diff options
Diffstat (limited to 'package/ulogd/patches/patch-output_sqlite3_queue_h')
-rw-r--r-- | package/ulogd/patches/patch-output_sqlite3_queue_h | 577 |
1 files changed, 577 insertions, 0 deletions
diff --git a/package/ulogd/patches/patch-output_sqlite3_queue_h b/package/ulogd/patches/patch-output_sqlite3_queue_h new file mode 100644 index 000000000..9a3c55098 --- /dev/null +++ b/package/ulogd/patches/patch-output_sqlite3_queue_h @@ -0,0 +1,577 @@ +--- ulogd-2.0.2.orig/output/sqlite3/queue.h 1970-01-01 00:00:00.000000000 +0100 ++++ ulogd-2.0.2/output/sqlite3/queue.h 2013-11-11 21:27:31.000000000 +0100 +@@ -0,0 +1,574 @@ ++/* ++ * Copyright (c) 1991, 1993 ++ * The Regents of the University of California. All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. Neither the name of the University nor the names of its contributors ++ * may be used to endorse or promote products derived from this software ++ * without specific prior written permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ * ++ * @(#)queue.h 8.5 (Berkeley) 8/20/94 ++ */ ++ ++#ifndef _SYS_QUEUE_H_ ++#define _SYS_QUEUE_H_ ++ ++/* ++ * This file defines five types of data structures: singly-linked lists, ++ * lists, simple queues, tail queues, and circular queues. ++ * ++ * A singly-linked list is headed by a single forward pointer. The ++ * elements are singly linked for minimum space and pointer manipulation ++ * overhead at the expense of O(n) removal for arbitrary elements. New ++ * elements can be added to the list after an existing element or at the ++ * head of the list. Elements being removed from the head of the list ++ * should use the explicit macro for this purpose for optimum ++ * efficiency. A singly-linked list may only be traversed in the forward ++ * direction. Singly-linked lists are ideal for applications with large ++ * datasets and few or no removals or for implementing a LIFO queue. ++ * ++ * A list is headed by a single forward pointer (or an array of forward ++ * pointers for a hash table header). The elements are doubly linked ++ * so that an arbitrary element can be removed without a need to ++ * traverse the list. New elements can be added to the list before ++ * or after an existing element or at the head of the list. A list ++ * may only be traversed in the forward direction. ++ * ++ * A simple queue is headed by a pair of pointers, one the head of the ++ * list and the other to the tail of the list. The elements are singly ++ * linked to save space, so elements can only be removed from the ++ * head of the list. New elements can be added to the list after ++ * an existing element, at the head of the list, or at the end of the ++ * list. A simple queue may only be traversed in the forward direction. ++ * ++ * A tail queue is headed by a pair of pointers, one to the head of the ++ * list and the other to the tail of the list. The elements are doubly ++ * linked so that an arbitrary element can be removed without a need to ++ * traverse the list. New elements can be added to the list before or ++ * after an existing element, at the head of the list, or at the end of ++ * the list. A tail queue may be traversed in either direction. ++ * ++ * A circle queue is headed by a pair of pointers, one to the head of the ++ * list and the other to the tail of the list. The elements are doubly ++ * linked so that an arbitrary element can be removed without a need to ++ * traverse the list. New elements can be added to the list before or after ++ * an existing element, at the head of the list, or at the end of the list. ++ * A circle queue may be traversed in either direction, but has a more ++ * complex end of list detection. ++ * ++ * For details on the use of these macros, see the queue(3) manual