diff options
author | Waldemar Brodkorb <wbx@openadk.org> | 2015-12-24 00:05:11 +0100 |
---|---|---|
committer | Waldemar Brodkorb <wbx@openadk.org> | 2015-12-24 00:06:34 +0100 |
commit | fadf503d6599e1a1d3750fd11427b7ec91d9068e (patch) | |
tree | 83c0892ad14fda75cb3f776dc8222822a12a349f /target/m68k/qemu-m68k-mcf5208/patches/4.1.15 | |
parent | 77049ba01018d740d6c7f4958ffeba4aa50272c6 (diff) |
bump kernelversions
Diffstat (limited to 'target/m68k/qemu-m68k-mcf5208/patches/4.1.15')
-rw-r--r-- | target/m68k/qemu-m68k-mcf5208/patches/4.1.15/m68k-coldfire-fec.patch | 3626 |
1 files changed, 3626 insertions, 0 deletions
diff --git a/target/m68k/qemu-m68k-mcf5208/patches/4.1.15/m68k-coldfire-fec.patch b/target/m68k/qemu-m68k-mcf5208/patches/4.1.15/m68k-coldfire-fec.patch new file mode 100644 index 000000000..daebb62ae --- /dev/null +++ b/target/m68k/qemu-m68k-mcf5208/patches/4.1.15/m68k-coldfire-fec.patch @@ -0,0 +1,3626 @@ +diff -Nur linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c +--- linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c 2015-10-03 13:49:38.000000000 +0200 ++++ linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c 2015-10-31 18:05:40.000000000 +0100 +@@ -137,7 +137,7 @@ + module_param_array(macaddr, byte, NULL, 0); + MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); + +-#if defined(CONFIG_M5272) ++#if defined(CONFIG_COLDFIRE) + /* + * Some hardware gets it MAC address out of local flash memory. + * if this is non-zero then assume it is the address to get MAC from. +@@ -155,7 +155,7 @@ + #else + #define FEC_FLASHMAC 0 + #endif +-#endif /* CONFIG_M5272 */ ++#endif /* CONFIG_COLDFIRE */ + + /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. + */ +@@ -969,7 +969,7 @@ + /* Set MII speed */ + writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); + +-#if !defined(CONFIG_M5272) ++#if !defined(CONFIG_COLDFIRE) + /* set RX checksum */ + val = readl(fep->hwp + FEC_RACC); + if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) +@@ -1033,7 +1033,7 @@ + #endif + } + +-#if !defined(CONFIG_M5272) ++#if !defined(CONFIG_COLDFIRE) + /* enable pause frame*/ + if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || + ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && +@@ -1051,13 +1051,13 @@ + } else { + rcntl &= ~FEC_ENET_FCE; + } +-#endif /* !defined(CONFIG_M5272) */ ++#endif /* !defined(CONFIG_COLDFIRE) */ + + writel(rcntl, fep->hwp + FEC_R_CNTRL); + + /* Setup multicast filter. */ + set_multicast_list(ndev); +-#ifndef CONFIG_M5272 ++#ifndef CONFIG_COLDFIRE + writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); + writel(0, fep->hwp + FEC_HASH_TABLE_LOW); + #endif +@@ -1072,7 +1072,7 @@ + if (fep->bufdesc_ex) + ecntl |= (1 << 4); + +-#ifndef CONFIG_M5272 ++#ifndef CONFIG_COLDFIRE + /* Enable the MIB statistic event counters */ + writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); + #endif +@@ -1657,7 +1657,7 @@ + * 3) from flash or fuse (via platform data) + */ + if (!is_valid_ether_addr(iap)) { +-#ifdef CONFIG_M5272 ++#ifdef CONFIG_COLDFIRE + if (FEC_FLASHMAC) + iap = (unsigned char *)FEC_FLASHMAC; + #else +@@ -1931,7 +1931,7 @@ + if (fep->quirks & FEC_QUIRK_HAS_GBIT) { + phy_dev->supported &= PHY_GBIT_FEATURES; + phy_dev->supported &= ~SUPPORTED_1000baseT_Half; +-#if !defined(CONFIG_M5272) ++#if !defined(CONFIG_COLDFIRE) + phy_dev->supported |= SUPPORTED_Pause; + #endif + } +@@ -2148,7 +2148,7 @@ + } + } + +-#if !defined(CONFIG_M5272) ++#if !defined(CONFIG_COLDFIRE) + + static void fec_enet_get_pauseparam(struct net_device *ndev, + struct ethtool_pauseparam *pause) +@@ -2303,7 +2303,7 @@ + return -EOPNOTSUPP; + } + } +-#endif /* !defined(CONFIG_M5272) */ ++#endif /* !defined(CONFIG_COLDFIRE) */ + + static int fec_enet_nway_reset(struct net_device *dev) + { +@@ -2520,7 +2520,7 @@ + .get_link = ethtool_op_get_link, + .get_coalesce = fec_enet_get_coalesce, + .set_coalesce = fec_enet_set_coalesce, +-#ifndef CONFIG_M5272 ++#ifndef CONFIG_COLDFIRE + .get_pauseparam = fec_enet_get_pauseparam, + .set_pauseparam = fec_enet_set_pauseparam, + .get_strings = fec_enet_get_strings, +@@ -3220,7 +3220,7 @@ + fep->num_rx_queues = num_rx_qs; + fep->num_tx_queues = num_tx_qs; + +-#if !defined(CONFIG_M5272) ++#if !defined(CONFIG_COLDFIRE) + /* default enable pause frame auto negotiation */ + if (fep->quirks & FEC_QUIRK_HAS_GBIT) + fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; +diff -Nur linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c.orig linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c.orig +--- linux-4.1.10.orig/drivers/net/ethernet/freescale/fec_main.c.orig 1970-01-01 01:00:00.000000000 +0100 ++++ linux-4.1.10/drivers/net/ethernet/freescale/fec_main.c.orig 2015-10-03 13:49:38.000000000 +0200 +@@ -0,0 +1,3504 @@ ++/* ++ * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. ++ * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) ++ * ++ * Right now, I am very wasteful with the buffers. I allocate memory ++ * pages and then divide them into 2K frame buffers. This way I know I ++ * have buffers large enough to hold one frame within one buffer descriptor. ++ * Once I get this working, I will use 64 or 128 byte CPM buffers, which ++ * will be much more memory efficient and will easily handle lots of ++ * small packets. ++ * ++ * Much better multiple PHY support by Magnus Damm. ++ * Copyright (c) 2000 Ericsson Radio Systems AB. ++ * ++ * Support for FEC controller of ColdFire processors. ++ * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com) ++ * ++ * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be) ++ * Copyright (c) 2004-2006 Macq Electronique SA. ++ * ++ * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. ++ */ ++ ++#include <linux/module.h> ++#include <linux/kernel.h> ++#include <linux/string.h> ++#include <linux/ptrace.h> ++#include <linux/errno.h> ++#include <linux/ioport.h> ++#include <linux/slab.h> ++#include <linux/interrupt.h> ++#include <linux/delay.h> ++#include <linux/netdevice.h> ++#include <linux/etherdevice.h> ++#include <linux/skbuff.h> ++#include <linux/in.h> ++#include <linux/ip.h> ++#include <net/ip.h> ++#include <net/tso.h> ++#include <linux/tcp.h> ++#include <linux/udp.h> ++#include <linux/icmp.h> ++#include <linux/spinlock.h> ++#include <linux/workqueue.h> ++#include <linux/bitops.h> ++#include <linux/io.h> ++#include <linux/irq.h> ++#include <linux/clk.h> ++#include <linux/platform_device.h> ++#include <linux/phy.h> ++#include <linux/fec.h> ++#include <linux/of.h> ++#include <linux/of_device.h> ++#include <linux/of_gpio.h> ++#include <linux/of_mdio.h> ++#include <linux/of_net.h> ++#include <linux/regulator/consumer.h> ++#include <linux/if_vlan.h> ++#include <linux/pinctrl/consumer.h> ++#include <linux/prefetch.h> ++ ++#include <asm/cacheflush.h> ++ ++#include "fec.h" ++ ++static void set_multicast_list(struct net_device *ndev); ++static void fec_enet_itr_coal_init(struct net_device *ndev); ++ ++#define DRIVER_NAME "fec" ++ ++#define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0)) ++ ++/* Pause frame feild and FIFO threshold */ ++#define FEC_ENET_FCE (1 << 5) ++#define FEC_ENET_RSEM_V 0x84 ++#define FEC_ENET_RSFL_V 16 ++#define FEC_ENET_RAEM_V 0x8 ++#define FEC_ENET_RAFL_V 0x8 ++#define FEC_ENET_OPD_V 0xFFF0 ++ ++static struct platform_device_id fec_devtype[] = { ++ { ++ /* keep it for coldfire */ ++ .name = DRIVER_NAME, ++ .driver_data = 0, ++ }, { ++ .name = "imx25-fec", ++ .driver_data = FEC_QUIRK_USE_GASKET, ++ }, { ++ .name = "imx27-fec", ++ .driver_data = 0, ++ }, { ++ .name = "imx28-fec", ++ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME | ++ FEC_QUIRK_SINGLE_MDIO, ++ }, { ++ .name = "imx6q-fec", ++ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | ++ FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | ++ FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358, ++ }, { ++ .name = "mvf600-fec", ++ .driver_data = FEC_QUIRK_ENET_MAC, ++ }, { ++ .name = "imx6sx-fec", ++ .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT | ++ FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM | ++ FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB | ++ FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE, ++ }, { ++ /* sentinel */ ++ } ++}; ++MODULE_DEVICE_TABLE(platform, fec_devtype); ++ ++enum imx_fec_type { ++ IMX25_FEC = 1, /* runs on i.mx25/50/53 */ ++ IMX27_FEC, /* runs on i.mx27/35/51 */ ++ IMX28_FEC, ++ IMX6Q_FEC, ++ MVF600_FEC, ++ IMX6SX_FEC, ++}; ++ ++static const struct of_device_id fec_dt_ids[] = { ++ { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], }, ++ { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], }, ++ { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], }, ++ { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], }, ++ { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], }, ++ { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], }, ++ { /* sentinel */ } ++}; ++MODULE_DEVICE_TABLE(of, fec_dt_ids); ++ ++static unsigned char macaddr[ETH_ALEN]; ++module_param_array(macaddr, byte, NULL, 0); ++MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address"); ++ ++#if defined(CONFIG_M5272) ++/* ++ * Some hardware gets it MAC address out of local flash memory. ++ * if this is non-zero then assume it is the address to get MAC from. ++ */ ++#if defined(CONFIG_NETtel) ++#define FEC_FLASHMAC 0xf0006006 ++#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) ++#define FEC_FLASHMAC 0xf0006000 ++#elif defined(CONFIG_CANCam) ++#define FEC_FLASHMAC 0xf0020000 ++#elif defined (CONFIG_M5272C3) ++#define FEC_FLASHMAC (0xffe04000 + 4) ++#elif defined(CONFIG_MOD5272) ++#define FEC_FLASHMAC 0xffc0406b ++#else ++#define FEC_FLASHMAC 0 ++#endif ++#endif /* CONFIG_M5272 */ ++ ++/* The FEC stores dest/src/type/vlan, data, and checksum for receive packets. ++ */ ++#define PKT_MAXBUF_SIZE 1522 ++#define PKT_MINBUF_SIZE 64 ++#define PKT_MAXBLR_SIZE 1536 ++ ++/* FEC receive acceleration */ ++#define FEC_RACC_IPDIS (1 << 1) ++#define FEC_RACC_PRODIS (1 << 