microcode ++@opindex mwarn-cell-microcode ++Warning when a Cell microcode instruction is going to emitted. An example ++of a Cell microcode instruction is a variable shift. ++ ++@item -msecure-plt ++@opindex msecure-plt ++Generate code that allows ld and ld.so to build executables and shared ++libraries with non-exec .plt and .got sections. This is a PowerPC ++32-bit SYSV ABI option. ++ ++@item -mbss-plt ++@opindex mbss-plt ++Generate code that uses a BSS .plt section that ld.so fills in, and ++requires .plt and .got sections that are both writable and executable. ++This is a PowerPC 32-bit SYSV ABI option. ++ ++@item -misel ++@itemx -mno-isel ++@opindex misel ++@opindex mno-isel ++This switch enables or disables the generation of ISEL instructions. ++ ++@item -misel=@var{yes/no} ++This switch has been deprecated. Use @option{-misel} and ++@option{-mno-isel} instead. ++ ++@item -mspe ++@itemx -mno-spe ++@opindex mspe ++@opindex mno-spe ++This switch enables or disables the generation of SPE simd ++instructions. ++ ++@item -mpaired ++@itemx -mno-paired ++@opindex mpaired ++@opindex mno-paired ++This switch enables or disables the generation of PAIRED simd ++instructions. ++ ++@item -mspe=@var{yes/no} ++This option has been deprecated. Use @option{-mspe} and ++@option{-mno-spe} instead. ++ ++@item -mfloat-gprs=@var{yes/single/double/no} ++@itemx -mfloat-gprs ++@opindex mfloat-gprs ++This switch enables or disables the generation of floating point ++operations on the general purpose registers for architectures that ++support it. ++ ++The argument @var{yes} or @var{single} enables the use of ++single-precision floating point operations. ++ ++The argument @var{double} enables the use of single and ++double-precision floating point operations. ++ ++The argument @var{no} disables floating point operations on the ++general purpose registers. ++ ++This option is currently only available on the MPC854x. ++ ++@item -m32 ++@itemx -m64 ++@opindex m32 ++@opindex m64 ++Generate code for 32-bit or 64-bit environments of Darwin and SVR4 ++targets (including GNU/Linux). The 32-bit environment sets int, long ++and pointer to 32 bits and generates code that runs on any PowerPC ++variant. The 64-bit environment sets int to 32 bits and long and ++pointer to 64 bits, and generates code for PowerPC64, as for ++@option{-mpowerpc64}. ++ ++@item -mfull-toc ++@itemx -mno-fp-in-toc ++@itemx -mno-sum-in-toc ++@itemx -mminimal-toc ++@opindex mfull-toc ++@opindex mno-fp-in-toc ++@opindex mno-sum-in-toc ++@opindex mminimal-toc ++Modify generation of the TOC (Table Of Contents), which is created for ++every executable file. The @option{-mfull-toc} option is selected by ++default. In that case, GCC will allocate at least one TOC entry for ++each unique non-automatic variable reference in your program. GCC ++will also place floating-point constants in the TOC@. However, only ++16,384 entries are available in the TOC@. ++ ++If you receive a linker error message that saying you have overflowed ++the available TOC space, you can reduce the amount of TOC space used ++with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options. ++@option{-mno-fp-in-toc} prevents GCC from putting floating-point ++constants in the TOC and @option{-mno-sum-in-toc} forces GCC to ++generate code to calculate the sum of an address and a constant at ++run-time instead of putting that sum into the TOC@. You may specify one ++or both of these options. Each causes GCC to produce very slightly ++slower and larger code at the expense of conserving TOC space. ++ ++If you still run out of space in the TOC even when you specify both of ++these options, specify @option{-mminimal-toc} instead. This option causes ++GCC to make only one TOC entry for every file. When you specify this ++option, GCC will produce code that is slower and larger but which ++uses extremely little TOC space. You may wish to use this option ++only on files that contain less frequently executed code. ++ ++@item -maix64 ++@itemx -maix32 ++@opindex maix64 ++@opindex maix32 ++Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit ++@code{long} type, and the infrastructure needed to support them. ++Specifying @option{-maix64} implies @option{-mpowerpc64} and ++@option{-mpowerpc}, while @option{-maix32} disables the 64-bit ABI and ++implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}. ++ ++@item -mxl-compat ++@itemx -mno-xl-compat ++@opindex mxl-compat ++@opindex mno-xl-compat ++Produce code that conforms more closely to IBM XL compiler semantics ++when using AIX-compatible ABI@. Pass floating-point arguments to ++prototyped functions beyond the register save area (RSA) on the stack ++in addition to argument FPRs. Do not assume that most significant ++double in 128-bit long double value is properly rounded when comparing ++values and converting to double. Use XL symbol names for long double ++support routines. ++ ++The AIX calling convention was extended but not initially documented to ++handle an obscure K&R C case of calling a function that takes the ++address of its arguments with fewer arguments than declared. IBM XL ++compilers access floating point arguments which do not fit in the ++RSA from the stack when a subroutine is compiled without ++optimization. Because always storing floating-point arguments on the ++stack is inefficient and rarely needed, this option is not enabled by ++default and only is necessary when calling subroutines compiled by IBM ++XL compilers without optimization. ++ ++@item -mpe ++@opindex mpe ++Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an ++application written to use message passing with special startup code to ++enable the application to run. The system must have PE installed in the ++standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file ++must be overridden with the @option{-specs=} option to specify the ++appropriate directory location. The Parallel Environment does not ++support threads, so the @option{-mpe} option and the @option{-pthread} ++option are incompatible. ++ ++@item -malign-natural ++@itemx -malign-power ++@opindex malign-natural ++@opindex malign-power ++On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option ++@option{-malign-natural} overrides the ABI-defined alignment of larger ++types, such as floating-point doubles, on their natural size-based boundary. ++The option @option{-malign-power} instructs GCC to follow the ABI-specified ++alignment rules. GCC defaults to the standard alignment defined in the ABI@. ++ ++On 64-bit Darwin, natural alignment is the default, and @option{-malign-power} ++is not supported. ++ ++@item -msoft-float ++@itemx -mhard-float ++@opindex msoft-float ++@opindex mhard-float ++Generate code that does not use (uses) the floating-point register set. ++Software floating point emulation is provided if you use the ++@option{-msoft-float} option, and pass the option to GCC when linking. ++ ++@item -msingle-float ++@itemx -mdouble-float ++@opindex msingle-float ++@opindex mdouble-float ++Generate code for single or double-precision floating point operations. ++@option{-mdouble-float} implies @option{-msingle-float}. ++ ++@item -msimple-fpu ++@opindex msimple-fpu ++Do not generate sqrt and div instructions for hardware floating point unit. ++ ++@item -mfpu ++@opindex mfpu ++Specify type of floating point unit. Valid values are @var{sp_lite} ++(equivalent to -msingle-float -msimple-fpu), @var{dp_lite} (equivalent ++to -mdouble-float -msimple-fpu), @var{sp_full} (equivalent to -msingle-float), ++and @var{dp_full} (equivalent to -mdouble-float). ++ ++@item -mxilinx-fpu ++@opindex mxilinx-fpu ++Perform optimizations for floating point unit on Xilinx PPC 405/440. ++ ++@item -mmultiple ++@itemx -mno-multiple ++@opindex mmultiple ++@opindex mno-multiple ++Generate code that uses (does not use) the load multiple word ++instructions and the store multiple word instructions. These ++instructions are generated by default on POWER systems, and not ++generated on PowerPC systems. Do not use @option{-mmultiple} on little ++endian PowerPC systems, since those instructions do not work when the ++processor is in little endian mode. The exceptions are PPC740 and ++PPC750 which permit the instructions usage in little endian mode. ++ ++@item -mstring ++@itemx -mno-string ++@opindex mstring ++@opindex mno-string ++Generate code that uses (does not use) the load string instructions ++and the store string word instructions to save multiple registers and ++do small block moves. These instructions are generated by default on ++POWER systems, and not generated on PowerPC systems. Do not use ++@option{-mstring} on little endian PowerPC systems, since those ++instructions do not work when the processor is in little endian mode. ++The exceptions are PPC740 and PPC750 which permit the instructions ++usage in little endian mode. ++ ++@item -mupdate ++@itemx -mno-update ++@opindex mupdate ++@opindex mno-update ++Generate code that uses (does not use) the load or store instructions ++that update the base register to the address of the calculated memory ++location. These instructions are generated by default. If you use ++@option{-mno-update}, there is a small window between the time that the ++stack pointer is updated and the address of the previous frame is ++stored, which means code that walks the stack frame across interrupts or ++signals may get corrupted data. ++ ++@item -mavoid-indexed-addresses ++@item -mno-avoid-indexed-addresses ++@opindex mavoid-indexed-addresses ++@opindex mno-avoid-indexed-addresses ++Generate code that tries to avoid (not avoid) the use of indexed load ++or store instructions. These instructions can incur a performance ++penalty on Power6 processors in certain situations, such as when ++stepping through large arrays that cross a 16M boundary. This option ++is enabled by default when targetting Power6 and disabled otherwise. ++ ++@item -mfused-madd ++@itemx -mno-fused-madd ++@opindex mfused-madd ++@opindex mno-fused-madd ++Generate code that uses (does not use) the floating point multiply and ++accumulate instructions. These instructions are generated by default if ++hardware floating is used. ++ ++@item -mmulhw ++@itemx -mno-mulhw ++@opindex mmulhw ++@opindex mno-mulhw ++Generate code that uses (does not use) the half-word multiply and ++multiply-accumulate instructions on the IBM 405, 440 and 464 processors. ++These instructions are generated by default when targetting those ++processors. ++ ++@item -mdlmzb ++@itemx -mno-dlmzb ++@opindex mdlmzb ++@opindex mno-dlmzb ++Generate code that uses (does not use) the string-search @samp{dlmzb} ++instruction on the IBM 405, 440 and 464 processors. This instruction is ++generated by default when targetting those processors. ++ ++@item -mno-bit-align ++@itemx -mbit-align ++@opindex mno-bit-align ++@opindex mbit-align ++On System V.4 and embedded PowerPC systems do not (do) force structures ++and unions that contain bit-fields to be aligned to the base type of the ++bit-field. ++ ++For example, by default a structure containing nothing but 8 ++@code{unsigned} bit-fields of length 1 would be aligned to a 4 byte ++boundary and have a size of 4 bytes. By using @option{-mno-bit-align}, ++the structure would be aligned to a 1 byte boundary and be one byte in ++size. ++ ++@item -mno-strict-align ++@itemx -mstrict-align ++@opindex mno-strict-align ++@opindex mstrict-align ++On System V.4 and embedded PowerPC systems do not (do) assume that ++unaligned memory references will be handled by the system. ++ ++@item -mrelocatable ++@itemx -mno-relocatable ++@opindex mrelocatable ++@opindex mno-relocatable ++On embedded PowerPC systems generate code that allows (does not allow) ++the program to be relocated to a different address at runtime. If you ++use @option{-mrelocatable} on any module, all objects linked together must ++be compiled with @option{-mrelocatable} or @option{-mrelocatable-lib}. ++ ++@item -mrelocatable-lib ++@itemx -mno-relocatable-lib ++@opindex mrelocatable-lib ++@opindex mno-relocatable-lib ++On embedded PowerPC systems generate code that allows (does not allow) ++the program to be relocated to a different address at runtime. Modules ++compiled with @option{-mrelocatable-lib} can be linked with either modules ++compiled without @option{-mrelocatable} and @option{-mrelocatable-lib} or ++with modules compiled with the @option{-mrelocatable} options. ++ ++@item -mno-toc ++@itemx -mtoc ++@opindex mno-toc ++@opindex mtoc ++On System V.4 and embedded PowerPC systems do not (do) assume that ++register 2 contains a pointer to a global area pointing to the addresses ++used in the program. ++ ++@item -mlittle ++@itemx -mlittle-endian ++@opindex mlittle ++@opindex mlittle-endian ++On System V.4 and embedded PowerPC systems compile code for the ++processor in little endian mode. The @option{-mlittle-endian} option is ++the same as @option{-mlittle}. ++ ++@item -mbig ++@itemx -mbig-endian ++@opindex mbig ++@opindex mbig-endian ++On System V.4 and embedded PowerPC systems compile code for the ++processor in big endian mode. The @option{-mbig-endian} option is ++the same as @option{-mbig}. ++ ++@item -mdynamic-no-pic ++@opindex mdynamic-no-pic ++On Darwin and Mac OS X systems, compile code so that it is not ++relocatable, but that its external references are relocatable. The ++resulting code is suitable for applications, but not shared ++libraries. ++ ++@item -mprioritize-restricted-insns=@var{priority} ++@opindex mprioritize-restricted-insns ++This option controls the priority that is assigned to ++dispatch-slot restricted instructions during the second scheduling ++pass. The argument @var{priority} takes the value @var{0/1/2} to assign ++@var{no/highest/second-highest} priority to dispatch slot restricted ++instructions. ++ ++@item -msched-costly-dep=@var{dependence_type} ++@opindex msched-costly-dep ++This option controls which dependences are considered costly ++by the target during instruction scheduling. The argument ++@var{dependence_type} takes one of the following values: ++@var{no}: no dependence is costly, ++@var{all}: all dependences are costly, ++@var{true_store_to_load}: a true dependence from store to load is costly, ++@var{store_to_load}: any dependence from store to load is costly, ++@var{number}: any dependence which latency >= @var{number} is costly. ++ ++@item -minsert-sched-nops=@var{scheme} ++@opindex minsert-sched-nops ++This option controls which nop insertion scheme will be used during ++the second scheduling pass. The argument @var{scheme} takes one of the ++following values: ++@var{no}: Don't insert nops. ++@var{pad}: Pad with nops any dispatch group which has vacant issue slots, ++according to the scheduler's grouping. ++@var{regroup_exact}: Insert nops to force costly dependent insns into ++separate groups. Insert exactly as many nops as needed to force an insn ++to a new group, according to the estimated processor grouping. ++@var{number}: Insert nops to force costly dependent insns into ++separate groups. Insert @var{number} nops to force an insn to a new group. ++ ++@item -mcall-sysv ++@opindex mcall-sysv ++On System V.4 and embedded PowerPC systems compile code using calling ++conventions that adheres to the March 1995 draft of the System V ++Application Binary Interface, PowerPC processor supplement. This is the ++default unless you configured GCC using @samp{powerpc-*-eabiaix}. ++ ++@item -mcall-sysv-eabi ++@opindex mcall-sysv-eabi ++Specify both @option{-mcall-sysv} and @option{-meabi} options. ++ ++@item -mcall-sysv-noeabi ++@opindex mcall-sysv-noeabi ++Specify both @option{-mcall-sysv} and @option{-mno-eabi} options. ++ ++@item -mcall-solaris ++@opindex mcall-solaris ++On System V.4 and embedded PowerPC systems compile code for the Solaris ++operating system. ++ ++@item -mcall-linux ++@opindex mcall-linux ++On System V.4 and embedded PowerPC systems compile code for the ++Linux-based GNU system. ++ ++@item -mcall-gnu ++@opindex mcall-gnu ++On System V.4 and embedded PowerPC systems compile code for the ++Hurd-based GNU system. ++ ++@item -mcall-netbsd ++@opindex mcall-netbsd ++On System V.4 and embedded PowerPC systems compile code for the ++NetBSD operating system. ++ ++@item -maix-struct-return ++@opindex maix-struct-return ++Return all structures in memory (as specified by the AIX ABI)@. ++ ++@item -msvr4-struct-return ++@opindex msvr4-struct-return ++Return structures smaller than 8 bytes in registers (as specified by the ++SVR4 ABI)@. ++ ++@item -mabi=@var{abi-type} ++@opindex mabi ++Extend the current ABI with a particular extension, or remove such extension. ++Valid values are @var{altivec}, @var{no-altivec}, @var{spe}, ++@var{no-spe}, @var{ibmlongdouble}, @var{ieeelongdouble}@. ++ ++@item -mabi=spe ++@opindex mabi=spe ++Extend the current ABI with SPE ABI extensions. This does not change ++the default ABI, instead it adds the SPE ABI extensions to the current ++ABI@. ++ ++@item -mabi=no-spe ++@opindex mabi=no-spe ++Disable Booke SPE ABI extensions for the current ABI@. ++ ++@item -mabi=ibmlongdouble ++@opindex mabi=ibmlongdouble ++Change the current ABI to use IBM extended precision long double. ++This is a PowerPC 32-bit SYSV ABI option. ++ ++@item -mabi=ieeelongdouble ++@opindex mabi=ieeelongdouble ++Change the current ABI to use IEEE extended precision long double. ++This is a PowerPC 32-bit Linux ABI option. ++ ++@item -mprototype ++@itemx -mno-prototype ++@opindex mprototype ++@opindex mno-prototype ++On System V.4 and embedded PowerPC systems assume that all calls to ++variable argument functions are properly prototyped. Otherwise, the ++compiler must insert an instruction before every non prototyped call to ++set or clear bit 6 of the condition code register (@var{CR}) to ++indicate whether floating point values were passed in the floating