page. ++ */ ++ ++/* ++ * List definitions. ++ */ ++#define LIST_HEAD(name, type) \ ++struct name { \ ++ struct type *lh_first; /* first element */ \ ++} ++ ++#define LIST_HEAD_INITIALIZER(head) \ ++ { NULL } ++ ++#define LIST_ENTRY(type) \ ++struct { \ ++ struct type *le_next; /* next element */ \ ++ struct type **le_prev; /* address of previous next element */ \ ++} ++ ++/* ++ * List functions. ++ */ ++#define LIST_INIT(head) do { \ ++ (head)->lh_first = NULL; \ ++} while (/*CONSTCOND*/0) ++ ++#define LIST_INSERT_AFTER(listelm, elm, field) do { \ ++ if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ ++ (listelm)->field.le_next->field.le_prev = \ ++ &(elm)->field.le_next; \ ++ (listelm)->field.le_next = (elm); \ ++ (elm)->field.le_prev = &(listelm)->field.le_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define LIST_INSERT_BEFORE(listelm, elm, field) do { \ ++ (elm)->field.le_prev = (listelm)->field.le_prev; \ ++ (elm)->field.le_next = (listelm); \ ++ *(listelm)->field.le_prev = (elm); \ ++ (listelm)->field.le_prev = &(elm)->field.le_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define LIST_INSERT_HEAD(head, elm, field) do { \ ++ if (((elm)->field.le_next = (head)->lh_first) != NULL) \ ++ (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ ++ (head)->lh_first = (elm); \ ++ (elm)->field.le_prev = &(head)->lh_first; \ ++} while (/*CONSTCOND*/0) ++ ++#define LIST_REMOVE(elm, field) do { \ ++ if ((elm)->field.le_next != NULL) \ ++ (elm)->field.le_next->field.le_prev = \ ++ (elm)->field.le_prev; \ ++ *(elm)->field.le_prev = (elm)->field.le_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define LIST_FOREACH(var, head, field) \ ++ for ((var) = ((head)->lh_first); \ ++ (var); \ ++ (var) = ((var)->field.le_next)) ++ ++/* ++ * List access methods. ++ */ ++#define LIST_EMPTY(head) ((head)->lh_first == NULL) ++#define LIST_FIRST(head) ((head)->lh_first) ++#define LIST_NEXT(elm, field) ((elm)->field.le_next) ++ ++ ++/* ++ * Singly-linked List definitions. ++ */ ++#define SLIST_HEAD(name, type) \ ++struct name { \ ++ struct type *slh_first; /* first element */ \ ++} ++ ++#define SLIST_HEAD_INITIALIZER(head) \ ++ { NULL } ++ ++#define SLIST_ENTRY(type) \ ++struct { \ ++ struct type *sle_next; /* next element */ \ ++} ++ ++/* ++ * Singly-linked List functions. ++ */ ++#define SLIST_INIT(head) do { \ ++ (head)->slh_first = NULL; \ ++} while (/*CONSTCOND*/0) ++ ++#define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ ++ (elm)->field.sle_next = (slistelm)->field.sle_next; \ ++ (slistelm)->field.sle_next = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define SLIST_INSERT_HEAD(head, elm, field) do { \ ++ (elm)->field.sle_next = (head)->slh_first; \ ++ (head)->slh_first = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define SLIST_REMOVE_HEAD(head, field) do { \ ++ (head)->slh_first = (head)->slh_first->field.sle_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define SLIST_REMOVE(head, elm, type, field) do { \ ++ if ((head)->slh_first == (elm)) { \ ++ SLIST_REMOVE_HEAD((head), field); \ ++ } \ ++ else { \ ++ struct type *curelm = (head)->slh_first; \ ++ while(curelm->field.sle_next != (elm)) \ ++ curelm = curelm->field.sle_next; \ ++ curelm->field.sle_next = \ ++ curelm->field.sle_next->field.sle_next; \ ++ } \ ++} while (/*CONSTCOND*/0) ++ ++#define SLIST_FOREACH(var, head, field) \ ++ for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next) ++ ++/* ++ * Singly-linked List access methods. ++ */ ++#define SLIST_EMPTY(head) ((head)->slh_first == NULL) ++#define SLIST_FIRST(head) ((head)->slh_first) ++#define SLIST_NEXT(elm, field) ((elm)->field.sle_next) ++ ++ ++/* ++ * Singly-linked Tail queue declarations. ++ */ ++#define STAILQ_HEAD(name, type) \ ++struct name { \ ++ struct type *stqh_first; /* first element */ \ ++ struct type **stqh_last; /* addr of last next element */ \ ++} ++ ++#define STAILQ_HEAD_INITIALIZER(head) \ ++ { NULL, &(head).stqh_first } ++ ++#define STAILQ_ENTRY(type) \ ++struct { \ ++ struct type *stqe_next; /* next element */ \ ++} ++ ++/* ++ * Singly-linked Tail queue functions. ++ */ ++#define STAILQ_INIT(head) do { \ ++ (head)->stqh_first = NULL; \ ++ (head)->stqh_last = &(head)->stqh_first; \ ++} while (/*CONSTCOND*/0) ++ ++#define STAILQ_INSERT_HEAD(head, elm, field) do { \ ++ if (((elm)->field.stqe_next = (head)->stqh_first) == NULL) \ ++ (head)->stqh_last = &(elm)->field.stqe_next; \ ++ (head)->stqh_first = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define STAILQ_INSERT_TAIL(head, elm, field) do { \ ++ (elm)->field.stqe_next = NULL; \ ++ *(head)->stqh_last = (elm); \ ++ (head)->stqh_last = &(elm)->field.stqe_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ ++ if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\ ++ (head)->stqh_last = &(elm)->field.stqe_next; \ ++ (listelm)->field.stqe_next = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define STAILQ_REMOVE_HEAD(head, field) do { \ ++ if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \ ++ (head)->stqh_last = &(head)->stqh_first; \ ++} while (/*CONSTCOND*/0) ++ ++#define STAILQ_REMOVE(head, elm, type, field) do { \ ++ if ((head)->stqh_first == (elm)) { \ ++ STAILQ_REMOVE_HEAD((head), field); \ ++ } else { \ ++ struct type *curelm = (head)->stqh_first; \ ++ while (curelm->field.stqe_next != (elm)) \ ++ curelm = curelm->field.stqe_next; \ ++ if ((curelm->field.stqe_next = \ ++ curelm->field.stqe_next->field.stqe_next) == NULL) \ ++ (head)->stqh_last = &(curelm)->field.stqe_next; \ ++ } \ ++} while (/*CONSTCOND*/0) ++ ++#define STAILQ_FOREACH(var, head, field) \ ++ for ((var) = ((head)->stqh_first); \ ++ (var); \ ++ (var) = ((var)->field.stqe_next)) ++ ++#define STAILQ_CONCAT(head1, head2) do { \ ++ if (!STAILQ_EMPTY((head2))) { \ ++ *(head1)->stqh_last = (head2)->stqh_first; \ ++ (head1)->stqh_last = (head2)->stqh_last; \ ++ STAILQ_INIT((head2)); \ ++ } \ ++} while (/*CONSTCOND*/0) ++ ++/* ++ * Singly-linked Tail queue access methods. ++ */ ++#define STAILQ_EMPTY(head) ((head)->stqh_first == NULL) ++#define STAILQ_FIRST(head) ((head)->stqh_first) ++#define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next) ++ ++ ++/* ++ * Simple queue definitions. ++ */ ++#define SIMPLEQ_HEAD(name, type) \ ++struct name { \ ++ struct type *sqh_first; /* first element */ \ ++ struct type **sqh_last; /* addr of last next element */ \ ++} ++ ++#define SIMPLEQ_HEAD_INITIALIZER(head) \ ++ { NULL, &(head).sqh_first } ++ ++#define SIMPLEQ_ENTRY(type) \ ++struct { \ ++ struct type *sqe_next; /* next element */ \ ++} ++ ++/* ++ * Simple queue functions. ++ */ ++#define SIMPLEQ_INIT(head) do { \ ++ (head)->sqh_first = NULL; \ ++ (head)->sqh_last = &(head)->sqh_first; \ ++} while (/*CONSTCOND*/0) ++ ++#define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \ ++ if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \ ++ (head)->sqh_last = &(elm)->field.sqe_next; \ ++ (head)->sqh_first = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \ ++ (elm)->field.sqe_next = NULL; \ ++ *(head)->sqh_last = (elm); \ ++ (head)->sqh_last = &(elm)->field.sqe_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ ++ if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\ ++ (head)->sqh_last = &(elm)->field.sqe_next; \ ++ (listelm)->field.sqe_next = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define SIMPLEQ_REMOVE_HEAD(head, field) do { \ ++ if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \ ++ (head)->sqh_last = &(head)->sqh_first; \ ++} while (/*CONSTCOND*/0) ++ ++#define SIMPLEQ_REMOVE(head, elm, type, field) do { \ ++ if ((head)->sqh_first == (elm)) { \ ++ SIMPLEQ_REMOVE_HEAD((head), field); \ ++ } else { \ ++ struct type *curelm = (head)->sqh_first; \ ++ while (curelm->field.sqe_next != (elm)) \ ++ curelm = curelm->field.sqe_next; \ ++ if ((curelm->field.sqe_next = \ ++ curelm->field.sqe_next->field.sqe_next) == NULL) \ ++ (head)->sqh_last = &(curelm)->field.sqe_next; \ ++ } \ ++} while (/*CONSTCOND*/0) ++ ++#define SIMPLEQ_FOREACH(var, head, field) \ ++ for ((var) = ((head)->sqh_first); \ ++ (var); \ ++ (var) = ((var)->field.sqe_next)) ++ ++/* ++ * Simple queue access methods. ++ */ ++#define SIMPLEQ_EMPTY(head) ((head)->sqh_first == NULL) ++#define SIMPLEQ_FIRST(head) ((head)->sqh_first) ++#define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next) ++ ++ ++/* ++ * Tail queue definitions. ++ */ ++#define _TAILQ_HEAD(name, type, qual) \ ++struct name { \ ++ qual type *tqh_first; /* first element */ \ ++ qual type *qual *tqh_last; /* addr of last next element */ \ ++} ++#define TAILQ_HEAD(name, type) _TAILQ_HEAD(name, struct type,) ++ ++#define TAILQ_HEAD_INITIALIZER(head) \ ++ { NULL, &(head).tqh_first } ++ ++#define _TAILQ_ENTRY(type, qual) \ ++struct { \ ++ qual type *tqe_next; /* next element */ \ ++ qual type *qual *tqe_prev; /* address of previous next element */\ ++} ++#define TAILQ_ENTRY(type) _TAILQ_ENTRY(struct type,) ++ ++/* ++ * Tail queue functions. ++ */ ++#define TAILQ_INIT(head) do { \ ++ (head)->tqh_first = NULL; \ ++ (head)->tqh_last = &(head)->tqh_first; \ ++} while (/*CONSTCOND*/0) ++ ++#define TAILQ_INSERT_HEAD(head, elm, field) do { \ ++ if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ ++ (head)->tqh_first->field.tqe_prev = \ ++ &(elm)->field.tqe_next; \ ++ else \ ++ (head)->tqh_last = &(elm)->field.tqe_next; \ ++ (head)->tqh_first = (elm); \ ++ (elm)->field.tqe_prev = &(head)->tqh_first; \ ++} while (/*CONSTCOND*/0) ++ ++#define TAILQ_INSERT_TAIL(head, elm, field) do { \ ++ (elm)->field.tqe_next = NULL; \ ++ (elm)->field.tqe_prev = (head)->tqh_last; \ ++ *(head)->tqh_last = (elm); \ ++ (head)->tqh_last = &(elm)->field.tqe_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ ++ if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ ++ (elm)->field.tqe_next->field.tqe_prev = \ ++ &(elm)->field.tqe_next; \ ++ else \ ++ (head)->tqh_last = &(elm)->field.tqe_next; \ ++ (listelm)->field.tqe_next = (elm); \ ++ (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ ++ (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ ++ (elm)->field.tqe_next = (listelm); \ ++ *(listelm)->field.tqe_prev = (elm); \ ++ (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define TAILQ_REMOVE(head, elm, field) do { \ ++ if (((elm)->field.tqe_next) != NULL) \ ++ (elm)->field.tqe_next->field.tqe_prev = \ ++ (elm)->field.tqe_prev; \ ++ else \ ++ (head)->tqh_last = (elm)->field.tqe_prev; \ ++ *(elm)->field.tqe_prev = (elm)->field.tqe_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define TAILQ_FOREACH(var, head, field) \ ++ for ((var) = ((head)->tqh_first); \ ++ (var); \ ++ (var) = ((var)->field.tqe_next)) ++ ++#define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ ++ for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last)); \ ++ (var); \ ++ (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last))) ++ ++#define TAILQ_CONCAT(head1, head2, field) do { \ ++ if (!TAILQ_EMPTY(head2)) { \ ++ *(head1)->tqh_last = (head2)->tqh_first; \ ++ (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \ ++ (head1)->tqh_last = (head2)->tqh_last; \ ++ TAILQ_INIT((head2)); \ ++ } \ ++} while (/*CONSTCOND*/0) ++ ++/* ++ * Tail queue access methods. ++ */ ++#define TAILQ_EMPTY(head) ((head)->tqh_first == NULL) ++#define