point ++registers in case the function takes a variable arguments. With ++@option{-mprototype}, only calls to prototyped variable argument functions ++will set or clear the bit. ++ ++@item -msim ++@opindex msim ++On embedded PowerPC systems, assume that the startup module is called ++@file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and ++@file{libc.a}. This is the default for @samp{powerpc-*-eabisim} ++configurations. ++ ++@item -mmvme ++@opindex mmvme ++On embedded PowerPC systems, assume that the startup module is called ++@file{crt0.o} and the standard C libraries are @file{libmvme.a} and ++@file{libc.a}. ++ ++@item -mads ++@opindex mads ++On embedded PowerPC systems, assume that the startup module is called ++@file{crt0.o} and the standard C libraries are @file{libads.a} and ++@file{libc.a}. ++ ++@item -myellowknife ++@opindex myellowknife ++On embedded PowerPC systems, assume that the startup module is called ++@file{crt0.o} and the standard C libraries are @file{libyk.a} and ++@file{libc.a}. ++ ++@item -mvxworks ++@opindex mvxworks ++On System V.4 and embedded PowerPC systems, specify that you are ++compiling for a VxWorks system. ++ ++@item -memb ++@opindex memb ++On embedded PowerPC systems, set the @var{PPC_EMB} bit in the ELF flags ++header to indicate that @samp{eabi} extended relocations are used. ++ ++@item -meabi ++@itemx -mno-eabi ++@opindex meabi ++@opindex mno-eabi ++On System V.4 and embedded PowerPC systems do (do not) adhere to the ++Embedded Applications Binary Interface (eabi) which is a set of ++modifications to the System V.4 specifications. Selecting @option{-meabi} ++means that the stack is aligned to an 8 byte boundary, a function ++@code{__eabi} is called to from @code{main} to set up the eabi ++environment, and the @option{-msdata} option can use both @code{r2} and ++@code{r13} to point to two separate small data areas. Selecting ++@option{-mno-eabi} means that the stack is aligned to a 16 byte boundary, ++do not call an initialization function from @code{main}, and the ++@option{-msdata} option will only use @code{r13} to point to a single ++small data area. The @option{-meabi} option is on by default if you ++configured GCC using one of the @samp{powerpc*-*-eabi*} options. ++ ++@item -msdata=eabi ++@opindex msdata=eabi ++On System V.4 and embedded PowerPC systems, put small initialized ++@code{const} global and static data in the @samp{.sdata2} section, which ++is pointed to by register @code{r2}. Put small initialized ++non-@code{const} global and static data in the @samp{.sdata} section, ++which is pointed to by register @code{r13}. Put small uninitialized ++global and static data in the @samp{.sbss} section, which is adjacent to ++the @samp{.sdata} section. The @option{-msdata=eabi} option is ++incompatible with the @option{-mrelocatable} option. The ++@option{-msdata=eabi} option also sets the @option{-memb} option. ++ ++@item -msdata=sysv ++@opindex msdata=sysv ++On System V.4 and embedded PowerPC systems, put small global and static ++data in the @samp{.sdata} section, which is pointed to by register ++@code{r13}. Put small uninitialized global and static data in the ++@samp{.sbss} section, which is adjacent to the @samp{.sdata} section. ++The @option{-msdata=sysv} option is incompatible with the ++@option{-mrelocatable} option. ++ ++@item -msdata=default ++@itemx -msdata ++@opindex msdata=default ++@opindex msdata ++On System V.4 and embedded PowerPC systems, if @option{-meabi} is used, ++compile code the same as @option{-msdata=eabi}, otherwise compile code the ++same as @option{-msdata=sysv}. ++ ++@item -msdata=data ++@opindex msdata=data ++On System V.4 and embedded PowerPC systems, put small global ++data in the @samp{.sdata} section. Put small uninitialized global ++data in the @samp{.sbss} section. Do not use register @code{r13} ++to address small data however. This is the default behavior unless ++other @option{-msdata} options are used. ++ ++@item -msdata=none ++@itemx -mno-sdata ++@opindex msdata=none ++@opindex mno-sdata ++On embedded PowerPC systems, put all initialized global and static data ++in the @samp{.data} section, and all uninitialized data in the ++@samp{.bss} section. ++ ++@item -G @var{num} ++@opindex G ++@cindex smaller data references (PowerPC) ++@cindex .sdata/.sdata2 references (PowerPC) ++On embedded PowerPC systems, put global and static items less than or ++equal to @var{num} bytes into the small data or bss sections instead of ++the normal data or bss section. By default, @var{num} is 8. The ++@option{-G @var{num}} switch is also passed to the linker. ++All modules should be compiled with the same @option{-G @var{num}} value. ++ ++@item -mregnames ++@itemx -mno-regnames ++@opindex mregnames ++@opindex mno-regnames ++On System V.4 and embedded PowerPC systems do (do not) emit register ++names in the assembly language output using symbolic forms. ++ ++@item -mlongcall ++@itemx -mno-longcall ++@opindex mlongcall ++@opindex mno-longcall ++By default assume that all calls are far away so that a longer more ++expensive calling sequence is required. This is required for calls ++further than 32 megabytes (33,554,432 bytes) from the current location. ++A short call will be generated if the compiler knows ++the call cannot be that far away. This setting can be overridden by ++the @code{shortcall} function attribute, or by @code{#pragma ++longcall(0)}. ++ ++Some linkers are capable of detecting out-of-range calls and generating ++glue code on the fly. On these systems, long calls are unnecessary and ++generate slower code. As of this writing, the AIX linker can do this, ++as can the GNU linker for PowerPC/64. It is planned to add this feature ++to the GNU linker for 32-bit PowerPC systems as well. ++ ++On Darwin/PPC systems, @code{#pragma longcall} will generate ``jbsr ++callee, L42'', plus a ``branch island'' (glue code). The two target ++addresses represent the callee and the ``branch island''. The ++Darwin/PPC linker will prefer the first address and generate a ``bl ++callee'' if the PPC ``bl'' instruction will reach the callee directly; ++otherwise, the linker will generate ``bl L42'' to call the ``branch ++island''. The ``branch island'' is appended to the body of the ++calling function; it computes the full 32-bit address of the callee ++and jumps to it. ++ ++On Mach-O (Darwin) systems, this option directs the compiler emit to ++the glue for every direct call, and the Darwin linker decides whether ++to use or discard it. ++ ++In the future, we may cause GCC to ignore all longcall specifications ++when the linker is known to generate glue. ++ ++@item -pthread ++@opindex pthread ++Adds support for multithreading with the @dfn{pthreads} library. ++This option sets flags for both the preprocessor and linker. ++ ++@end table ++ ++@node S/390 and zSeries Options ++@subsection S/390 and zSeries Options ++@cindex S/390 and zSeries Options ++ ++These are the @samp{-m} options defined for the S/390 and zSeries architecture. ++ ++@table @gcctabopt ++@item -mhard-float ++@itemx -msoft-float ++@opindex mhard-float ++@opindex msoft-float ++Use (do not use) the hardware floating-point instructions and registers ++for floating-point operations. When @option{-msoft-float} is specified, ++functions in @file{libgcc.a} will be used to perform floating-point ++operations. When @option{-mhard-float} is specified, the compiler ++generates IEEE floating-point instructions. This is the default. ++ ++@item -mhard-dfp ++@itemx -mno-hard-dfp ++@opindex mhard-dfp ++@opindex mno-hard-dfp ++Use (do not use) the hardware decimal-floating-point instructions for ++decimal-floating-point operations. When @option{-mno-hard-dfp} is ++specified, functions in @file{libgcc.a} will be used to perform ++decimal-floating-point operations. When @option{-mhard-dfp} is ++specified, the compiler generates decimal-floating-point hardware ++instructions. This is the default for @option{-march=z9-ec} or higher. ++ ++@item -mlong-double-64 ++@itemx -mlong-double-128 ++@opindex mlong-double-64 ++@opindex mlong-double-128 ++These switches control the size of @code{long double} type. A size ++of 64bit makes the @code{long double} type equivalent to the @code{double} ++type. This is the default. ++ ++@item -mbackchain ++@itemx -mno-backchain ++@opindex mbackchain ++@opindex mno-backchain ++Store (do not store) the address of the caller's frame as backchain pointer ++into the callee's stack frame. ++A backchain may be needed to allow debugging using tools that do not understand ++DWARF-2 call frame information. ++When @option{-mno-packed-stack} is in effect, the backchain pointer is stored ++at the bottom of the stack frame; when @option{-mpacked-stack} is in effect, ++the backchain is placed into the topmost word of the 96/160 byte register ++save area. ++ ++In general, code compiled with @option{-mbackchain} is call-compatible with ++code compiled with @option{-mmo-backchain}; however, use of the backchain ++for debugging purposes usually requires that the whole binary is built with ++@option{-mbackchain}. Note that the combination of @option{-mbackchain}, ++@option{-mpacked-stack} and @option{-mhard-float} is not supported. In order ++to build a linux kernel use @option{-msoft-float}. ++ ++The default is to not maintain the backchain. ++ ++@item -mpacked-stack ++@itemx -mno-packed-stack ++@opindex mpacked-stack ++@opindex mno-packed-stack ++Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is ++specified, the compiler uses the all fields of the 96/160 byte register save ++area only for their default purpose; unused fields still take up stack space. ++When @option{-mpacked-stack} is specified, register save slots are densely ++packed at the top of the register save area; unused space is reused for other ++purposes, allowing for more efficient use of the available stack space. ++However, when @option{-mbackchain} is also in effect, the topmost word of ++the save area is always used to store the backchain, and the return address ++register is always saved two words below the backchain. ++ ++As long as the stack frame backchain is not used, code generated with ++@option{-mpacked-stack} is call-compatible with code generated with ++@option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for ++S/390 or zSeries generated code that uses the stack frame backchain at run ++time, not just for debugging purposes. Such code is not call-compatible ++with code compiled with @option{-mpacked-stack}. Also, note that the ++combination of @option{-mbackchain}, ++@option{-mpacked-stack} and @option{-mhard-float} is not supported. In order ++to build a linux kernel use @option{-msoft-float}. ++ ++The default is to not use the packed stack layout. ++ ++@item -msmall-exec ++@itemx -mno-small-exec ++@opindex msmall-exec ++@opindex mno-small-exec ++Generate (or do not generate) code using the @code{bras} instruction ++to do subroutine calls. ++This only works reliably if the total executable size does not ++exceed 64k. The default is to use the @code{basr} instruction instead, ++which does not have this limitation. ++ ++@item -m64 ++@itemx -m31 ++@opindex m64 ++@opindex m31 ++When @option{-m31} is specified, generate code compliant to the ++GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate ++code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in ++particular to generate 64-bit instructions. For the @samp{s390} ++targets, the default is @option{-m31}, while the @samp{s390x} ++targets default to @option{-m64}. ++ ++@item -mzarch ++@itemx -mesa ++@opindex mzarch ++@opindex mesa ++When @option{-mzarch} is specified, generate code using the ++instructions available on z/Architecture. ++When @option{-mesa} is specified, generate code using the ++instructions available on ESA/390. Note that @option{-mesa} is ++not possible with @option{-m64}. ++When generating code compliant to the GNU/Linux for S/390 ABI, ++the default is @option{-mesa}. When generating code compliant ++to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}. ++ ++@item -mmvcle ++@itemx -mno-mvcle ++@opindex mmvcle ++@opindex mno-mvcle ++Generate (or do not generate) code using the @code{mvcle} instruction ++to perform block moves. When @option{-mno-mvcle} is specified, ++use a @code{mvc} loop instead. This is the default unless optimizing for ++size. ++ ++@item -mdebug ++@itemx -mno-debug ++@opindex mdebug ++@opindex mno-debug ++Print (or do not print) additional debug information when compiling. ++The default is to not print debug information. ++ ++@item -march=@var{cpu-type} ++@opindex march ++Generate code that will run on @var{cpu-type}, which is the name of a system ++representing a certain processor type. Possible values for ++@var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990}, ++@samp{z9-109}, @samp{z9-ec} and @samp{z10}. ++When generating code using the instructions available on z/Architecture, ++the default is @option{-march=z900}. Otherwise, the default is ++@option{-march=g5}. ++ ++@item -mtune=@var{cpu-type} ++@opindex mtune ++Tune to @var{cpu-type} everything applicable about the generated code, ++except for the ABI and the set of available instructions. ++The list of @var{cpu-type} values is the same as for @option{-march}. ++The default is the value used for @option{-march}. ++ ++@item -mtpf-trace ++@itemx -mno-tpf-trace ++@opindex mtpf-trace ++@opindex mno-tpf-trace ++Generate code that adds (does not add) in TPF OS specific branches to trace ++routines in the operating system. This option is off by default, even ++when compiling for the TPF OS@. ++ ++@item -mfused-madd ++@itemx -mno-fused-madd ++@opindex mfused-madd ++@opindex mno-fused-madd ++Generate code that uses (does not use) the floating point multiply and ++accumulate instructions. These instructions are generated by default if ++hardware floating point is used. ++ ++@item -mwarn-framesize=@var{framesize} ++@opindex mwarn-framesize ++Emit a warning if the current function exceeds the given frame size. Because ++this is a compile time check it doesn't need to be a real problem when the program ++runs. It is intended to identify functions which most probably cause ++a stack overflow. It is useful to be used in an environment with limited stack ++size e.g.@: the linux kernel. ++ ++@item -mwarn-dynamicstack ++@opindex mwarn-dynamicstack ++Emit a warning if the function calls alloca or uses dynamically ++sized arrays. This is generally a bad idea with a limited stack size. ++ ++@item -mstack-guard=@var{stack-guard} ++@itemx -mstack-size=@var{stack-size} ++@opindex mstack-guard ++@opindex mstack-size ++If these options are provided the s390 back end emits additional instructions in ++the function prologue which trigger a trap if the stack size is @var{stack-guard} ++bytes above the @var{stack-size} (remember that the stack on s390 grows downward). ++If the @var{stack-guard} option is omitted the smallest power of 2 larger than ++the frame size of the compiled function is chosen. ++These options are intended to be used to help debugging stack overflow problems. ++The additionally emitted code causes only little overhead and hence can also be ++used in production like systems without greater performance degradation. The given ++values have to be exact powers of 2 and @var{stack-size} has to be greater than ++@var{stack-guard} without exceeding 64k. ++In order to be efficient the extra code makes the assumption that the stack starts ++at an address aligned to the value given by @var{stack-size}. ++The @var{stack-guard} option can only be used in conjunction with @var{stack-size}. ++@end table ++ ++@node Score Options ++@subsection Score Options ++@cindex Score Options ++ ++These options are defined for Score implementations: ++ ++@table @gcctabopt ++@item -meb ++@opindex meb ++Compile code for big endian mode. This is the default. ++ ++@item -mel ++@opindex mel ++Compile code for little endian mode. ++ ++@item -mnhwloop ++@opindex mnhwloop ++Disable generate bcnz instruction. ++ ++@item -muls ++@opindex muls ++Enable generate unaligned load and store instruction. ++ ++@item -mmac ++@opindex mmac ++Enable the use of multiply-accumulate instructions. Disabled by default. ++ ++@item -mscore5 ++@opindex mscore5 ++Specify the SCORE5 as the target architecture. ++ ++@item -mscore5u ++@opindex mscore5u ++Specify the SCORE5U of the target architecture. ++ ++@item -mscore7 ++@opindex mscore7 ++Specify the SCORE7 as the target architecture. This is the default. ++ ++@item -mscore7d ++@opindex mscore7d ++Specify the SCORE7D as the target architecture. ++@end table ++ ++@node SH Options ++@subsection SH Options ++ ++These @samp{-m} options are defined for the SH implementations: ++ ++@table @gcctabopt ++@item -m1 ++@opindex m1 ++Generate code for the SH1. ++ ++@item -m2 ++@opindex m2 ++Generate code for the SH2. ++ ++@item -m2e ++Generate code for the SH2e. ++ ++@item -m3 ++@opindex m3 ++Generate code for the SH3. ++ ++@item -m3e ++@opindex m3e ++Generate code for the SH3e. ++ ++@item -m4-nofpu ++@opindex m4-nofpu ++Generate code for the SH4 without a floating-point unit. ++ ++@item -m4-single-only ++@opindex m4-single-only ++Generate code for the SH4 with a floating-point unit that only ++supports single-precision arithmetic. ++ ++@item -m4-single ++@opindex m4-single ++Generate code for the SH4 assuming the floating-point unit is in ++single-precision mode by default. ++ ++@item -m4 ++@opindex m4 ++Generate code for the SH4. ++ ++@item -m4a-nofpu ++@opindex m4a-nofpu ++Generate code for the SH4al-dsp, or for a SH4a in such a way that the ++floating-point unit is not used. ++ ++@item -m4a-single-only ++@opindex m4a-single-only ++Generate code for the SH4a, in such a way that no double-precision ++floating point operations are used. ++ ++@item -m4a-single ++@opindex m4a-single ++Generate code for the SH4a assuming the floating-point unit is in ++single-precision mode by default. ++ ++@item -m4a ++@opindex m4a ++Generate code for the SH4a. ++ ++@item -m4al ++@opindex m4al ++Same as @option{-m4a-nofpu}, except that it implicitly passes ++@option{-dsp} to the assembler. GCC doesn't generate any DSP ++instructions at the moment. ++ ++@item -mb ++@opindex mb ++Compile code for the processor in big endian mode. ++ ++@item -ml ++@opindex ml ++Compile code for the processor in little endian mode. ++ ++@item -mdalign ++@opindex mdalign ++Align doubles at 64-bit boundaries. Note that this changes the calling ++conventions, and thus some functions from the standard C library will ++not work unless you recompile it first with @option{-mdalign}. ++ ++@item -mrelax ++@opindex mrelax ++Shorten some address references at link time, when possible; uses the ++linker option @option{-relax}. ++ ++@item -mbigtable ++@opindex mbigtable ++Use 32-bit offsets in @code{switch} tables. The default is to use ++16-bit offsets. ++ ++@item -mbitops ++@opindex mbitops ++Enable the use of bit manipulation instructions on SH2A. ++ ++@item -mfmovd ++@opindex mfmovd ++Enable the use of the instruction @code{fmovd}. ++ ++@item -mhitachi ++@opindex mhitachi ++Comply with the calling conventions defined by Renesas. ++ ++@item -mrenesas ++@opindex mhitachi ++Comply with the calling conventions defined by Renesas. ++ ++@item -mno-renesas ++@opindex mhitachi ++Comply with the calling conventions defined for GCC before the Renesas ++conventions were available. This option is the default for all ++targets of the SH toolchain except for @samp{sh-symbianelf}. ++ ++@item -mnomacsave ++@opindex mnomacsave ++Mark the @code{MAC} register as call-clobbered, even if ++@option{-mhitachi} is given. ++ ++@item -mieee ++@opindex mieee ++Increase IEEE-compliance of floating-point code. ++At the moment, this is equivalent to @option{-fno-finite-math-only}. ++When generating 16 bit SH opcodes, getting IEEE-conforming results for ++comparisons of NANs / infinities incurs extra overhead in every ++floating point comparison, therefore the default is set to ++@option{-ffinite-math-only}. ++ ++@item -minline-ic_invalidate ++@opindex minline-ic_invalidate ++Inline code to invalidate instruction cache entries after setting up ++nested function trampolines. ++This option has no effect if -musermode is in effect and the selected ++code generation option (e.g. -m4) does not allow the use of the icbi ++instruction. ++If the selected code generation option does not allow the use of the icbi ++instruction, and -musermode is not in effect, the inlined code will ++manipulate the instruction cache address array directly with an associative ++write. This not only requires privileged mode, but it will also ++fail if the cache line had been mapped via the TLB and has become unmapped. ++ ++@item -misize ++@opindex misize ++Dump instruction size and location in the assembly code. ++ ++@item -mpadstruct ++@opindex mpadstruct ++This option is deprecated. It pads structures to multiple of 4 bytes, ++which is incompatible with the SH ABI@. ++ ++@item -mspace ++@opindex mspace ++Optimize for space instead of speed. Implied by @option{-Os}. ++ ++@item -mprefergot ++@opindex mprefergot ++When generating position-independent code, emit function calls using ++the Global Offset Table instead of the Procedure Linkage Table. ++ ++@item -musermode ++@opindex musermode ++Don't generate privileged mode only code; implies -mno-inline-ic_invalidate ++if the inlined code would not work in user mode. ++This is the default when the target is @code{sh-*-linux*}. ++ ++@item -multcost=@var{number} ++@opindex multcost=@var{number} ++Set the cost to assume for a multiply insn. ++ ++@item -mdiv=@var{strategy} ++@opindex mdiv=@var{strategy} ++Set the division strategy to use for SHmedia code. @var{strategy} must be ++one of: call, call2, fp, inv, inv:minlat, inv20u, inv20l, inv:call, ++inv:call2, inv:fp . ++"fp" performs the operation in floating point. This has a very high latency, ++but needs only a few instructions, so it might be a good choice if ++your code has enough easily exploitable ILP to allow the compiler to ++schedule the floating point instructions together with other instructions. ++Division by zero causes a floating point exception. ++"inv" uses integer operations to calculate the inverse of the divisor, ++and then multiplies the dividend with the inverse. This strategy allows ++cse and hoisting of the inverse calculation. Division by zero calculates ++an unspecified result, but does not trap. ++"inv:minlat" is a variant of "inv" where if no cse / hoisting opportunities ++have been found, or if the entire operation has been hoisted to the same ++place, the last stages of the inverse calculation are intertwined with the ++final multiply to reduce the overall latency, at the expense of using a few ++more instructions, and thus offering fewer scheduling opportunities with ++other code. ++"call" calls a library function that usually implements the inv:minlat ++strategy. ++This gives high code density for m5-*media-nofpu compilations. ++"call2" uses a different entry point of the same library function, where it ++assumes that a pointer to a lookup table has already been set up, which ++exposes the pointer load to cse / code hoisting optimizations. ++"inv:call", "inv:call2" and "inv:fp" all use the "inv" algorithm for initial ++code generation, but if the code stays unoptimized, revert to the "call", ++"call2", or "fp" strategies, respectively. Note that the ++potentially-trapping side effect of division by zero is carried by a ++separate instruction, so it is possible that all the integer instructions ++are hoisted out, but the marker for the side effect stays where it is. ++A recombination to fp operations or a call is not possible in that case. ++"inv20u" and "inv20l" are variants of the "inv:minlat" strategy. In the case ++that the inverse calculation was nor separated from the multiply, they speed ++up division where the dividend fits into 20 bits (plus sign where applicable), ++by inserting a test to skip a number of operations in this case; this test ++slows down the case of larger dividends. inv20u assumes the case of a such ++a small dividend to be unlikely, and inv20l assumes it to be likely. ++ ++@item -mdivsi3_libfunc=@var{name} ++@opindex mdivsi3_libfunc=@var{name} ++Set the name of the library function used for 32 bit signed division to ++@var{name}. This only affect the name used in the call and inv:call ++division strategies, and the compiler will still expect the same ++sets of input/output/clobbered registers as if this option was not present. ++ ++@item -mfixed-range=@var{register-range} ++@opindex mfixed-range ++Generate code treating the given register range as fixed registers. ++A fixed register is one that the register allocator can not use. This is ++useful when compiling kernel code. A register range is specified as ++two registers separated by a dash. Multiple register ranges can be ++specified separated by a comma. ++ ++@item -madjust-unroll ++@opindex madjust-unroll ++Throttle unrolling to avoid thrashing target registers. ++This option only has an effect if the gcc code base supports the ++TARGET_ADJUST_UNROLL_MAX target hook. ++ ++@item -mindexed-addressing ++@opindex mindexed-addressing ++Enable the use of the indexed addressing mode for SHmedia32/SHcompact. ++This is only safe if the hardware and/or OS implement 32 bit wrap-around ++semantics for the indexed addressing mode. The architecture allows the ++implementation of processors with 64 bit MMU, which the OS could use to ++get 32 bit addressing, but since no current hardware implementation supports ++this or any other way to make the indexed addressing mode safe to use in ++the 32 bit ABI, the default is -mno-indexed-addressing. ++ ++@item -mgettrcost=@var{number} ++@opindex mgettrcost=@var{number} ++Set the cost assumed for the gettr instruction to @var{number}. ++The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise. ++ ++@item -mpt-fixed ++@opindex mpt-fixed ++Assume pt* instructions won't trap. This will generally generate better ++scheduled code, but is unsafe on current hardware. The current architecture ++definition says that ptabs and ptrel trap when the target anded with 3 is 3. ++This has the unintentional effect of making it unsafe to schedule ptabs / ++ptrel before a branch, or hoist it out of a loop. For example, ++__do_global_ctors, a part of libgcc that runs constructors at program ++startup, calls functions in a list which is delimited by @minus{}1. With the ++-mpt-fixed option, the ptabs will be done before testing against @minus{}1. ++That means that all the constructors will be run a bit quicker, but when ++the loop comes to the end of the list, the program crashes because ptabs ++loads @minus{}1 into a target register. Since this option is unsafe for any ++hardware implementing the current architecture specification, the default ++is -mno-pt-fixed. Unless the user specifies a specific cost with ++@option{-mgettrcost}, -mno-pt-fixed also implies @option{-mgettrcost=100}; ++this deters register allocation using target registers for storing ++ordinary integers. ++ ++@item -minvalid-symbols ++@opindex minvalid-symbols ++Assume symbols might be invalid. Ordinary function symbols generated by ++the compiler will always be valid to load with movi/shori/ptabs or ++movi/shori/ptrel, but with assembler and/or linker tricks it is possible ++to generate symbols that will cause ptabs / ptrel to trap. ++This option is only meaningful when @option{-mno-pt-fixed} is in effect. ++It will then prevent cross-basic-block cse, hoisting and most scheduling ++of symbol loads. The default is @option{-mno-invalid-symbols}. ++@end table ++ ++@node SPARC Options ++@subsection SPARC Options ++@cindex SPARC options ++ ++These @samp{-m} options are supported on the SPARC: ++ ++@table @gcctabopt ++@item -mno-app-regs ++@itemx -mapp-regs ++@opindex mno-app-regs ++@opindex mapp-regs ++Specify @option{-mapp-regs} to generate output using the global registers ++2 through 4, which the SPARC SVR4 ABI reserves for applications. This ++is the default. ++ ++To be fully SVR4 ABI compliant at the cost of some performance loss, ++specify @option{-mno-app-regs}. You should compile libraries and system ++software with this option. ++ ++@item -mfpu ++@itemx -mhard-float ++@opindex mfpu ++@opindex mhard-float ++Generate output containing floating point instructions. This is the ++default. ++ ++@item -mno-fpu ++@itemx -msoft-float ++@opindex mno-fpu ++@opindex msoft-float ++Generate output containing library calls for floating point. ++@strong{Warning:} the requisite libraries are not available for all SPARC ++targets. Normally the facilities of the machine's usual C compiler are ++used, but this cannot be done directly in cross-compilation. You must make ++your own arrangements to provide suitable library functions for ++cross-compilation. The embedded targets @samp{sparc-*-aout} and ++@samp{sparclite-*-*} do provide software floating point support. ++ ++@option{-msoft-float} changes the calling convention in the output file; ++therefore, it is only useful if you compile @emph{all} of a program with ++this option. In particular, you need to compile @file{libgcc.a}, the ++library that comes with GCC, with @option{-msoft-float} in order for ++this to work. ++ ++@item -mhard-quad-float ++@opindex mhard-quad-float ++Generate output containing quad-word (long double) floating point ++instructions. ++ ++@item -msoft-quad-float ++@opindex msoft-quad-float ++Generate output containing library calls for quad-word (long double) ++floating point instructions. The functions called are those specified ++in the SPARC ABI@. This is the default. ++ ++As of this writing, there are no SPARC implementations that have hardware ++support for the quad-word floating point instructions. They all invoke ++a trap handler for one of these instructions, and then the trap handler ++emulates the effect of the instruction. Because of the trap handler overhead, ++this is much slower than calling the ABI library routines. Thus the ++@option{-msoft-quad-float} option is the default. ++ ++@item -mno-unaligned-doubles ++@itemx -munaligned-doubles ++@opindex mno-unaligned-doubles ++@opindex munaligned-doubles ++Assume that doubles have 8 byte alignment. This is the default. ++ ++With @option{-munaligned-doubles}, GCC assumes that doubles have 8 byte ++alignment only if they are contained in another type, or if they have an ++absolute address. Otherwise, it assumes they have 4 byte alignment. ++Specifying this option avoids some rare compatibility problems with code ++generated by other compilers. It is not the default because it results ++in a performance loss, especially for floating point code. ++ ++@item -mno-faster-structs ++@itemx -mfaster-structs ++@opindex mno-faster-structs ++@opindex mfaster-structs ++With @option{-mfaster-structs}, the compiler assumes that structures ++should have 8 byte alignment. This enables the use of pairs of ++@code{ldd} and @code{std} instructions for copies in structure ++assignment, in place of twice as many @code{ld} and @code{st} pairs. ++However, the use of this changed alignment directly violates the SPARC ++ABI@. Thus, it's intended only for use on targets where the developer ++acknowledges that their resulting code will not be directly in line with ++the rules of the ABI@. ++ ++@item -mimpure-text ++@opindex mimpure-text ++@option{-mimpure-text}, used in addition to @option{-shared}, tells ++the compiler to not pass @option{-z text} to the linker when linking a ++shared object. Using this option, you can link position-dependent ++code into a shared object. ++ ++@option{-mimpure-text} suppresses the ``relocations remain against ++allocatable but non-writable sections'' linker error message. ++However, the necessary relocations will trigger copy-on-write, and the ++shared object is not actually shared across processes. Instead of ++using @option{-mimpure-text}, you should compile all source code with ++@option{-fpic} or @option{-fPIC}. ++ ++This option is only available on SunOS and Solaris. ++ ++@item -mcpu=@var{cpu_type} ++@opindex mcpu ++Set the instruction set, register set, and instruction scheduling parameters ++for machine type @var{cpu_type}. Supported values for @var{cpu_type} are ++@samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{sparclite}, ++@samp{f930}, @samp{f934}, @samp{hypersparc}, @samp{sparclite86x}, ++@samp{sparclet}, @samp{tsc701}, @samp{v9}, @samp{ultrasparc}, ++@samp{ultrasparc3}, @samp{niagara} and @samp{niagara2}. ++ ++Default instruction scheduling parameters are used for values that select ++an architecture and not an implementation. These are @samp{v7}, @samp{v8}, ++@samp{sparclite}, @samp{sparclet}, @samp{v9}. ++ ++Here is a list of each supported architecture and their supported ++implementations. ++ ++@smallexample ++ v7: cypress ++ v8: supersparc, hypersparc ++ sparclite: f930, f934, sparclite86x ++ sparclet: tsc701 ++ v9: ultrasparc, ultrasparc3, niagara, niagara2 ++@end smallexample ++ ++By default (unless configured otherwise), GCC generates code for the V7 ++variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler ++additionally optimizes it for the Cypress CY7C602 chip, as used in the ++SPARCStation/SPARCServer 3xx series. This is also appropriate for the older ++SPARCStation 1, 2, IPX etc. ++ ++With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC ++architecture. The only difference from V7 code is that the compiler emits ++the integer multiply and integer divide instructions which exist in SPARC-V8 ++but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally ++optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and ++2000 series. ++ ++With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of ++the SPARC architecture. This adds the integer multiply, integer divide step ++and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7. ++With @option{-mcpu=f930}, the compiler additionally optimizes it for the ++Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With ++@option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu ++MB86934 chip, which is the more recent SPARClite with FPU@. ++ ++With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of ++the SPARC architecture. This adds the integer multiply, multiply/accumulate, ++integer divide step and scan (@code{ffs}) instructions which exist in SPARClet ++but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally ++optimizes it for the TEMIC SPARClet chip. ++ ++With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC ++architecture. This adds 64-bit integer and floating-point move instructions, ++3 additional floating-point condition code registers and conditional move ++instructions. With @option{-mcpu=ultrasparc}, the compiler additionally ++optimizes it for the Sun UltraSPARC I/II/IIi chips. With ++@option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the ++Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With ++@option{-mcpu=niagara}, the compiler additionally optimizes it for ++Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler ++additionally optimizes it for Sun UltraSPARC T2 chips. ++ ++@item -mtune=@var{cpu_type} ++@opindex mtune ++Set the instruction scheduling parameters for machine type ++@var{cpu_type}, but do not set the instruction set or register set that the ++option @option{-mcpu=@var{cpu_type}} would. ++ ++The same values for @option{-mcpu=@var{cpu_type}} can be used for ++@option{-mtune=@var{cpu_type}}, but the only useful values are those ++that select a particular cpu implementation. Those are @samp{cypress}, ++@samp{supersparc}, @samp{hypersparc}, @samp{f930}, @samp{f934}, ++@samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc}, ++@samp{ultrasparc3}, @samp{niagara}, and @samp{niagara2}. ++ ++@item -mv8plus ++@itemx -mno-v8plus ++@opindex mv8plus ++@opindex mno-v8plus ++With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The ++difference from the V8 ABI is that the global and out registers are ++considered 64-bit wide. This is enabled by default on Solaris in 32-bit ++mode for all SPARC-V9 processors. ++ ++@item -mvis ++@itemx -mno-vis ++@opindex mvis ++@opindex mno-vis ++With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC ++Visual Instruction Set extensions. The default is @option{-mno-vis}. ++@end table ++ ++These @samp{-m} options are supported in addition to the above ++on SPARC-V9 processors in 64-bit environments: ++ ++@table @gcctabopt ++@item -mlittle-endian ++@opindex mlittle-endian ++Generate code for a processor running in little-endian mode. It is only ++available for a few configurations and most notably not on Solaris and Linux. ++ ++@item -m32 ++@itemx -m64 ++@opindex m32 ++@opindex m64 ++Generate code for a 32-bit or 64-bit environment. ++The 32-bit environment sets int, long and pointer to 32 bits. ++The 64-bit environment sets int to 32 bits and long and pointer ++to 64 bits. ++ ++@item -mcmodel=medlow ++@opindex mcmodel=medlow ++Generate code for the Medium/Low code model: 64-bit addresses, programs ++must be linked in the low 32 bits of memory. Programs can be statically ++or dynamically linked. ++ ++@item -mcmodel=medmid ++@opindex mcmodel=medmid ++Generate code for the Medium/Middle code model: 64-bit addresses, programs ++must be linked in the low 44 bits of memory, the text and data segments must ++be less than 2GB in size and the data segment must be located within 2GB of ++the text segment. ++ ++@item -mcmodel=medany ++@opindex mcmodel=medany ++Generate code for the Medium/Anywhere code model: 64-bit addresses, programs ++may be linked anywhere in memory, the text and data segments must be less ++than 2GB in size and the data segment must be located within 2GB of the ++text segment. ++ ++@item -mcmodel=embmedany ++@opindex mcmodel=embmedany ++Generate code for the Medium/Anywhere code model for embedded systems: ++64-bit addresses, the text and data segments must be less than 2GB in ++size, both starting anywhere in memory (determined at link time). The ++global register %g4 points to the base of the data segment. Programs ++are statically linked and PIC is not supported. ++ ++@item -mstack-bias ++@itemx -mno-stack-bias ++@opindex mstack-bias ++@opindex mno-stack-bias ++With @option{-mstack-bias}, GCC assumes that the stack pointer, and ++frame pointer if present, are offset by @minus{}2047 which must be added back ++when making stack frame references. This is the default in 64-bit mode. ++Otherwise, assume no such offset is present. ++@end table ++ ++These switches are supported in addition to the above on Solaris: ++ ++@table @gcctabopt ++@item -threads ++@opindex threads ++Add support for multithreading using the Solaris threads library. This ++option sets flags for both the preprocessor and linker. This option does ++not affect the thread safety of object code produced by the compiler or ++that of libraries supplied with it. ++ ++@item -pthreads ++@opindex pthreads ++Add support for multithreading using the POSIX threads library. This ++option sets flags for both the preprocessor and linker. This option does ++not affect the thread safety of object code produced by the compiler or ++that of libraries supplied with it. ++ ++@item -pthread ++@opindex pthread ++This is a synonym for @option{-pthreads}. ++@end table ++ ++@node SPU Options ++@subsection SPU Options ++@cindex SPU options ++ ++These @samp{-m} options are supported on the SPU: ++ ++@table @gcctabopt ++@item -mwarn-reloc ++@itemx -merror-reloc ++@opindex mwarn-reloc ++@opindex merror-reloc ++ ++The loader for SPU does not handle dynamic relocations. By default, GCC ++will give an error when it generates code that requires a dynamic ++relocation. @option{-mno-error-reloc} disables the error, ++@option{-mwarn-reloc} will generate a warning instead. ++ ++@item -msafe-dma ++@itemx -munsafe-dma ++@opindex msafe-dma ++@opindex munsafe-dma ++ ++Instructions which initiate or test completion of DMA must not be ++reordered with respect to loads and stores of the memory which is being ++accessed. Users typically address this problem using the volatile ++keyword, but that can lead to inefficient code in places where the ++memory is known to not change. Rather than mark the memory as volatile ++we treat the DMA instructions as potentially effecting all memory. With ++@option{-munsafe-dma} users must use the volatile keyword to protect ++memory accesses. ++ ++@item -mbranch-hints ++@opindex mbranch-hints ++ ++By default, GCC will generate a branch hint instruction to avoid ++pipeline stalls for always taken or probably taken branches. A hint ++will not be generated closer than 8 instructions away from its branch. ++There is little reason to disable them, except for debugging purposes, ++or to make an object a little bit smaller. ++ ++@item -msmall-mem ++@itemx -mlarge-mem ++@opindex msmall-mem ++@opindex mlarge-mem ++ ++By default, GCC generates code assuming that addresses are never larger ++than 18 bits. With @option{-mlarge-mem} code is generated that assumes ++a full 32 bit address. ++ ++@item -mstdmain ++@opindex mstdmain ++ ++By default, GCC links against startup code that assumes the SPU-style ++main function interface (which has an unconventional parameter list). ++With @option{-mstdmain}, GCC will link your program against startup ++code that assumes a C99-style interface to @code{main}, including a ++local copy of @code{argv} strings. ++ ++@item -mfixed-range=@var{register-range} ++@opindex mfixed-range ++Generate code treating the given register range as fixed registers. ++A fixed register is one that the register allocator can not use. This is ++useful when compiling kernel code. A register range is specified as ++two registers separated by a dash. Multiple register ranges can be ++specified separated by a comma. ++ ++@item -mdual-nops ++@itemx -mdual-nops=@var{n} ++@opindex mdual-nops ++By default, GCC will insert nops to increase dual issue when it expects ++it to increase performance. @var{n} can be a value from 0 to 10. A ++smaller @var{n} will insert fewer nops. 10 is the default, 0 is the ++same as @option{-mno-dual-nops}. Disabled with @option{-Os}. ++ ++@item -mhint-max-nops=@var{n} ++@opindex mhint-max-nops ++Maximum number of nops to insert for a branch hint. A branch hint must ++be at least 8 instructions away from the branch it is effecting. GCC ++will insert up to @var{n} nops to enforce this, otherwise it will not ++generate the branch hint. ++ ++@item -mhint-max-distance=@var{n} ++@opindex mhint-max-distance ++The encoding of the branch hint instruction limits the hint to be within ++256 instructions of the branch it is effecting. By default, GCC makes ++sure it is within 125. ++ ++@item -msafe-hints ++@opindex msafe-hints ++Work around a hardware bug which causes the SPU to stall indefinitely. ++By default, GCC will insert the @code{hbrp} instruction to make sure ++this stall won't happen. ++ ++@end table ++ ++@node System V Options ++@subsection Options for System V ++ ++These additional options are available on System V Release 4 for ++compatibility with other compilers on those systems: ++ ++@table @gcctabopt ++@item -G ++@opindex G ++Create a shared object. ++It is recommended that @option{-symbolic} or @option{-shared} be used instead. ++ ++@item -Qy ++@opindex Qy ++Identify the versions of each tool used by the compiler, in a ++@code{.ident} assembler directive in the output. ++ ++@item -Qn ++@opindex Qn ++Refrain from adding @code{.ident} directives to the output file (this is ++the default). ++ ++@item -YP,@var{dirs} ++@opindex YP ++Search the directories @var{dirs}, and no others, for libraries ++specified with @option{-l}. ++ ++@item -Ym,@var{dir} ++@opindex Ym ++Look in the directory @var{dir} to find the M4 preprocessor. ++The assembler uses this option. ++@c This is supposed to go with a -Yd for predefined M4 macro files, but ++@c the generic assembler that comes with Solaris takes just -Ym. ++@end table ++ ++@node V850 Options ++@subsection V850 Options ++@cindex V850 Options ++ ++These @samp{-m} options are defined for V850 implementations: ++ ++@table @gcctabopt ++@item -mlong-calls ++@itemx -mno-long-calls ++@opindex mlong-calls ++@opindex mno-long-calls ++Treat all calls as being far away (near). If calls are assumed to be ++far away, the compiler will always load the functions address up into a ++register, and call indirect through the pointer. ++ ++@item -mno-ep ++@itemx -mep ++@opindex mno-ep ++@opindex mep ++Do not optimize (do optimize) basic blocks that use the same index ++pointer 4 or more times to copy pointer into the @code{ep} register, and ++use the shorter @code{sld} and @code{sst} instructions. The @option{-mep} ++option is on by default if you optimize. ++ ++@item -mno-prolog-function ++@itemx -mprolog-function ++@opindex mno-prolog-function ++@opindex mprolog-function ++Do not use (do use) external functions to save and restore registers ++at the prologue and epilogue of a function. The external functions ++are slower, but use less code space if more than one function saves ++the same number of registers. The @option{-mprolog-function} option ++is on by default if you optimize. ++ ++@item -mspace ++@opindex mspace ++Try to make the code as small as possible. At present, this just turns ++on the @option{-mep} and @option{-mprolog-function} options. ++ ++@item -mtda=@var{n} ++@opindex mtda ++Put static or global variables whose size is @var{n} bytes or less into ++the tiny data area that register @code{ep} points to. The tiny data ++area can hold up to 256 bytes in total (128 bytes for byte references). ++ ++@item -msda=@var{n} ++@opindex msda ++Put static or global variables whose size is @var{n} bytes or less into ++the small data area that register @code{gp} points to. The small data ++area can hold up to 64 kilobytes. ++ ++@item -mzda=@var{n} ++@opindex mzda ++Put static or global variables whose size is @var{n} bytes or less into ++the first 32 kilobytes of memory. ++ ++@item -mv850 ++@opindex mv850 ++Specify that the target processor is the V850. ++ ++@item -mbig-switch ++@opindex mbig-switch ++Generate code suitable for big switch tables. Use this option only if ++the assembler/linker complain about out of range branches within a switch ++table. ++ ++@item -mapp-regs ++@opindex mapp-regs ++This option will cause r2 and r5 to be used in the code generated by ++the compiler. This setting is the default. ++ ++@item -mno-app-regs ++@opindex mno-app-regs ++This option will cause r2 and r5 to be treated as fixed registers. ++ ++@item -mv850e1 ++@opindex mv850e1 ++Specify that the target processor is the V850E1. The preprocessor ++constants @samp{__v850e1__} and @samp{__v850e__} will be defined if ++this option is used. ++ ++@item -mv850e ++@opindex mv850e ++Specify that the target processor is the V850E@. The preprocessor ++constant @samp{__v850e__} will be defined if this option is used. ++ ++If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1} ++are defined then a default target processor will be chosen and the ++relevant @samp{__v850*__} preprocessor constant will be defined. ++ ++The preprocessor constants @samp{__v850} and @samp{__v851__} are always ++defined, regardless of which processor variant is the target. ++ ++@item -mdisable-callt ++@opindex mdisable-callt ++This option will suppress generation of the CALLT instruction for the ++v850e and v850e1 flavors of the v850 architecture. The default is ++@option{-mno-disable-callt} which allows the CALLT instruction to be used. ++ ++@end table ++ ++@node VAX Options ++@subsection VAX Options ++@cindex VAX options ++ ++These @samp{-m} options are defined for the VAX: ++ ++@table @gcctabopt ++@item -munix ++@opindex munix ++Do not output certain jump instructions (@code{aobleq} and so on) ++that the Unix assembler for the VAX cannot handle across long ++ranges. ++ ++@item -mgnu ++@opindex mgnu ++Do output those jump instructions, on the assumption that you ++will assemble with the GNU assembler. ++ ++@item -mg ++@opindex mg ++Output code for g-format floating point numbers instead of d-format. ++@end table ++ ++@node VxWorks Options ++@subsection VxWorks Options ++@cindex VxWorks Options ++ ++The options in this section are defined for all VxWorks targets. ++Options specific to the target hardware are listed with the other ++options for that target. ++ ++@table @gcctabopt ++@item -mrtp ++@opindex mrtp ++GCC can generate code for both VxWorks kernels and real time processes ++(RTPs). This option switches from the former to the latter. It also ++defines the preprocessor macro @code{__RTP__}. ++ ++@item -non-static ++@opindex non-static ++Link an RTP executable against shared libraries rather than static ++libraries. The options @option{-static} and @option{-shared} can ++also be used for RTPs (@pxref{Link Options}); @option{-static} ++is the default. ++ ++@item -Bstatic ++@itemx -Bdynamic ++@opindex Bstatic ++@opindex Bdynamic ++These options are passed down to the linker. They are defined for ++compatibility with Diab. ++ ++@item -Xbind-lazy ++@opindex Xbind-lazy ++Enable lazy binding of function calls. This option is equivalent to ++@option{-Wl,-z,now} and is defined for compatibility with Diab. ++ ++@item -Xbind-now ++@opindex Xbind-now ++Disable lazy binding of function calls. This option is the default and ++is defined for compatibility with Diab. ++@end table ++ ++@node x86-64 Options ++@subsection x86-64 Options ++@cindex x86-64 options ++ ++These are listed under @xref{i386 and x86-64 Options}. ++ ++@node Xstormy16 Options ++@subsection Xstormy16 Options ++@cindex Xstormy16 Options ++ ++These options are defined for Xstormy16: ++ ++@table @gcctabopt ++@item -msim ++@opindex msim ++Choose startup files and linker script suitable for the simulator. ++@end table ++ ++@node Xtensa Options ++@subsection Xtensa Options ++@cindex Xtensa Options ++ ++These options are supported for Xtensa targets: ++ ++@table @gcctabopt ++@item -mconst16 ++@itemx -mno-const16 ++@opindex mconst16 ++@opindex mno-const16 ++Enable or disable use of @code{CONST16} instructions for loading ++constant values. The @code{CONST16} instruction is currently not a ++standard option from Tensilica. When enabled, @code{CONST16} ++instructions are always used in place of the standard @code{L32R} ++instructions. The use of @code{CONST16} is enabled by default only if ++the @code{L32R} instruction is not available. ++ ++@item -mfused-madd ++@itemx -mno-fused-madd ++@opindex mfused-madd ++@opindex mno-fused-madd ++Enable or disable use of fused multiply/add and multiply/subtract ++instructions in the floating-point option. This has no effect if the ++floating-point option is not also enabled. Disabling fused multiply/add ++and multiply/subtract instructions forces the compiler to use separate ++instructions for the multiply and add/subtract operations. This may be ++desirable in some cases where strict IEEE 754-compliant results are ++required: the fused multiply add/subtract instructions do not round the ++intermediate result, thereby producing results with @emph{more} bits of ++precision than specified by the IEEE standard. Disabling fused multiply ++add/subtract instructions also ensures that the program output is not ++sensitive to the compiler's ability to combine multiply and add/subtract ++operations. ++ ++@item -mserialize-volatile ++@itemx -mno-serialize-volatile ++@opindex mserialize-volatile ++@opindex mno-serialize-volatile ++When this option is enabled, GCC inserts @code{MEMW} instructions before ++@code{volatile} memory references to guarantee sequential consistency. ++The default is @option{-mserialize-volatile}. Use ++@option{-mno-serialize-volatile} to omit the @code{MEMW} instructions. ++ ++@item -mtext-section-literals ++@itemx -mno-text-section-literals ++@opindex mtext-section-literals ++@opindex mno-text-section-literals ++Control the treatment of literal pools. The default is ++@option{-mno-text-section-literals}, which places literals in a separate ++section in the output file. This allows the literal pool to be placed ++in a data RAM/ROM, and it also allows the linker to combine literal ++pools from separate object files to remove redundant literals and ++improve code size. With @option{-mtext-section-literals}, the literals ++are interspersed in the text section in order to keep them as close as ++possible to their references. This may be necessary for large assembly ++files. ++ ++@item -mtarget-align ++@itemx -mno-target-align ++@opindex mtarget-align ++@opindex mno-target-align ++When this option is enabled, GCC instructs the assembler to ++automatically align instructions to reduce branch penalties at the ++expense of some code density. The assembler attempts to widen density ++instructions to align branch targets and the instructions following call ++instructions. If there are not enough preceding safe density ++instructions to align a target, no widening will be performed. The ++default is @option{-mtarget-align}. These options do not affect the ++treatment of auto-aligned instructions like @code{LOOP}, which the ++assembler will always align, either by widening density instructions or ++by inserting no-op instructions. ++ ++@item -mlongcalls ++@itemx -mno-longcalls ++@opindex mlongcalls ++@opindex mno-longcalls ++When this option is enabled, GCC instructs the assembler to translate ++direct calls to indirect calls unless it can determine that the target ++of a direct call is in the range allowed