TAILQ_FIRST(head) ((head)->tqh_first) ++#define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) ++ ++#define TAILQ_LAST(head, headname) \ ++ (*(((struct headname *)((head)->tqh_last))->tqh_last)) ++#define TAILQ_PREV(elm, headname, field) \ ++ (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) ++ ++ ++/* ++ * Circular queue definitions. ++ */ ++#define CIRCLEQ_HEAD(name, type) \ ++struct name { \ ++ struct type *cqh_first; /* first element */ \ ++ struct type *cqh_last; /* last element */ \ ++} ++ ++#define CIRCLEQ_HEAD_INITIALIZER(head) \ ++ { (void *)&head, (void *)&head } ++ ++#define CIRCLEQ_ENTRY(type) \ ++struct { \ ++ struct type *cqe_next; /* next element */ \ ++ struct type *cqe_prev; /* previous element */ \ ++} ++ ++/* ++ * Circular queue functions. ++ */ ++#define CIRCLEQ_INIT(head) do { \ ++ (head)->cqh_first = (void *)(head); \ ++ (head)->cqh_last = (void *)(head); \ ++} while (/*CONSTCOND*/0) ++ ++#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ ++ (elm)->field.cqe_next = (listelm)->field.cqe_next; \ ++ (elm)->field.cqe_prev = (listelm); \ ++ if ((listelm)->field.cqe_next == (void *)(head)) \ ++ (head)->cqh_last = (elm); \ ++ else \ ++ (listelm)->field.cqe_next->field.cqe_prev = (elm); \ ++ (listelm)->field.cqe_next = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do { \ ++ (elm)->field.cqe_next = (listelm); \ ++ (elm)->field.cqe_prev = (listelm)->field.cqe_prev; \ ++ if ((listelm)->field.cqe_prev == (void *)(head)) \ ++ (head)->cqh_first = (elm); \ ++ else \ ++ (listelm)->field.cqe_prev->field.cqe_next = (elm); \ ++ (listelm)->field.cqe_prev = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define CIRCLEQ_INSERT_HEAD(head, elm, field) do { \ ++ (elm)->field.cqe_next = (head)->cqh_first; \ ++ (elm)->field.cqe_prev = (void *)(head); \ ++ if ((head)->cqh_last == (void *)(head)) \ ++ (head)->cqh_last = (elm); \ ++ else \ ++ (head)->cqh_first->field.cqe_prev = (elm); \ ++ (head)->cqh_first = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define CIRCLEQ_INSERT_TAIL(head, elm, field) do { \ ++ (elm)->field.cqe_next = (void *)(head); \ ++ (elm)->field.cqe_prev = (head)->cqh_last; \ ++ if ((head)->cqh_first == (void *)(head)) \ ++ (head)->cqh_first = (elm); \ ++ else \ ++ (head)->cqh_last->field.cqe_next = (elm); \ ++ (head)->cqh_last = (elm); \ ++} while (/*CONSTCOND*/0) ++ ++#define CIRCLEQ_REMOVE(head, elm, field) do { \ ++ if ((elm)->field.cqe_next == (void *)(head)) \ ++ (head)->cqh_last = (elm)->field.cqe_prev; \ ++ else \ ++ (elm)->field.cqe_next->field.cqe_prev = \ ++ (elm)->field.cqe_prev; \ ++ if ((elm)->field.cqe_prev == (void *)(head)) \ ++ (head)->cqh_first = (elm)->field.cqe_next; \ ++ else \ ++ (elm)->field.cqe_prev->field.cqe_next = \ ++ (elm)->field.cqe_next; \ ++} while (/*CONSTCOND*/0) ++ ++#define CIRCLEQ_FOREACH(var, head, field) \ ++ for ((var) = ((head)->cqh_first); \ ++ (var) != (const void *)(head); \ ++ (var) = ((var)->field.cqe_next)) ++ ++#define CIRCLEQ_FOREACH_REVERSE(var, head, field) \ ++ for ((var) = ((head)->cqh_last); \ ++ (var) != (const void *)(head); \ ++ (var) = ((var)->field.cqe_prev)) ++ ++/* ++ * Circular queue access methods. ++ */ ++#define CIRCLEQ_EMPTY(head) ((head)->cqh_first == (void *)(head)) ++#define CIRCLEQ_FIRST(head) ((head)->cqh_first) ++#define CIRCLEQ_LAST(head) ((head)->cqh_last) ++#define CIRCLEQ_NEXT(elm, field) ((elm)->field.cqe_next) ++#define CIRCLEQ_PREV(elm, field) ((elm)->field.cqe_prev) ++ ++#define CIRCLEQ_LOOP_NEXT(head, elm, field) \ ++ (((elm)->field.cqe_next == (void *)(head)) \ ++ ? ((head)->cqh_first) \ ++ : (elm->field.cqe_next)) ++#define CIRCLEQ_LOOP_PREV(head, elm, field) \ ++ (((elm)->field.cqe_prev == (void *)(head)) \ ++ ? ((head)->cqh_last) \ ++ : (elm->field.cqe_prev)) ++ ++#endif /* sys/queue.h */ |