by the call instruction. This ++translation typically occurs for calls to functions in other source ++files. Specifically, the assembler translates a direct @code{CALL} ++instruction into an @code{L32R} followed by a @code{CALLX} instruction. ++The default is @option{-mno-longcalls}. This option should be used in ++programs where the call target can potentially be out of range. This ++option is implemented in the assembler, not the compiler, so the ++assembly code generated by GCC will still show direct call ++instructions---look at the disassembled object code to see the actual ++instructions. Note that the assembler will use an indirect call for ++every cross-file call, not just those that really will be out of range. ++@end table ++ ++@node zSeries Options ++@subsection zSeries Options ++@cindex zSeries options ++ ++These are listed under @xref{S/390 and zSeries Options}. ++ ++@node Code Gen Options ++@section Options for Code Generation Conventions ++@cindex code generation conventions ++@cindex options, code generation ++@cindex run-time options ++ ++These machine-independent options control the interface conventions ++used in code generation. ++ ++Most of them have both positive and negative forms; the negative form ++of @option{-ffoo} would be @option{-fno-foo}. In the table below, only ++one of the forms is listed---the one which is not the default. You ++can figure out the other form by either removing @samp{no-} or adding ++it. ++ ++@table @gcctabopt ++@item -fbounds-check ++@opindex fbounds-check ++For front-ends that support it, generate additional code to check that ++indices used to access arrays are within the declared range. This is ++currently only supported by the Java and Fortran front-ends, where ++this option defaults to true and false respectively. ++ ++@item -ftrapv ++@opindex ftrapv ++This option generates traps for signed overflow on addition, subtraction, ++multiplication operations. ++ ++@item -fwrapv ++@opindex fwrapv ++This option instructs the compiler to assume that signed arithmetic ++overflow of addition, subtraction and multiplication wraps around ++using twos-complement representation. This flag enables some optimizations ++and disables others. This option is enabled by default for the Java ++front-end, as required by the Java language specification. ++ ++@item -fexceptions ++@opindex fexceptions ++Enable exception handling. Generates extra code needed to propagate ++exceptions. For some targets, this implies GCC will generate frame ++unwind information for all functions, which can produce significant data ++size overhead, although it does not affect execution. If you do not ++specify this option, GCC will enable it by default for languages like ++C++ which normally require exception handling, and disable it for ++languages like C that do not normally require it. However, you may need ++to enable this option when compiling C code that needs to interoperate ++properly with exception handlers written in C++. You may also wish to ++disable this option if you are compiling older C++ programs that don't ++use exception handling. ++ ++@item -fnon-call-exceptions ++@opindex fnon-call-exceptions ++Generate code that allows trapping instructions to throw exceptions. ++Note that this requires platform-specific runtime support that does ++not exist everywhere. Moreover, it only allows @emph{trapping} ++instructions to throw exceptions, i.e.@: memory references or floating ++point instructions. It does not allow exceptions to be thrown from ++arbitrary signal handlers such as @code{SIGALRM}. ++ ++@item -funwind-tables ++@opindex funwind-tables ++Similar to @option{-fexceptions}, except that it will just generate any needed ++static data, but will not affect the generated code in any other way. ++You will normally not enable this option; instead, a language processor ++that needs this handling would enable it on your behalf. ++ ++@item -fasynchronous-unwind-tables ++@opindex fasynchronous-unwind-tables ++Generate unwind table in dwarf2 format, if supported by target machine. The ++table is exact at each instruction boundary, so it can be used for stack ++unwinding from asynchronous events (such as debugger or garbage collector). ++ ++@item -fpcc-struct-return ++@opindex fpcc-struct-return ++Return ``short'' @code{struct} and @code{union} values in memory like ++longer ones, rather than in registers. This convention is less ++efficient, but it has the advantage of allowing intercallability between ++GCC-compiled files and files compiled with other compilers, particularly ++the Portable C Compiler (pcc). ++ ++The precise convention for returning structures in memory depends ++on the target configuration macros. ++ ++Short structures and unions are those whose size and alignment match ++that of some integer type. ++ ++@strong{Warning:} code compiled with the @option{-fpcc-struct-return} ++switch is not binary compatible with code compiled with the ++@option{-freg-struct-return} switch. ++Use it to conform to a non-default application binary interface. ++ ++@item -freg-struct-return ++@opindex freg-struct-return ++Return @code{struct} and @code{union} values in registers when possible. ++This is more efficient for small structures than ++@option{-fpcc-struct-return}. ++ ++If you specify neither @option{-fpcc-struct-return} nor ++@option{-freg-struct-return}, GCC defaults to whichever convention is ++standard for the target. If there is no standard convention, GCC ++defaults to @option{-fpcc-struct-return}, except on targets where GCC is ++the principal compiler. In those cases, we can choose the standard, and ++we chose the more efficient register return alternative. ++ ++@strong{Warning:} code compiled with the @option{-freg-struct-return} ++switch is not binary compatible with code compiled with the ++@option{-fpcc-struct-return} switch. ++Use it to conform to a non-default application binary interface. ++ ++@item -fshort-enums ++@opindex fshort-enums ++Allocate to an @code{enum} type only as many bytes as it needs for the ++declared range of possible values. Specifically, the @code{enum} type ++will be equivalent to the smallest integer type which has enough room. ++ ++@strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate ++code that is not binary compatible with code generated without that switch. ++Use it to conform to a non-default application binary interface. ++ ++@item -fshort-double ++@opindex fshort-double ++Use the same size for @code{double} as for @code{float}. ++ ++@strong{Warning:} the @option{-fshort-double} switch causes GCC to generate ++code that is not binary compatible with code generated without that switch. ++Use it to conform to a non-default application binary interface. ++ ++@item -fshort-wchar ++@opindex fshort-wchar ++Override the underlying type for @samp{wchar_t} to be @samp{short ++unsigned int} instead of the default for the target. This option is ++useful for building programs to run under WINE@. ++ ++@strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate ++code that is not binary compatible with code generated without that switch. ++Use it to conform to a non-default application binary interface. ++ ++@item -fno-common ++@opindex fno-common ++In C code, controls the placement of uninitialized global variables. ++Unix C compilers have traditionally permitted multiple definitions of ++such variables in different compilation units by placing the variables ++in a common block. ++This is the behavior specified by @option{-fcommon}, and is the default ++for GCC on most targets. ++On the other hand, this behavior is not required by ISO C, and on some ++targets may carry a speed or code size penalty on variable references. ++The @option{-fno-common} option specifies that the compiler should place ++uninitialized global variables in the data section of the object file, ++rather than generating them as common blocks. ++This has the effect that if the same variable is declared ++(without @code{extern}) in two different compilations, ++you will get a multiple-definition error when you link them. ++In this case, you must compile with @option{-fcommon} instead. ++Compiling with @option{-fno-common} is useful on targets for which ++it provides better performance, or if you wish to verify that the ++program will work on other systems which always treat uninitialized ++variable declarations this way. ++ ++@item -fno-ident ++@opindex fno-ident ++Ignore the @samp{#ident} directive. ++ ++@item -finhibit-size-directive ++@opindex finhibit-size-directive ++Don't output a @code{.size} assembler directive, or anything else that ++would cause trouble if the function is split in the middle, and the ++two halves are placed at locations far apart in memory. This option is ++used when compiling @file{crtstuff.c}; you should not need to use it ++for anything else. ++ ++@item -fverbose-asm ++@opindex fverbose-asm ++Put extra commentary information in the generated assembly code to ++make it more readable. This option is generally only of use to those ++who actually need to read the generated assembly code (perhaps while ++debugging the compiler itself). ++ ++@option{-fno-verbose-asm}, the default, causes the ++extra information to be omitted and is useful when comparing two assembler ++files. ++ ++@item -frecord-gcc-switches ++@opindex frecord-gcc-switches ++This switch causes the command line that was used to invoke the ++compiler to be recorded into the object file that is being created. ++This switch is only implemented on some targets and the exact format ++of the recording is target and binary file format dependent, but it ++usually takes the form of a section containing ASCII text. This ++switch is related to the @option{-fverbose-asm} switch, but that ++switch only records information in the assembler output file as ++comments, so it never reaches the object file. ++ ++@item -fpic ++@opindex fpic ++@cindex global offset table ++@cindex PIC ++Generate position-independent code (PIC) suitable for use in a shared ++library, if supported for the target machine. Such code accesses all ++constant addresses through a global offset table (GOT)@. The dynamic ++loader resolves the GOT entries when the program starts (the dynamic ++loader is not part of GCC; it is part of the operating system). If ++the GOT size for the linked executable exceeds a machine-specific ++maximum size, you get an error message from the linker indicating that ++@option{-fpic} does not work; in that case, recompile with @option{-fPIC} ++instead. (These maximums are 8k on the SPARC and 32k ++on the m68k and RS/6000. The 386 has no such limit.) ++ ++Position-independent code requires special support, and therefore works ++only on certain machines. For the 386, GCC supports PIC for System V ++but not for the Sun 386i. Code generated for the IBM RS/6000 is always ++position-independent. ++ ++When this flag is set, the macros @code{__pic__} and @code{__PIC__} ++are defined to 1. ++ ++@item -fPIC ++@opindex fPIC ++If supported for the target machine, emit position-independent code, ++suitable for dynamic linking and avoiding any limit on the size of the ++global offset table. This option makes a difference on the m68k, ++PowerPC and SPARC@. ++ ++Position-independent code requires special support, and therefore works ++only on certain machines. ++ ++When this flag is set, the macros @code{__pic__} and @code{__PIC__} ++are defined to 2. ++ ++@item -fpie ++@itemx -fPIE ++@opindex fpie ++@opindex fPIE ++These options are similar to @option{-fpic} and @option{-fPIC}, but ++generated position independent code can be only linked into executables. ++Usually these options are used when @option{-pie} GCC option will be ++used during linking. ++ ++@option{-fpie} and @option{-fPIE} both define the macros ++@code{__pie__} and @code{__PIE__}. The macros have the value 1 ++for @option{-fpie} and 2 for @option{-fPIE}. ++ ++@item -fno-jump-tables ++@opindex fno-jump-tables ++Do not use jump tables for switch statements even where it would be ++more efficient than other code generation strategies. This option is ++of use in conjunction with @option{-fpic} or @option{-fPIC} for ++building code which forms part of a dynamic linker and cannot ++reference the address of a jump table. On some targets, jump tables ++do not require a GOT and this option is not needed. ++ ++@item -ffixed-@var{reg} ++@opindex ffixed ++Treat the register named @var{reg} as a fixed register; generated code ++should never refer to it (except perhaps as a stack pointer, frame ++pointer or in some other fixed role). ++ ++@var{reg} must be the name of a register. The register names accepted ++are machine-specific and are defined in the @code{REGISTER_NAMES} ++macro in the machine description macro file. ++ ++This flag does not have a negative form, because it specifies a ++three-way choice. ++ ++@item -fcall-used-@var{reg} ++@opindex fcall-used ++Treat the register named @var{reg} as an allocable register that is ++clobbered by function calls. It may be allocated for temporaries or ++variables that do not live across a call. Functions compiled this way ++will not save and restore the register @var{reg}. ++ ++It is an error to used this flag with the frame pointer or stack pointer. ++Use of this flag for other registers that have fixed pervasive roles in ++the machine's execution model will produce disastrous results. ++ ++This flag does not have a negative form, because it specifies a ++three-way choice. ++ ++@item -fcall-saved-@var{reg} ++@opindex fcall-saved ++Treat the register named @var{reg} as an allocable register saved by ++functions. It may be allocated even for temporaries or variables that ++live across a call. Functions compiled this way will save and restore ++the register @var{reg} if they use it. ++ ++It is an error to used this flag with the frame pointer or stack pointer. ++Use of this flag for other registers that have fixed pervasive roles in ++the machine's execution model will produce disastrous results. ++ ++A different sort of disaster will result from the use of this flag for ++a register in which function values may be returned. ++ ++This flag does not have a negative form, because it specifies a ++three-way choice. ++ ++@item -fpack-struct[=@var{n}] ++@opindex fpack-struct ++Without a value specified, pack all structure members together without ++holes. When a value is specified (which must be a small power of two), pack ++structure members according to this value, representing the maximum ++alignment (that is, objects with default alignment requirements larger than ++this will be output potentially unaligned at the next fitting location. ++ ++@strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate ++code that is not binary compatible with code generated without that switch. ++Additionally, it makes the code suboptimal. ++Use it to conform to a non-default application binary interface. ++ ++@item -finstrument-functions ++@opindex finstrument-functions ++Generate instrumentation calls for entry and exit to functions. Just ++after function entry and just before function exit, the following ++profiling functions will be called with the address of the current ++function and its call site. (On some platforms, ++@code{__builtin_return_address} does not work beyond the current ++function, so the call site information may not be available to the ++profiling functions otherwise.) ++ ++@smallexample ++void __cyg_profile_func_enter (void *this_fn, ++ void *call_site); ++void __cyg_profile_func_exit (void *this_fn, ++ void *call_site); ++@end smallexample ++ ++The first argument is the address of the start of the current function, ++which may be looked up exactly in the symbol table. ++ ++This instrumentation is also done for functions expanded inline in other ++functions. The profiling calls will indicate where, conceptually, the ++inline function is entered and exited. This means that addressable ++versions of such functions must be available. If all your uses of a ++function are expanded inline, this may mean an additional expansion of ++code size. If you use @samp{extern inline} in your C code, an ++addressable version of such functions must be provided. (This is ++normally the case anyways, but if you get lucky and the optimizer always ++expands the functions inline, you might have gotten away without ++providing static copies.) ++ ++A function may be given the attribute @code{no_instrument_function}, in ++which case this instrumentation will not be done. This can be used, for ++example, for the profiling functions listed above, high-priority ++interrupt routines, and any functions from which the profiling functions ++cannot safely be called (perhaps signal handlers, if the profiling ++routines generate output or allocate memory). ++ ++@item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} ++@opindex finstrument-functions-exclude-file-list ++ ++Set the list of functions that are excluded from instrumentation (see ++the description of @code{-finstrument-functions}). If the file that ++contains a function definition matches with one of @var{file}, then ++that function is not instrumented. The match is done on substrings: ++if the @var{file} parameter is a substring of the file name, it is ++considered to be a match. ++ ++For example, ++@code{-finstrument-functions-exclude-file-list=/bits/stl,include/sys} ++will exclude any inline function defined in files whose pathnames ++contain @code{/bits/stl} or @code{include/sys}. ++ ++If, for some reason, you want to include letter @code{','} in one of ++@var{sym}, write @code{'\,'}. For example, ++@code{-finstrument-functions-exclude-file-list='\,\,tmp'} ++(note the single quote surrounding the option). ++ ++@item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} ++@opindex finstrument-functions-exclude-function-list ++ ++This is similar to @code{-finstrument-functions-exclude-file-list}, ++but this option sets the list of function names to be excluded from ++instrumentation. The function name to be matched is its user-visible ++name, such as @code{vector<int> blah(const vector<int> &)}, not the ++internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The ++match is done on substrings: if the @var{sym} parameter is a substring ++of the function name, it is considered to be a match. ++ ++@item -fstack-check ++@opindex fstack-check ++Generate code to verify that you do not go beyond the boundary of the ++stack. You should specify this flag if you are running in an ++environment with multiple threads, but only rarely need to specify it in ++a single-threaded environment since stack overflow is automatically ++detected on nearly all systems if there is only one stack. ++ ++Note that this switch does not actually cause checking to be done; the ++operating system or the language runtime must do that. The switch causes ++generation of code to ensure that they see the stack being extended. ++ ++You can additionally specify a string parameter: @code{no} means no ++checking, @code{generic} means force the use of old-style checking, ++@code{specific} means use the best checking method and is equivalent ++to bare @option{-fstack-check}. ++ ++Old-style checking is a generic mechanism that requires no specific ++target support in the compiler but comes with the following drawbacks: ++ ++@enumerate ++@item ++Modified allocation strategy for large objects: they will always be ++allocated dynamically if their size exceeds a fixed threshold. ++ ++@item ++Fixed limit on the size of the static frame of functions: when it is ++topped by a particular function, stack checking is not reliable and ++a warning is issued by the compiler. ++ ++@item ++Inefficiency: because of both the modified allocation strategy and the ++generic implementation, the performances of the code are hampered. ++@end enumerate ++ ++Note that old-style stack checking is also the fallback method for ++@code{specific} if no target support has been added in the compiler. ++ ++@item -fstack-limit-register=@var{reg} ++@itemx -fstack-limit-symbol=@var{sym} ++@itemx -fno-stack-limit ++@opindex fstack-limit-register ++@opindex fstack-limit-symbol ++@opindex fno-stack-limit ++Generate code to ensure that the stack does not grow beyond a certain value, ++either the value of a register or the address of a symbol. If the stack ++would grow beyond the value, a signal is raised. For most targets, ++the signal is raised before the stack overruns the boundary, so ++it is possible to catch the signal without taking special precautions. ++ ++For instance, if the stack starts at absolute address @samp{0x80000000} ++and grows downwards, you can use the flags ++@option{-fstack-limit-symbol=__stack_limit} and ++@option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit ++of 128KB@. Note that this may only work with the GNU linker. ++ ++@cindex aliasing of parameters ++@cindex parameters, aliased ++@item -fargument-alias ++@itemx -fargument-noalias ++@itemx -fargument-noalias-global ++@itemx -fargument-noalias-anything ++@opindex fargument-alias ++@opindex fargument-noalias ++@opindex fargument-noalias-global ++@opindex fargument-noalias-anything ++Specify the possible relationships among parameters and between ++parameters and global data. ++ ++@option{-fargument-alias} specifies that arguments (parameters) may ++alias each other and may alias global storage.@* ++@option{-fargument-noalias} specifies that arguments do not alias ++each other, but may alias global storage.@* ++@option{-fargument-noalias-global} specifies that arguments do not ++alias each other and do not alias global storage. ++@option{-fargument-noalias-anything} specifies that arguments do not ++alias any other storage. ++ ++Each language will automatically use whatever option is required by ++the language standard. You should not need to use these options yourself. ++ ++@item -fleading-underscore ++@opindex fleading-underscore ++This option and its counterpart, @option{-fno-leading-underscore}, forcibly ++change the way C symbols are represented in the object file. One use ++is to help link with legacy assembly code. ++ ++@strong{Warning:} the @option{-fleading-underscore} switch causes GCC to ++generate code that is not binary compatible with code generated without that ++switch. Use it to conform to a non-default application binary interface. ++Not all targets provide complete support for this switch. ++ ++@item -ftls-model=@var{model} ++@opindex ftls-model ++Alter the thread-local storage model to be used (@pxref{Thread-Local}). ++The @var{model} argument should be one of @code{global-dynamic}, ++@code{local-dynamic}, @code{initial-exec} or @code{local-exec}. ++ ++The default without @option{-fpic} is @code{initial-exec}; with ++@option{-fpic} the default is @code{global-dynamic}. ++ ++@item -fvisibility=@var{default|internal|hidden|protected} ++@opindex fvisibility ++Set the default ELF image symbol visibility to the specified option---all ++symbols will be marked with this unless overridden within the code. ++Using this feature can very substantially improve linking and ++load times of shared object libraries, produce more optimized ++code, provide near-perfect API export and prevent symbol clashes. ++It is @strong{strongly} recommended that you use this in any shared objects ++you distribute. ++ ++Despite the nomenclature, @code{default} always means public ie; ++available to be linked against from outside the shared object. ++@code{protected} and @code{internal} are pretty useless in real-world ++usage so the only other commonly used option will be @code{hidden}. ++The default if @option{-fvisibility} isn't specified is ++@code{default}, i.e., make every ++symbol public---this causes the same behavior as previous versions of ++GCC@. ++ ++A good explanation of the benefits offered by ensuring ELF ++symbols have the correct visibility is given by ``How To Write ++Shared Libraries'' by Ulrich Drepper (which can be found at ++@w{@uref{http://people.redhat.com/~drepper/}})---however a superior ++solution made possible by this option to marking things hidden when ++the default is public is to make the default hidden and mark things ++public. This is the norm with DLL's on Windows and with @option{-fvisibility=hidden} ++and @code{__attribute__ ((visibility("default")))} instead of ++@code{__declspec(dllexport)} you get almost identical semantics with ++identical syntax. This is a great boon to those working with ++cross-platform projects. ++ ++For those adding visibility support to existing code, you may find ++@samp{#pragma GCC visibility} of use. This works by you enclosing ++the declarations you wish to set visibility for with (for example) ++@samp{#pragma GCC visibility push(hidden)} and ++@samp{#pragma GCC visibility pop}. ++Bear in mind that symbol visibility should be viewed @strong{as ++part of the API interface contract} and thus all new code should ++always specify visibility when it is not the default ie; declarations ++only for use within the local DSO should @strong{always} be marked explicitly ++as hidden as so to avoid PLT indirection overheads---making this ++abundantly clear also aids readability and self-documentation of the code. ++Note that due to ISO C++ specification requirements, operator new and ++operator delete must always be of default visibility. ++ ++Be aware that headers from outside your project, in particular system ++headers and headers from any other library you use, may not be ++expecting to be compiled with visibility other than the default. You ++may need to explicitly say @samp{#pragma GCC visibility push(default)} ++before including any such headers. ++ ++@samp{extern} declarations are not affected by @samp{-fvisibility}, so ++a lot of code can be recompiled with @samp{-fvisibility=hidden} with ++no modifications. However, this means that calls to @samp{extern} ++functions with no explicit visibility will use the PLT, so it is more ++effective to use @samp{__attribute ((visibility))} and/or ++@samp{#pragma GCC visibility} to tell the compiler which @samp{extern} ++declarations should be treated as hidden. ++ ++Note that @samp{-fvisibility} does affect C++ vague linkage ++entities. This means that, for instance, an exception class that will ++be thrown between DSOs must be explicitly marked with default ++visibility so that the @samp{type_info} nodes will be unified between ++the DSOs. ++ ++An overview of these techniques, their benefits and how to use them ++is at @w{@uref{http://gcc.gnu.org/wiki/Visibility}}. ++ ++@end table ++ ++@c man end ++ ++@node Environment Variables ++@section Environment Variables Affecting GCC ++@cindex environment variables ++ ++@c man begin ENVIRONMENT ++This section describes several environment variables that affect how GCC ++operates. Some of them work by specifying directories or prefixes to use ++when searching for various kinds of files. Some are used to specify other ++aspects of the compilation environment. ++ ++Note that you can also specify places to search using options such as ++@option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These ++take precedence over places specified using environment variables, which ++in turn take precedence over those specified by the configuration of GCC@. ++@xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint, ++GNU Compiler Collection (GCC) Internals}. ++ ++@table @env ++@item LANG ++@itemx LC_CTYPE ++@c @itemx LC_COLLATE ++@itemx LC_MESSAGES ++@c @itemx LC_MONETARY ++@c @itemx LC_NUMERIC ++@c @itemx LC_TIME ++@itemx LC_ALL ++@findex LANG ++@findex LC_CTYPE ++@c @findex LC_COLLATE ++@findex LC_MESSAGES ++@c @findex LC_MONETARY ++@c @findex LC_NUMERIC ++@c @findex LC_TIME ++@findex LC_ALL ++@cindex locale ++These environment variables control the way that GCC uses ++localization information that allow GCC to work with different ++national conventions. GCC inspects the locale categories ++@env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do ++so. These locale categories can be set to any value supported by your ++installation. A typical value is @samp{en_GB.UTF-8} for English in the United ++Kingdom encoded in UTF-8. ++ ++The @env{LC_CTYPE} environment variable specifies character ++classification. GCC uses it to determine the character boundaries in ++a string; this is needed for some multibyte encodings that contain quote ++and escape characters that would otherwise be interpreted as a string ++end or escape. ++ ++The @env{LC_MESSAGES} environment variable specifies the language to ++use in diagnostic messages. ++ ++If the @env{LC_ALL} environment variable is set, it overrides the value ++of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE} ++and @env{LC_MESSAGES} default to the value of the @env{LANG} ++environment variable. If none of these variables are set, GCC ++defaults to traditional C English behavior. ++ ++@item TMPDIR ++@findex TMPDIR ++If @env{TMPDIR} is set, it specifies the directory to use for temporary ++files. GCC uses temporary files to hold the output of one stage of ++compilation which is to be used as input to the next stage: for example, ++the output of the preprocessor, which is the input to the compiler ++proper. ++ ++@item GCC_EXEC_PREFIX ++@findex GCC_EXEC_PREFIX ++If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the ++names of the subprograms executed by the compiler. No slash is added ++when this prefix is combined with the name of a subprogram, but you can ++specify a prefix that ends with a slash if you wish. ++ ++If @env{GCC_EXEC_PREFIX} is not set, GCC will attempt to figure out ++an appropriate prefix to use based on the pathname it was invoked with. ++ ++If GCC cannot find the subprogram using the specified prefix, it ++tries looking in the usual places for the subprogram. ++ ++The default value of @env{GCC_EXEC_PREFIX} is ++@file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to ++the installed compiler. In many cases @var{prefix} is the value ++of @code{prefix} when you ran the @file{configure} script. ++ ++Other prefixes specified with @option{-B} take precedence over this prefix. ++ ++This prefix is also used for finding files such as @file{crt0.o} that are ++used for linking. ++ ++In addition, the prefix is used in an unusual way in finding the ++directories to search for header files. For each of the standard ++directories whose name normally begins with @samp{/usr/local/lib/gcc} ++(more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries ++replacing that beginning with the specified prefix to produce an ++alternate directory name. Thus, with @option{-Bfoo/}, GCC will search ++@file{foo/bar} where it would normally search @file{/usr/local/lib/bar}. ++These alternate directories are searched first; the standard directories ++come next. If a standard directory begins with the configured ++@var{prefix} then the value of @var{prefix} is replaced by ++@env{GCC_EXEC_PREFIX} when looking for header files. ++ ++@item COMPILER_PATH ++@findex COMPILER_PATH ++The value of @env{COMPILER_PATH} is a colon-separated list of ++directories, much like @env{PATH}. GCC tries the directories thus ++specified when searching for subprograms, if it can't find the ++subprograms using @env{GCC_EXEC_PREFIX}. ++ ++@item LIBRARY_PATH ++@findex LIBRARY_PATH ++The value of @env{LIBRARY_PATH} is a colon-separated list of ++directories, much like @env{PATH}. When configured as a native compiler, ++GCC tries the directories thus specified when searching for special ++linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking ++using GCC also uses these directories when searching for ordinary ++libraries for the @option{-l} option (but directories specified with ++@option{-L} come first). ++ ++@item LANG ++@findex LANG ++@cindex locale definition ++This variable is used to pass locale information to the compiler. One way in ++which this information is used is to determine the character set to be used ++when character literals, string literals and comments are parsed in C and C++. ++When the compiler is configured to allow multibyte characters, ++the following values for @env{LANG} are recognized: ++ ++@table @samp ++@item C-JIS ++Recognize JIS characters. ++@item C-SJIS ++Recognize SJIS characters. ++@item C-EUCJP ++Recognize EUCJP characters. ++@end table ++ ++If @env{LANG} is not defined, or if it has some other value, then the ++compiler will use mblen and mbtowc as defined by the default locale to ++recognize and translate multibyte characters. ++@end table ++ ++@noindent ++Some additional environments variables affect the behavior of the ++preprocessor. ++ ++@include cppenv.texi ++ ++@c man end ++ ++@node Precompiled Headers ++@section Using Precompiled Headers ++@cindex precompiled headers ++@cindex speed of compilation ++ ++Often large projects have many header files that are included in every ++source file. The time the compiler takes to process these header files ++over and over again can account for nearly all of the time required to ++build the project. To make builds faster, GCC allows users to ++`precompile' a header file; then, if builds can use the precompiled ++header file they will be much faster. ++ ++To create a precompiled header file, simply compile it as you would any ++other file, if necessary using the @option{-x} option to make the driver ++treat it as a C or C++ header file. You will probably want to use a ++tool like @command{make} to keep the precompiled header up-to-date when ++the headers it contains change. ++ ++A precompiled header file will be searched for when @code{#include} is ++seen in the compilation. As it searches for the included file ++(@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the ++compiler looks for a precompiled header in each directory just before it ++looks for the include file in that directory. The name searched for is ++the name specified in the @code{#include} with @samp{.gch} appended. If ++the precompiled header file can't be used, it is ignored. ++ ++For instance, if you have @code{#include "all.h"}, and you have ++@file{all.h.gch} in the same directory as @file{all.h}, then the ++precompiled header file will be used if possible, and the original ++header will be used otherwise. ++ ++Alternatively, you might decide to put the precompiled header file in a ++directory and use @option{-I} to ensure that directory is searched ++before (or instead of) the directory containing the original header. ++Then, if you want to check that the precompiled header file is always ++used, you can put a file of the same name as the original header in this ++directory containing an @code{#error} command. ++ ++This also works with @option{-include}. So yet another way to use ++precompiled headers, good for projects not designed with precompiled ++header files in mind, is to simply take most of the header files used by ++a project, include them from another header file, precompile that header ++file, and @option{-include} the precompiled header. If the header files ++have guards against multiple inclusion, they will be skipped because ++they've already been included (in the precompiled header). ++ ++If you need to precompile the same header file for different ++languages, targets, or compiler options, you can instead make a ++@emph{directory} named like @file{all.h.gch}, and put each precompiled ++header in the directory, perhaps using @option{-o}. It doesn't matter ++what you call the files in the directory, every precompiled header in ++the directory will be considered. The first precompiled header ++encountered in the directory that is valid for this compilation will ++be used; they're searched in no particular order. ++ ++There are many other possibilities, limited only by your imagination, ++good sense, and the constraints of your build system. ++ ++A precompiled header file can be used only when these conditions apply: ++ ++@itemize ++@item ++Only one precompiled header can be used in a particular compilation. ++ ++@item ++A precompiled header can't be used once the first C token is seen. You ++can have preprocessor directives before a precompiled header; you can ++even include a precompiled header from inside another header, so long as ++there are no C tokens before the @code{#include}. ++ ++@item ++The precompiled header file must be produced for the same language as ++the current compilation. You can't use a C precompiled header for a C++ ++compilation. ++ ++@item ++The precompiled header file must have been produced by the same compiler ++binary as the current compilation is using. ++ ++@item ++Any macros defined before the precompiled header is included must ++either be defined in the same way as when the precompiled header was ++generated, or must not affect the precompiled header, which usually ++means that they don't appear in the precompiled header at all. ++ ++The @option{-D} option is one way to define a macro before a ++precompiled header is included; using a @code{#define} can also do it. ++There are also some options that define macros implicitly, like ++@option{-O} and @option{-Wdeprecated}; the same rule applies to macros ++defined this way. ++ ++@item If debugging information is output when using the precompiled ++header, using @option{-g} or similar, the same kind of debugging information ++must have been output when building the precompiled header. However, ++a precompiled header built using @option{-g} can be used in a compilation ++when no debugging information is being output. ++ ++@item The same @option{-m} options must generally be used when building ++and using the precompiled header. @xref{Submodel Options}, ++for any cases where this rule is relaxed. ++ ++@item Each of the following options must be the same when building and using ++the precompiled header: ++ ++@gccoptlist{-fexceptions} ++ ++@item ++Some other command-line options starting with @option{-f}, ++@option{-p}, or @option{-O} must be defined in the same way as when ++the precompiled header was generated. At present, it's not clear ++which options are safe to change and which are not; the safest choice ++is to use exactly the same options when generating and using the ++precompiled header. The following are known to be safe: ++ ++@gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol ++-fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol ++-fsched-verbose=<number> -fschedule-insns -fvisibility= @gol ++-pedantic-errors} ++ ++@end itemize ++ ++For all of these except the last, the compiler will automatically ++ignore the precompiled header if the conditions aren't met. If you ++find an option combination that doesn't work and doesn't cause the ++precompiled header to be ignored, please consider filing a bug report, ++see @ref{Bugs}. ++ ++If you do use differing options when generating and using the ++precompiled header, the actual behavior will be a mixture of the ++behavior for the options. For instance, if you use @option{-g} to ++generate the precompiled header but not when using it, you may or may ++not get debugging information for routines in the precompiled header. ++ ++@node Running Protoize ++@section Running Protoize ++ ++The program @code{protoize} is an optional part of GCC@. You can use ++it to add prototypes to a program, thus converting the program to ISO ++C in one respect. The companion program @code{unprotoize} does the ++reverse: it removes argument types from any prototypes that are found. ++ ++When you run these programs, you must specify a set of source files as ++command line arguments. The conversion programs start out by compiling ++these files to see what functions they define. The information gathered ++about a file @var{foo} is saved in a file named @file{@var{foo}.X}. ++ ++After scanning comes actual conversion. The specified files are all ++eligible to be converted; any files they include (whether sources or ++just headers) are eligible as well. ++ ++But not all the eligible files are converted. By default, ++@code{protoize} and @code{unprotoize} convert only source and header ++files in the current directory. You can specify additional directories ++whose files should be converted with the @option{-d @var{directory}} ++option. You can also specify particular files to exclude with the ++@option{-x @var{file}} option. A file is converted if it is eligible, its ++directory name matches one of the specified directory names, and its ++name within the directory has not been excluded. ++ ++Basic conversion with @code{protoize} consists of rewriting most ++function definitions and function declarations to specify the types of ++the arguments. The only ones not rewritten are those for varargs ++functions. ++ ++@code{protoize} optionally inserts prototype declarations at the ++beginning of the source file, to make them available for any calls that ++precede the function's definition. Or it can insert prototype ++declarations with block scope in the blocks where undeclared functions ++are called. ++ ++Basic conversion with @code{unprotoize} consists of rewriting most ++function declarations to remove any argument types, and rewriting ++function definitions to the old-style pre-ISO form. ++ ++Both conversion programs print a warning for any function declaration or ++definition that they can't convert. You can suppress these warnings ++with @option{-q}. ++ ++The output from @code{protoize} or @code{unprotoize} replaces the ++original source file. The original file is renamed to a name ending ++with @samp{.save} (for DOS, the saved filename ends in @samp{.sav} ++without the original @samp{.c} suffix). If the @samp{.save} (@samp{.sav} ++for DOS) file already exists, then the source file is simply discarded. ++ ++@code{protoize} and @code{unprotoize} both depend on GCC itself to ++scan the program and collect information about the functions it uses. ++So neither of these programs will work until GCC is installed. ++ ++Here is a table of the options you can use with @code{protoize} and ++@code{unprotoize}. Each option works with both programs unless ++otherwise stated. ++ ++@table @code ++@item -B @var{directory} ++Look for the file @file{SYSCALLS.c.X} in @var{directory}, instead of the ++usual directory (normally @file{/usr/local/lib}). This file contains ++prototype information about standard system functions. This option ++applies only to @code{protoize}. ++ ++@item -c @var{compilation-options} ++Use @var{compilation-options} as the options when running @command{gcc} to ++produce the @samp{.X} files. The special option @option{-aux-info} is ++always passed in addition, to tell @command{gcc} to write a @samp{.X} file. ++ ++Note that the compilation options must be given as a single argument to ++@code{protoize} or @code{unprotoize}. If you want to specify several ++@command{gcc} options, you must quote the entire set of compilation options ++to make them a single word in the shell. ++ ++There are certain @command{gcc} arguments that you cannot use, because they ++would produce the wrong kind of output. These include @option{-g}, ++@option{-O}, @option{-c}, @option{-S}, and @option{-o} If you include these in ++the @var{compilation-options}, they are ignored. ++ ++@item -C ++Rename files to end in @samp{.C} (@samp{.cc} for DOS-based file ++systems) instead of @samp{.c}. This is convenient if you are converting ++a C program to C++. This option applies only to @code{protoize}. ++ ++@item -g ++Add explicit global declarations. This means inserting explicit ++declarations at the beginning of each source file for each function ++that is called in the file and was not declared. These declarations ++precede the first function definition that contains a call to an ++undeclared function. This option applies only to @code{protoize}. ++ ++@item -i @var{string} ++Indent old-style parameter declarations with the string @var{string}. ++This option applies only to @code{protoize}. ++ ++@code{unprotoize} converts prototyped function definitions to old-style ++function definitions, where the arguments are declared between the ++argument list and the initial @samp{@{}. By default, @code{unprotoize} ++uses five spaces as the indentation. If you want to indent with just ++one space instead, use @option{-i " "}. ++ ++@item -k ++Keep the @samp{.X} files. Normally, they are deleted after conversion ++is finished. ++ ++@item -l ++Add explicit local declarations. @code{protoize} with @option{-l} inserts ++a prototype declaration for each function in each block which calls the ++function without any declaration. This option applies only to ++@code{protoize}. ++ ++@item -n ++Make no real changes. This mode just prints information about the conversions ++that would have been done without @option{-n}. ++ ++@item -N ++Make no @samp{.save} files. The original files are simply deleted. ++Use this option with caution. ++ ++@item -p @var{program} ++Use the program @var{program} as the compiler. Normally, the name ++@file{gcc} is used. ++ ++@item -q ++Work quietly. Most warnings are suppressed. ++ ++@item -v ++Print the version number, just like @option{-v} for @command{gcc}. ++@end table ++ ++If you need special compiler options to compile one of your program's ++source files, then you should generate that file's @samp{.X} file ++specially, by running @command{gcc} on that source file with the ++appropriate options and the option @option{-aux-info}. Then run ++@code{protoize} on the entire set of files. @code{protoize} will use ++the existing @samp{.X} file because it is newer than the source file. ++For example: ++ ++@smallexample ++gcc -Dfoo=bar file1.c -aux-info file1.X ++protoize *.c ++@end smallexample ++ ++@noindent ++You need to include the special files along with the rest in the ++@code{protoize} command, even though their @samp{.X} files already ++exist, because otherwise they won't get converted. ++ ++@xref{Protoize Caveats}, for more information on how to use ++@code{protoize} successfully. +diff -Nur gcc-4.4.6.orig/gcc/doc/md.texi gcc-4.4.6/gcc/doc/md.texi +--- gcc-4.4.6.orig/gcc/doc/md.texi 2009-05-07 10:14:55.000000000 +0200 ++++ gcc-4.4.6/gcc/doc/md.texi 2011-08-27 19:45:43.849240766 +0200 +@@ -4,6 +4,7 @@ + @c This is part of the GCC manual. + @c For copying conditions, see the file gcc.texi. + ++ + @ifset INTERNALS + @node Machine Desc + @chapter Machine Descriptions +@@ -1685,6 +1686,58 @@ + A memory reference suitable for the ARMv4 ldrsb instruction. + @end table + ++@item AVR32 family---@file{avr32.h} ++@table @code ++@item f ++Floating-point registers (f0 to f15) ++ ++@item Ku@var{bits} ++Unsigned constant representable with @var{bits} number of bits (Must be ++two digits). I.e: An unsigned 8-bit constant is written as @samp{Ku08} ++ ++@item Ks@var{bits} ++Signed constant representable with @var{bits} number of bits (Must be ++two digits). I.e: A signed 12-bit constant is written as @samp{Ks12} ++ ++@item Is@var{bits} ++The negated range of a signed constant representable with @var{bits} ++number of bits. The same as @samp{Ks@var{bits}} with a negated range. ++This means that the constant must be in the range @math{-2^{bits-1}-1} to @math{2^{bits-1}} ++ ++@item G ++A single/double precision floating-point immediate or 64-bit integer ++immediate where the least and most significant words both can be ++loaded with a move instruction. That is the the integer form of the ++values in the least and most significant words both are in the range ++@math{-2^{20}} to @math{2^{20}-1}. ++ ++@item RKs@var{bits} ++A memory reference where the address consists of a base register ++plus a signed immediate displacement with range given by @samp{Ks@var{bits}} ++which has the same format as for the signed immediate integer constraint ++given above. ++ ++@item RKu@var{bits} ++A memory reference where the address consists of a base register ++plus an unsigned immediate displacement with range given by @samp{Ku@var{bits}} ++which has the same format as for the unsigned immediate integer constraint ++given above. ++ ++@item S ++A memory reference with an immediate or register offset ++ ++@item T ++A memory reference to a constant pool entry ++ ++@item W ++A valid operand for use in the @samp{lda.w} instruction macro when ++relaxing is enabled ++ ++@item Z ++A memory reference valid for coprocessor memory instructions ++ ++@end table ++ + @item AVR family---@file{config/avr/constraints.md} + @table @code + @item l +diff -Nur gcc-4.4.6.orig/gcc/expmed.c gcc-4.4.6/gcc/expmed.c +--- gcc-4.4.6.orig/gcc/expmed.c 2010-08-06 09:52:04.000000000 +0200 ++++ gcc-4.4.6/gcc/expmed.c 2011-08-27 19:45:43.869240328 +0200 +@@ -472,9 +472,9 @@ + ? ((GET_MODE_SIZE (fieldmode) >= UNITS_PER_WORD + || GET_MODE_SIZE (GET_MODE (op0)) == GET_MODE_SIZE (fieldmode)) + && byte_offset % GET_MODE_SIZE (fieldmode) == 0) +- : (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) ++ : ( (! SLOW_UNALIGNED_ACCESS (fieldmode, MEM_ALIGN (op0)) + || (offset * BITS_PER_UNIT % bitsize == 0 +- && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0)))) ++ && MEM_ALIGN (op0) % GET_MODE_BITSIZE (fieldmode) == 0))))) + { + if (MEM_P (op0)) + op0 = adjust_address (op0, fieldmode, offset); +diff -Nur gcc-4.4.6.orig/gcc/expr.c gcc-4.4.6/gcc/expr.c +--- gcc-4.4.6.orig/gcc/expr.c 2011-01-16 23:56:10.000000000 +0100 ++++ gcc-4.4.6/gcc/expr.c 2011-08-27 19:45:43.937982102 +0200 +@@ -52,6 +52,7 @@ + #include "tree-flow.h" + #include "target.h" + #include "timevar.h" ++#include "c-common.h" + #include "df.h" + #include "diagnostic.h" + +@@ -3647,16 +3648,17 @@ + } + else + { ++ emit_move_insn (stack_pointer_rtx, ++ expand_binop (Pmode, + #ifdef STACK_GROWS_DOWNWARD +- /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */ +- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, +- GEN_INT (-(HOST_WIDE_INT) rounded_size)); ++ sub_optab, + #else +- /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */ +- dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, +- GEN_INT (rounded_size)); ++ add_optab, + #endif +- dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr); ++ stack_pointer_rtx, ++ GEN_INT (rounded_size), ++ NULL_RTX, 0, OPTAB_LIB_WIDEN)); ++ dest_addr = stack_pointer_rtx; + } + + dest = gen_rtx_MEM (mode, dest_addr); +@@ -5775,7 +5777,8 @@ + is a bit field, we cannot use addressing to access it. + Use bit-field techniques or SUBREG to store in it. */ + +- if (mode == VOIDmode ++ if ( ++ mode == VOIDmode + || (mode != BLKmode && ! direct_store[(int) mode] + && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT + && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT) +@@ -5932,7 +5935,18 @@ + { + tree field = TREE_OPERAND (exp, 1); + size_tree = DECL_SIZE (field); +- if (!DECL_BIT_FIELD (field)) ++ if (!DECL_BIT_FIELD (field) ++ /* Added for AVR32: ++ Bitfields with a size equal to a target storage ++ type might not cause DECL_BIT_FIELD to return ++ true since it can be optimized into a normal array ++ access operation. But for volatile bitfields we do ++ not allow this when targetm.narrow_volatile_bitfield () ++ is false. We can use DECL_C_BIT_FIELD to check if this ++ really is a c-bitfield. */ ++ && !(TREE_THIS_VOLATILE (exp) ++ && !targetm.narrow_volatile_bitfield () ++ && DECL_C_BIT_FIELD (field)) ) + mode = DECL_MODE (field); + else if (DECL_MODE (field) == BLKmode) + blkmode_bitfield = true; +@@ -7915,7 +7929,8 @@ + by doing the extract into an object as wide as the field + (which we know to be the width of a basic mode), then + storing into memory, and changing the mode to BLKmode. */ +- if (mode1 == VOIDmode ++ if ( ++ mode1 == VOIDmode + || REG_P (op0) || GET_CODE (op0) == SUBREG + || (mode1 != BLKmode && ! direct_load[(int) mode1] + && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT +diff -Nur gcc-4.4.6.orig/gcc/function.c gcc-4.4.6/gcc/function.c +--- gcc-4.4.6.orig/gcc/function.c 2010-08-16 22:24:54.000000000 +0200 ++++ gcc-4.4.6/gcc/function.c 2011-08-27 19:45:43.947990930 +0200 +@@ -2810,7 +2810,11 @@ + assign_parm_remove_parallels (data); + + /* Copy the value into the register. */ +- if (data->nominal_mode != data->passed_mode ++ if ( (data->nominal_mode != data->passed_mode ++ /* Added for AVR32: If passed_mode is equal ++ to promoted nominal mode why should be convert? ++ The conversion should make no difference. */ ++ && data->passed_mode != promoted_nominal_mode) + || promoted_nominal_mode != data->promoted_mode) + { + int save_tree_used; +diff -Nur gcc-4.4.6.orig/gcc/genemit.c gcc-4.4.6/gcc/genemit.c +--- gcc-4.4.6.orig/gcc/genemit.c 2009-02-20 16:20:38.000000000 +0100 ++++ gcc-4.4.6/gcc/genemit.c 2011-08-27 19:45:44.027983016 +0200 +@@ -121,6 +121,24 @@ + } + + static void ++gen_vararg_prologue(int operands) ++{ ++ int i; ++ ++ if (operands > 1) ++ { ++ for (i = 1; i < operands; i++) ++ printf(" rtx operand%d ATTRIBUTE_UNUSED;\n", i); ++ ++ printf(" va_list args;\n\n"); ++ printf(" va_start(args, operand0);\n"); ++ for (i = 1; i < operands; i++) ++ printf(" operand%d = va_arg(args, rtx);\n", i); ++ printf(" va_end(args);\n\n"); ++ } ++} ++ ++static void + print_code (RTX_CODE code) + { + const char *p1; +@@ -406,18 +424,16 @@ + fatal ("match_dup operand number has no match_operand"); + + /* Output the function name and argument declarations. */ +- printf ("rtx\ngen_%s (", XSTR (insn, 0)); ++ printf ("rtx\ngen_%s ", XSTR (insn, 0)); ++ + if (operands) +- for (i = 0; i < operands; i++) +- if (i) +- printf (",\n\trtx operand%d ATTRIBUTE_UNUSED", i); ++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); + else +- printf ("rtx operand%d ATTRIBUTE_UNUSED", i); +- else +- printf ("void"); +- printf (")\n"); ++ printf("(void)\n"); + printf ("{\n"); + ++ gen_vararg_prologue(operands); ++ + /* Output code to construct and return the rtl for the instruction body. */ + + if (XVECLEN (insn, 1) == 1) +@@ -461,16 +477,12 @@ + operands = max_operand_vec (expand, 1); + + /* Output the function name and argument declarations. */ +- printf ("rtx\ngen_%s (", XSTR (expand, 0)); ++ printf ("rtx\ngen_%s ", XSTR (expand, 0)); + if (operands) +- for (i = 0; i < operands; i++) +- if (i) +- printf (",\n\trtx operand%d", i); +- else +- printf ("rtx operand%d", i); ++ printf("(rtx operand0 ATTRIBUTE_UNUSED, ...)\n"); + else +- printf ("void"); +- printf (")\n"); ++ printf("(void)\n"); ++ + printf ("{\n"); + + /* If we don't have any C code to write, only one insn is being written, +@@ -480,6 +492,8 @@ + && operands > max_dup_opno + && XVECLEN (expand, 1) == 1) + { ++ gen_vararg_prologue(operands); ++ + printf (" return "); + gen_exp (XVECEXP (expand, 1, 0), DEFINE_EXPAND, NULL); + printf (";\n}\n\n"); +@@ -493,6 +507,7 @@ + for (; i <= max_scratch_opno; i++) + printf (" rtx operand%d ATTRIBUTE_UNUSED;\n", i); + printf (" rtx _val = 0;\n"); ++ gen_vararg_prologue(operands); + printf (" start_sequence ();\n"); + + /* The fourth operand of DEFINE_EXPAND is some code to be executed +diff -Nur gcc-4.4.6.orig/gcc/genflags.c gcc-4.4.6/gcc/genflags.c +--- gcc-4.4.6.orig/gcc/genflags.c 2007-07-26 10:37:01.000000000 +0200 ++++ gcc-4.4.6/gcc/genflags.c 2011-08-27 19:45:44.067990456 +0200 +@@ -127,7 +127,6 @@ + gen_proto (rtx insn) + { + int num = num_operands (insn); +- int i; + const char *name = XSTR (insn, 0); + int truth = maybe_eval_c_test (XSTR (insn, 2)); + +@@ -158,12 +157,7 @@ + if (num == 0) + fputs ("void", stdout); + else +- { +- for (i = 1; i < num; i++) +- fputs ("rtx, ", stdout); +- +- fputs ("rtx", stdout); +- } ++ fputs("rtx, ...", stdout); + + puts (");"); + +@@ -173,12 +167,7 @@ + { + printf ("static inline rtx\ngen_%s", name); + if (num > 0) +- { +- putchar ('('); +- for (i = 0; i < num-1; i++) +- printf ("rtx ARG_UNUSED (%c), ", 'a' + i); +- printf ("rtx ARG_UNUSED (%c))\n", 'a' + i); +- } ++ puts("(rtx ARG_UNUSED(a), ...)"); + else + puts ("(void)"); + puts ("{\n return 0;\n}"); +diff -Nur gcc-4.4.6.orig/gcc/genoutput.c gcc-4.4.6/gcc/genoutput.c +--- gcc-4.4.6.orig/gcc/genoutput.c 2009-02-20 16:20:38.000000000 +0100 ++++ gcc-4.4.6/gcc/genoutput.c 2011-08-27 19:45:44.107989452 +0200 +@@ -386,7 +386,7 @@ + } + + if (d->name && d->name[0] != '*') +- printf (" (insn_gen_fn) gen_%s,\n", d->name); ++ printf (" gen_%s,\n", d->name); + else + printf (" 0,\n"); + +diff -Nur gcc-4.4.6.orig/gcc/ifcvt.c gcc-4.4.6/gcc/ifcvt.c +--- gcc-4.4.6.orig/gcc/ifcvt.c 2010-01-07 15:59:59.000000000 +0100 ++++ gcc-4.4.6/gcc/ifcvt.c 2011-08-27 19:45:44.167989467 +0200 +@@ -84,7 +84,7 @@ + static int num_updated_if_blocks; + + /* # of changes made. */ +-static int num_true_changes; ++int num_true_changes; + + /* Whether conditional execution changes were made. */ + static int cond_exec_changed_p; +@@ -290,6 +290,9 @@ + if (must_be_last) + return FALSE; + ++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ if ( !IFCVT_ALLOW_MODIFY_TEST_IN_INSN ) ++#endif + if (modified_in_p (test, insn)) + { + if (!mod_ok) +@@ -570,15 +573,18 @@ + IFCVT_MODIFY_FINAL (ce_info); + #endif + ++ /* Merge the blocks! */ ++ if ( reload_completed ){ + /* Conversion succeeded. */ + if (dump_file) + fprintf (dump_file, "%d insn%s converted to conditional execution.\n", + n_insns, (n_insns == 1) ? " was" : "s were"); + +- /* Merge the blocks! */ + merge_if_block (ce_info); + cond_exec_changed_p = TRUE; + return TRUE; ++ } ++ return FALSE; + + fail: + #ifdef IFCVT_MODIFY_CANCEL +@@ -1087,7 +1093,11 @@ + != UNKNOWN)) + { + rtx cond = if_info->cond; +- enum rtx_code code = reversed_comparison_code (cond, if_info->jump); ++ /* This generates wrong code for AVR32. The cond code need not be reversed ++ since the addmodecc patterns add if the condition is NOT met. */ ++ /* enum rtx_code code = reversed_comparison_code (cond, if_info->jump);*/ ++ enum rtx_code code = GET_CODE(cond); ++ + + /* First try to use addcc pattern. */ + if (general_operand (XEXP (cond, 0), VOIDmode) +@@ -3039,7 +3049,12 @@ + && noce_find_if_block (test_bb, then_edge, else_edge, pass)) + goto success; + +- if (HAVE_conditional_execution && reload_completed ++ if (HAVE_conditional_execution && ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ (reload_completed || IFCVT_COND_EXEC_BEFORE_RELOAD) ++#else ++ reload_completed ++#endif + && cond_exec_find_if_block (&ce_info)) + goto success; + +@@ -3154,7 +3169,11 @@ + + /* We only ever should get here after reload, + and only if we have conditional execution. */ ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ gcc_assert (HAVE_conditional_execution && (reload_completed||IFCVT_COND_EXEC_BEFORE_RELOAD)); ++#else + gcc_assert (HAVE_conditional_execution && reload_completed); ++#endif + + /* Discover if any fall through predecessors of the current test basic block + were && tests (which jump to the else block) or || tests (which jump to +@@ -4259,6 +4278,14 @@ + static unsigned int + rest_of_handle_if_after_reload (void) + { ++ /* Hack for the AVR32 experimental ifcvt processing before reload. ++ The AVR32 specific ifcvt code needs to know when ifcvt after reload ++ has begun. */ ++#ifdef IFCVT_COND_EXEC_BEFORE_RELOAD ++ if ( IFCVT_COND_EXEC_BEFORE_RELOAD ) ++ cfun->machine->ifcvt_after_reload = 1; ++#endif ++ + if_convert (); + return 0; + } +diff -Nur gcc-4.4.6.orig/gcc/longlong.h gcc-4.4.6/gcc/longlong.h +--- gcc-4.4.6.orig/gcc/longlong.h 2009-08-12 00:36:56.000000000 +0200 ++++ gcc-4.4.6/gcc/longlong.h 2011-08-27 19:45:44.227991100 +0200 +@@ -250,6 +250,41 @@ + #define COUNT_LEADING_ZEROS_0 32 + #endif + ++#if defined (__avr32__) && W_TYPE_SIZE == 32 ++#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ ++ __asm__ ("add\t%1, %4, %5\n\tadc\t%0, %2, %3" \ ++ : "=r" ((USItype) (sh)), \ ++ "=&r" ((USItype) (sl)) \ ++ : "r" ((USItype) (ah)), \ ++ "r" ((USItype) (bh)), \ ++ "r" ((USItype) (al)), \ ++ "r" ((USItype) (bl)) __CLOBBER_CC) ++#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ ++ __asm__ ("sub\t%1, %4, %5\n\tsbc\t%0, %2, %3" \ ++ : "=r" ((USItype) (sh)), \ ++ "=&r" ((USItype) (sl)) \ ++ : "r" ((USItype) (ah)), \ ++ "r" ((USItype) (bh)), \ ++ "r" ((USItype) (al)), \ ++ "r" ((USItype) (bl)) __CLOBBER_CC) ++ ++#if !defined (__AVR32_NO_MUL__) ++#define __umulsidi3(a,b) ((UDItype)(a) * (UDItype)(b)) ++ ++#define umul_ppmm(w1, w0, u, v) \ ++{ \ ++ DWunion __w; \ ++ __w.ll = __umulsidi3 (u, v); \ ++ w1 = __w.s.high; \ ++ w0 = __w.s.low; \ ++} ++#endif ++ ++#define count_leading_zeros(COUNT,X) ((COUNT) = __builtin_clz (X)) ++#define count_trailing_zeros(COUNT,X) ((COUNT) = __builtin_ctz (X)) ++#define COUNT_LEADING_ZEROS_0 32 ++#endif ++ + #if defined (__CRIS__) && __CRIS_arch_version >= 3 + #define count_leading_zeros(COUNT, X) ((COUNT) = __builtin_clz (X)) + #if __CRIS_arch_version >= 8 +diff -Nur gcc-4.4.6.orig/gcc/optabs.h gcc-4.4.6/gcc/optabs.h +--- gcc-4.4.6.orig/gcc/optabs.h 2008-08-07 09:35:51.000000000 +0200 ++++ gcc-4.4.6/gcc/optabs.h 2011-08-27 19:45:44.277990875 +0200 +@@ -603,7 +603,7 @@ + extern optab code_to_optab[NUM_RTX_CODE + 1]; + + +-typedef rtx (*rtxfun) (rtx); ++typedef rtx (*rtxfun) (rtx, ...); + + /* Indexed by the rtx-code for a conditional (e.g. EQ, LT,...) + gives the gen_function to make a branch to test that condition. */ +diff -Nur gcc-4.4.6.orig/gcc/regrename.c gcc-4.4.6/gcc/regrename.c +--- gcc-4.4.6.orig/gcc/regrename.c 2009-02-20 16:20:38.000000000 +0100 ++++ gcc-4.4.6/gcc/regrename.c 2011-08-27 19:45:44.309657742 +0200 +@@ -1582,6 +1582,9 @@ + bool changed = false; + rtx insn; + ++ rtx prev_pred_test; ++ int prev_pred_insn_skipped = 0; ++ + for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn)) + { + int n_ops, i, alt, predicated; +@@ -1621,6 +1624,58 @@ + recog_data.operand_type[i] = OP_INOUT; + } + ++ ++ /* Added for targets (AVR32) which supports test operands to be modified ++ in cond_exec instruction. For these targets we cannot make a change to ++ the test operands if one of the test operands is an output operand This beacuse ++ changing the test operands might cause the need for inserting a new test ++ insns in the middle of a sequence of cond_exec insns and if the test operands ++ are modified these tests will fail. ++ */ ++ if ( IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ && predicated ) ++ { ++ int insn_skipped = 0; ++ rtx test = COND_EXEC_TEST (PATTERN (insn)); ++ ++ /* Check if the previous insn was a skipped predicated insn with the same ++ test as this predicated insns. If so we cannot do any modification to ++ this insn either since we cannot emit the test insn because the operands ++ are clobbered. */ ++ if ( prev_pred_insn_skipped ++ && (rtx_equal_p (test, prev_pred_test) ++ || rtx_equal_p (test, reversed_condition (prev_pred_test))) ) ++ { ++ insn_skipped = 1; ++ } ++ else ++ { ++ /* Check if the output operand is used in the test expression. */ ++ for (i = 0; i < n_ops; ++i) ++ if ( recog_data.operand_type[i] == OP_INOUT ++ && reg_mentioned_p (recog_data.operand[i], test) ) ++ { ++ insn_skipped = 1; ++ break; ++ } ++ ++ } ++ ++ prev_pred_test = test; ++ prev_pred_insn_skipped = insn_skipped; ++ if ( insn_skipped ) ++ { ++ if (insn == BB_END (bb)) ++ break; ++ else ++ continue; ++ } ++ } ++ else ++ { ++ prev_pred_insn_skipped = 0; ++ } ++ + /* For each earlyclobber operand, zap the value data. */ + for (i = 0; i < n_ops; i++) + if (recog_op_alt[i][alt].earlyclobber) +diff -Nur gcc-4.4.6.orig/gcc/sched-deps.c gcc-4.4.6/gcc/sched-deps.c +--- gcc-4.4.6.orig/gcc/sched-deps.c 2010-08-24 10:53:11.000000000 +0200 ++++ gcc-4.4.6/gcc/sched-deps.c 2011-08-27 19:45:44.380490459 +0200 +@@ -1473,7 +1473,14 @@ + + prev_nonnote = prev_nonnote_insn (insn); + if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote) +- && ! sched_insns_conditions_mutex_p (insn, prev_nonnote)) ++ /* Modification for AVR32 by RP: Why is this here, this will ++ cause instruction to be without any dependencies which might ++ cause it to be moved anywhere. For the AVR32 we try to keep ++ a group of conditionals together even if they are mutual exclusive. ++ */ ++ && (! sched_insns_conditions_mutex_p (insn, prev_nonnote) ++ || GET_CODE (PATTERN (insn)) == COND_EXEC ) ++ ) + add_dependence (insn, prev_nonnote, REG_DEP_ANTI); + } + +@@ -2230,8 +2237,29 @@ + + if (code == COND_EXEC) + { ++#ifdef IFCVT_ALLOW_MODIFY_TEST_IN_INSN ++ if (IFCVT_ALLOW_MODIFY_TEST_IN_INSN) ++ { ++ /* Check if we have a group og conditional instructions with the same test. ++ If so we must make sure that they are not scheduled apart in order to ++ avoid unnecesarry tests and if one of the registers in the test is modified ++ in the instruction this is needed to ensure correct code. */ ++ if ( prev_nonnote_insn (insn) ++ && INSN_P (prev_nonnote_insn (insn)) ++ && GET_CODE (PATTERN (prev_nonnote_insn (insn))) == COND_EXEC ++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 0), XEXP (COND_EXEC_TEST (x), 0)) ++ && rtx_equal_p (XEXP(COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn))), 1), XEXP (COND_EXEC_TEST (x), 1)) ++ && ( GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == GET_CODE (COND_EXEC_TEST (x)) ++ || GET_CODE (COND_EXEC_TEST (PATTERN (prev_nonnote_insn (insn)))) == reversed_comparison_code (COND_EXEC_TEST (x), insn))) ++ { ++ SCHED_GROUP_P (insn) = 1; ++ //CANT_MOVE (prev_nonnote_insn (insn)) = 1; ++ } ++ } ++#endif + sched_analyze_2 (deps, COND_EXEC_TEST (x), insn); + ++ + /* ??? Should be recording conditions so we reduce the number of + false dependencies. */ + x = COND_EXEC_CODE (x); +diff -Nur gcc-4.4.6.orig/gcc/testsuite/gcc.dg/sibcall-3.c gcc-4.4.6/gcc/testsuite/gcc.dg/sibcall-3.c +--- gcc-4.4.6.orig/gcc/testsuite/gcc.dg/sibcall-3.c 2009-01-08 18:56:52.000000000 +0100 ++++ gcc-4.4.6/gcc/testsuite/gcc.dg/sibcall-3.c 2011-08-27 19:45:44.447989503 +0200 +@@ -5,7 +5,7 @@ + Copyright (C) 2002 Free Software Foundation Inc. + Contributed by Hans-Peter Nilsson <hp@bitrange.com> */ + +-/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ ++/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ + /* -mlongcall disables sibcall patterns. */ + /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ + /* { dg-options "-O2 -foptimize-sibling-calls" } */ +diff -Nur gcc-4.4.6.orig/gcc/testsuite/gcc.dg/sibcall-4.c gcc-4.4.6/gcc/testsuite/gcc.dg/sibcall-4.c +--- gcc-4.4.6.orig/gcc/testsuite/gcc.dg/sibcall-4.c 2009-01-08 18:56:52.000000000 +0100 ++++ gcc-4.4.6/gcc/testsuite/gcc.dg/sibcall-4.c 2011-08-27 19:45:44.499241252 +0200 +@@ -5,7 +5,7 @@ + Copyright (C) 2002 Free Software Foundation Inc. + Contributed by Hans-Peter Nilsson <hp@bitrange.com> */ + +-/* { dg-do run { xfail { { arc-*-* avr-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ ++/* { dg-do run { xfail { { arc-*-* avr-*-* avr32-*-* cris-*-* crisv32-*-* h8300-*-* hppa*64*-*-* m32r-*-* m68hc1?-*-* mcore-*-* mn10300-*-* xstormy16-*-* v850*-*-* vax-*-* xtensa*-*-* } || { arm*-*-* && { ! arm32 } } } } } */ + /* -mlongcall disables sibcall patterns. */ + /* { dg-skip-if "" { powerpc*-*-* } { "-mlongcall" } { "" } } */ + /* { dg-options "-O2 -foptimize-sibling-calls" } */ +diff -Nur gcc-4.4.6.orig/gcc/testsuite/gcc.dg/trampoline-1.c gcc-4.4.6/gcc/testsuite/gcc.dg/trampoline-1.c +--- gcc-4.4.6.orig/gcc/testsuite/gcc.dg/trampoline-1.c 2008-05-12 23:52:38.000000000 +0200 ++++ gcc-4.4.6/gcc/testsuite/gcc.dg/trampoline-1.c 2011-08-27 19:45:44.567990409 +0200 +@@ -47,6 +47,8 @@ + + int main (void) + { ++#ifndef NO_TRAMPOLINES + foo (); ++#endif + return 0; + } +diff -Nur gcc-4.4.6.orig/libgcc/config.host gcc-4.4.6/libgcc/config.host +--- gcc-4.4.6.orig/libgcc/config.host 2009-04-17 13:58:41.000000000 +0200 ++++ gcc-4.4.6/libgcc/config.host 2011-08-27 19:45:44.617991228 +0200 +@@ -218,6 +218,13 @@ + ;; + arm-*-pe*) + ;; ++avr32-*-linux*) ++ # No need to build crtbeginT.o on uClibc systems. Should probably be ++ # moved to the OS specific section above. ++ extra_parts="crtbegin.o crtbeginS.o crtend.o crtendS.o" ++ ;; ++avr32-*-*) ++ ;; + avr-*-rtems*) + ;; + avr-*-*) +diff -Nur gcc-4.4.6.orig/libstdc++-v3/config/os/gnu-linux/ctype_base.h gcc-4.4.6/libstdc++-v3/config/os/gnu-linux/ctype_base.h +--- gcc-4.4.6.orig/libstdc++-v3/config/os/gnu-linux/ctype_base.h 2009-04-10 01:23:07.000000000 +0200 ++++ gcc-4.4.6/libstdc++-v3/config/os/gnu-linux/ctype_base.h 2011-08-27 19:45:44.687989554 +0200 +@@ -26,6 +26,8 @@ + // + // ISO C++ 14882: 22.1 Locales + // ++#include <features.h> ++#include <ctype.h> + + /** @file ctype_base.h + * This is an internal header file, included by other library headers. +@@ -40,7 +42,11 @@ + struct ctype_base + { + // Non-standard typedefs. ++#ifdef __UCLIBC__ ++ typedef const __ctype_touplow_t* __to_type; ++#else + typedef const int* __to_type; ++#endif + + // NB: Offsets into ctype<char>::_M_table force a particular size + // on the mask type. Because of this, we don't use an enum. +diff -Nur gcc-4.4.6.orig/libstdc++-v3/include/Makefile.in gcc-4.4.6/libstdc++-v3/include/Makefile.in +--- gcc-4.4.6.orig/libstdc++-v3/include/Makefile.in 2009-05-13 02:24:16.000000000 +0200 ++++ gcc-4.4.6/libstdc++-v3/include/Makefile.in 2011-08-27 19:45:44.737991067 +0200 +@@ -36,6 +36,7 @@ + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = include +diff -Nur gcc-4.4.6.orig/libstdc++-v3/libsupc++/Makefile.in gcc-4.4.6/libstdc++-v3/libsupc++/Makefile.in +--- gcc-4.4.6.orig/libstdc++-v3/libsupc++/Makefile.in 2009-01-15 21:02:11.000000000 +0100 ++++ gcc-4.4.6/libstdc++-v3/libsupc++/Makefile.in 2011-08-27 19:45:44.777991092 +0200 +@@ -38,6 +38,7 @@ + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(glibcxxinstall_HEADERS) $(srcdir)/Makefile.am \ + $(srcdir)/Makefile.in $(top_srcdir)/fragment.am + subdir = libsupc++ +diff -Nur gcc-4.4.6.orig/libstdc++-v3/Makefile.in gcc-4.4.6/libstdc++-v3/Makefile.in +--- gcc-4.4.6.orig/libstdc++-v3/Makefile.in 2010-04-29 17:03:38.000000000 +0200 ++++ gcc-4.4.6/libstdc++-v3/Makefile.in 2011-08-27 19:45:44.850357194 +0200 +@@ -36,6 +36,7 @@ + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(top_srcdir)/fragment.am $(srcdir)/../config.guess \ + $(srcdir)/../config.sub README ChangeLog $(srcdir)/Makefile.in \ + $(srcdir)/Makefile.am $(top_srcdir)/configure \ +diff -Nur gcc-4.4.6.orig/libstdc++-v3/po/Makefile.in gcc-4.4.6/libstdc++-v3/po/Makefile.in +--- gcc-4.4.6.orig/libstdc++-v3/po/Makefile.in 2009-01-15 21:02:11.000000000 +0100 ++++ gcc-4.4.6/libstdc++-v3/po/Makefile.in 2011-08-27 19:45:44.900490527 +0200 +@@ -36,6 +36,7 @@ + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = po +diff -Nur gcc-4.4.6.orig/libstdc++-v3/src/Makefile.in gcc-4.4.6/libstdc++-v3/src/Makefile.in +--- gcc-4.4.6.orig/libstdc++-v3/src/Makefile.in 2009-08-26 21:04:11.000000000 +0200 ++++ gcc-4.4.6/libstdc++-v3/src/Makefile.in 2011-08-27 19:45:44.958377128 +0200 +@@ -37,6 +37,7 @@ + build_triplet = @build@ + host_triplet = @host@ + target_triplet = @target@ ++LIBOBJDIR = + DIST_COMMON = $(srcdir)/Makefile.am $(srcdir)/Makefile.in \ + $(top_srcdir)/fragment.am + subdir = src diff --git a/toolchain/gcc/patches/cflags.patch b/toolchain/gcc/patches/4.5.3/cflags.patch index 0d5815a54..0d5815a54 100644 --- a/toolchain/gcc/patches/cflags.patch +++ b/toolchain/gcc/patches/4.5.3/cflags.patch diff --git a/toolchain/gcc/patches/mirbsd-compat.patch b/toolchain/gcc/patches/4.5.3/mirbsd-compat.patch index 2f3ea0c87..2f3ea0c87 100644 --- a/toolchain/gcc/patches/mirbsd-compat.patch +++ b/toolchain/gcc/patches/4.5.3/mirbsd-compat.patch diff --git a/toolchain/gcc/patches/no-lib64.patch b/toolchain/gcc/patches/4.5.3/no-lib64.patch index 5c6e0b045..5c6e0b045 100644 --- a/toolchain/gcc/patches/no-lib64.patch +++ b/toolchain/gcc/patches/4.5.3/no-lib64.patch |