2) ++#define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS) ++ ++/* ++ * The 5270/5271/5280/5282/532x RX control register also contains maximum frame ++ * size bits. Other FEC hardware does not, so we need to take that into ++ * account when setting it. ++ */ ++#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \ ++ defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM) ++#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) ++#else ++#define OPT_FRAME_SIZE 0 ++#endif ++ ++/* FEC MII MMFR bits definition */ ++#define FEC_MMFR_ST (1 << 30) ++#define FEC_MMFR_OP_READ (2 << 28) ++#define FEC_MMFR_OP_WRITE (1 << 28) ++#define FEC_MMFR_PA(v) ((v & 0x1f) << 23) ++#define FEC_MMFR_RA(v) ((v & 0x1f) << 18) ++#define FEC_MMFR_TA (2 << 16) ++#define FEC_MMFR_DATA(v) (v & 0xffff) ++/* FEC ECR bits definition */ ++#define FEC_ECR_MAGICEN (1 << 2) ++#define FEC_ECR_SLEEP (1 << 3) ++ ++#define FEC_MII_TIMEOUT 30000 /* us */ ++ ++/* Transmitter timeout */ ++#define TX_TIMEOUT (2 * HZ) ++ ++#define FEC_PAUSE_FLAG_AUTONEG 0x1 ++#define FEC_PAUSE_FLAG_ENABLE 0x2 ++#define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0) ++#define FEC_WOL_FLAG_ENABLE (0x1 << 1) ++#define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2) ++ ++#define COPYBREAK_DEFAULT 256 ++ ++#define TSO_HEADER_SIZE 128 ++/* Max number of allowed TCP segments for software TSO */ ++#define FEC_MAX_TSO_SEGS 100 ++#define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) ++ ++#define IS_TSO_HEADER(txq, addr) \ ++ ((addr >= txq->tso_hdrs_dma) && \ ++ (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE)) ++ ++static int mii_cnt; ++ ++static inline ++struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, ++ struct fec_enet_private *fep, ++ int queue_id) ++{ ++ struct bufdesc *new_bd = bdp + 1; ++ struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1; ++ struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id]; ++ struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id]; ++ struct bufdesc_ex *ex_base; ++ struct bufdesc *base; ++ int ring_size; ++ ++ if (bdp >= txq->tx_bd_base) { ++ base = txq->tx_bd_base; ++ ring_size = txq->tx_ring_size; ++ ex_base = (struct bufdesc_ex *)txq->tx_bd_base; ++ } else { ++ base = rxq->rx_bd_base; ++ ring_size = rxq->rx_ring_size; ++ ex_base = (struct bufdesc_ex *)rxq->rx_bd_base; ++ } ++ ++ if (fep->bufdesc_ex) ++ return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ? ++ ex_base : ex_new_bd); ++ else ++ return (new_bd >= (base + ring_size)) ? ++ base : new_bd; ++} ++ ++static inline ++struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, ++ struct fec_enet_private *fep, ++ int queue_id) ++{ ++ struct bufdesc *new_bd = bdp - 1; ++ struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1; ++ struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id]; ++ struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id]; ++ struct bufdesc_ex *ex_base; ++ struct bufdesc *base; ++ int ring_size; ++ ++ if (bdp >= txq->tx_bd_base) { ++ base = txq->tx_bd_base; ++ ring_size = txq->tx_ring_size; ++ ex_base = (struct bufdesc_ex *)txq->tx_bd_base; ++ } else { ++ base = rxq->rx_bd_base; ++ ring_size = rxq->rx_ring_size; ++ ex_base = (struct bufdesc_ex *)rxq->rx_bd_base; ++ } ++ ++ if (fep->bufdesc_ex) ++ return (struct bufdesc *)((ex_new_bd < ex_base) ? ++ (ex_new_bd + ring_size) : ex_new_bd); ++ else ++ return (new_bd < base) ? (new_bd + ring_size) : new_bd; ++} ++ ++static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp, ++ struct fec_enet_private *fep) ++{ ++ return ((const char *)bdp - (const char *)base) / fep->bufdesc_size; ++} ++ ++static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep, ++ struct fec_enet_priv_tx_q *txq) ++{ ++ int entries; ++ ++ entries = ((const char *)txq->dirty_tx - ++ (const char *)txq->cur_tx) / fep->bufdesc_size - 1; ++ ++ return entries > 0 ? entries : entries + txq->tx_ring_size; ++} ++ ++static void swap_buffer(void *bufaddr, int len) ++{ ++ int i; ++ unsigned int *buf = bufaddr; ++ ++ for (i = 0; i < len; i += 4, buf++) ++ swab32s(buf); ++} ++ ++static void swap_buffer2(void *dst_buf, void *src_buf, int len) ++{ ++ int i; ++ unsigned int *src = src_buf; ++ unsigned int *dst = dst_buf; ++ ++ for (i = 0; i < len; i += 4, src++, dst++) ++ *dst = swab32p(src); ++} ++ ++static void fec_dump(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct bufdesc *bdp; ++ struct fec_enet_priv_tx_q *txq; ++ int index = 0; ++ ++ netdev_info(ndev, "TX ring dump\n"); ++ pr_info("Nr SC addr len SKB\n"); ++ ++ txq = fep->tx_queue[0]; ++ bdp = txq->tx_bd_base; ++ ++ do { ++ pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n", ++ index, ++ bdp == txq->cur_tx ? 'S' : ' ', ++ bdp == txq->dirty_tx ? 'H' : ' ', ++ bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen, ++ txq->tx_skbuff[index]); ++ bdp = fec_enet_get_nextdesc(bdp, fep, 0); ++ index++; ++ } while (bdp != txq->tx_bd_base); ++} ++ ++static inline bool is_ipv4_pkt(struct sk_buff *skb) ++{ ++ return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4; ++} ++ ++static int ++fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev) ++{ ++ /* Only run for packets requiring a checksum. */ ++ if (skb->ip_summed != CHECKSUM_PARTIAL) ++ return 0; ++ ++ if (unlikely(skb_cow_head(skb, 0))) ++ return -1; ++ ++ if (is_ipv4_pkt(skb)) ++ ip_hdr(skb)->check = 0; ++ *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0; ++ ++ return 0; ++} ++ ++static int ++fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq, ++ struct sk_buff *skb, ++ struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct bufdesc *bdp = txq->cur_tx; ++ struct bufdesc_ex *ebdp; ++ int nr_frags = skb_shinfo(skb)->nr_frags; ++ unsigned short queue = skb_get_queue_mapping(skb); ++ int frag, frag_len; ++ unsigned short status; ++ unsigned int estatus = 0; ++ skb_frag_t *this_frag; ++ unsigned int index; ++ void *bufaddr; ++ dma_addr_t addr; ++ int i; ++ ++ for (frag = 0; frag < nr_frags; frag++) { ++ this_frag = &skb_shinfo(skb)->frags[frag]; ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue); ++ ebdp = (struct bufdesc_ex *)bdp; ++ ++ status = bdp->cbd_sc; ++ status &= ~BD_ENET_TX_STATS; ++ status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); ++ frag_len = skb_shinfo(skb)->frags[frag].size; ++ ++ /* Handle the last BD specially */ ++ if (frag == nr_frags - 1) { ++ status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); ++ if (fep->bufdesc_ex) { ++ estatus |= BD_ENET_TX_INT; ++ if (unlikely(skb_shinfo(skb)->tx_flags & ++ SKBTX_HW_TSTAMP && fep->hwts_tx_en)) ++ estatus |= BD_ENET_TX_TS; ++ } ++ } ++ ++ if (fep->bufdesc_ex) { ++ if (fep->quirks & FEC_QUIRK_HAS_AVB) ++ estatus |= FEC_TX_BD_FTYPE(queue); ++ if (skb->ip_summed == CHECKSUM_PARTIAL) ++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ++ ebdp->cbd_bdu = 0; ++ ebdp->cbd_esc = estatus; ++ } ++ ++ bufaddr = page_address(this_frag->page.p) + this_frag->page_offset; ++ ++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); ++ if (((unsigned long) bufaddr) & fep->tx_align || ++ fep->quirks & FEC_QUIRK_SWAP_FRAME) { ++ memcpy(txq->tx_bounce[index], bufaddr, frag_len); ++ bufaddr = txq->tx_bounce[index]; ++ ++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME) ++ swap_buffer(bufaddr, frag_len); ++ } ++ ++ addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len, ++ DMA_TO_DEVICE); ++ if (dma_mapping_error(&fep->pdev->dev, addr)) { ++ dev_kfree_skb_any(skb); ++ if (net_ratelimit()) ++ netdev_err(ndev, "Tx DMA memory map failed\n"); ++ goto dma_mapping_error; ++ } ++ ++ bdp->cbd_bufaddr = addr; ++ bdp->cbd_datlen = frag_len; ++ bdp->cbd_sc = status; ++ } ++ ++ txq->cur_tx = bdp; ++ ++ return 0; ++ ++dma_mapping_error: ++ bdp = txq->cur_tx; ++ for (i = 0; i < frag; i++) { ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue); ++ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, ++ bdp->cbd_datlen, DMA_TO_DEVICE); ++ } ++ return NETDEV_TX_OK; ++} ++ ++static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq, ++ struct sk_buff *skb, struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int nr_frags = skb_shinfo(skb)->nr_frags; ++ struct bufdesc *bdp, *last_bdp; ++ void *bufaddr; ++ dma_addr_t addr; ++ unsigned short status; ++ unsigned short buflen; ++ unsigned short queue; ++ unsigned int estatus = 0; ++ unsigned int index; ++ int entries_free; ++ int ret; ++ ++ entries_free = fec_enet_get_free_txdesc_num(fep, txq); ++ if (entries_free < MAX_SKB_FRAGS + 1) { ++ dev_kfree_skb_any(skb); ++ if (net_ratelimit()) ++ netdev_err(ndev, "NOT enough BD for SG!\n"); ++ return NETDEV_TX_OK; ++ } ++ ++ /* Protocol checksum off-load for TCP and UDP. */ ++ if (fec_enet_clear_csum(skb, ndev)) { ++ dev_kfree_skb_any(skb); ++ return NETDEV_TX_OK; ++ } ++ ++ /* Fill in a Tx ring entry */ ++ bdp = txq->cur_tx; ++ status = bdp->cbd_sc; ++ status &= ~BD_ENET_TX_STATS; ++ ++ /* Set buffer length and buffer pointer */ ++ bufaddr = skb->data; ++ buflen = skb_headlen(skb); ++ ++ queue = skb_get_queue_mapping(skb); ++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); ++ if (((unsigned long) bufaddr) & fep->tx_align || ++ fep->quirks & FEC_QUIRK_SWAP_FRAME) { ++ memcpy(txq->tx_bounce[index], skb->data, buflen); ++ bufaddr = txq->tx_bounce[index]; ++ ++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME) ++ swap_buffer(bufaddr, buflen); ++ } ++ ++ /* Push the data cache so the CPM does not get stale memory data. */ ++ addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE); ++ if (dma_mapping_error(&fep->pdev->dev, addr)) { ++ dev_kfree_skb_any(skb); ++ if (net_ratelimit()) ++ netdev_err(ndev, "Tx DMA memory map failed\n"); ++ return NETDEV_TX_OK; ++ } ++ ++ if (nr_frags) { ++ ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev); ++ if (ret) ++ return ret; ++ } else { ++ status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST); ++ if (fep->bufdesc_ex) { ++ estatus = BD_ENET_TX_INT; ++ if (unlikely(skb_shinfo(skb)->tx_flags & ++ SKBTX_HW_TSTAMP && fep->hwts_tx_en)) ++ estatus |= BD_ENET_TX_TS; ++ } ++ } ++ ++ if (fep->bufdesc_ex) { ++ ++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ++ ++ if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP && ++ fep->hwts_tx_en)) ++ skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; ++ ++ if (fep->quirks & FEC_QUIRK_HAS_AVB) ++ estatus |= FEC_TX_BD_FTYPE(queue); ++ ++ if (skb->ip_summed == CHECKSUM_PARTIAL) ++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ++ ++ ebdp->cbd_bdu = 0; ++ ebdp->cbd_esc = estatus; ++ } ++ ++ last_bdp = txq->cur_tx; ++ index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep); ++ /* Save skb pointer */ ++ txq->tx_skbuff[index] = skb; ++ ++ bdp->cbd_datlen = buflen; ++ bdp->cbd_bufaddr = addr; ++ ++ /* Send it on its way. Tell FEC it's ready, interrupt when done, ++ * it's the last BD of the frame, and to put the CRC on the end. ++ */ ++ status |= (BD_ENET_TX_READY | BD_ENET_TX_TC); ++ bdp->cbd_sc = status; ++ ++ /* If this was the last BD in the ring, start at the beginning again. */ ++ bdp = fec_enet_get_nextdesc(last_bdp, fep, queue); ++ ++ skb_tx_timestamp(skb); ++ ++ txq->cur_tx = bdp; ++ ++ /* Trigger transmission start */ ++ writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue)); ++ ++ return 0; ++} ++ ++static int ++fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb, ++ struct net_device *ndev, ++ struct bufdesc *bdp, int index, char *data, ++ int size, bool last_tcp, bool is_last) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); ++ unsigned short queue = skb_get_queue_mapping(skb); ++ unsigned short status; ++ unsigned int estatus = 0; ++ dma_addr_t addr; ++ ++ status = bdp->cbd_sc; ++ status &= ~BD_ENET_TX_STATS; ++ ++ status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); ++ ++ if (((unsigned long) data) & fep->tx_align || ++ fep->quirks & FEC_QUIRK_SWAP_FRAME) { ++ memcpy(txq->tx_bounce[index], data, size); ++ data = txq->tx_bounce[index]; ++ ++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME) ++ swap_buffer(data, size); ++ } ++ ++ addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE); ++ if (dma_mapping_error(&fep->pdev->dev, addr)) { ++ dev_kfree_skb_any(skb); ++ if (net_ratelimit()) ++ netdev_err(ndev, "Tx DMA memory map failed\n"); ++ return NETDEV_TX_BUSY; ++ } ++ ++ bdp->cbd_datlen = size; ++ bdp->cbd_bufaddr = addr; ++ ++ if (fep->bufdesc_ex) { ++ if (fep->quirks & FEC_QUIRK_HAS_AVB) ++ estatus |= FEC_TX_BD_FTYPE(queue); ++ if (skb->ip_summed == CHECKSUM_PARTIAL) ++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ++ ebdp->cbd_bdu = 0; ++ ebdp->cbd_esc = estatus; ++ } ++ ++ /* Handle the last BD specially */ ++ if (last_tcp) ++ status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC); ++ if (is_last) { ++ status |= BD_ENET_TX_INTR; ++ if (fep->bufdesc_ex) ++ ebdp->cbd_esc |= BD_ENET_TX_INT; ++ } ++ ++ bdp->cbd_sc = status; ++ ++ return 0; ++} ++ ++static int ++fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq, ++ struct sk_buff *skb, struct net_device *ndev, ++ struct bufdesc *bdp, int index) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); ++ struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc); ++ unsigned short queue = skb_get_queue_mapping(skb); ++ void *bufaddr; ++ unsigned long dmabuf; ++ unsigned short status; ++ unsigned int estatus = 0; ++ ++ status = bdp->cbd_sc; ++ status &= ~BD_ENET_TX_STATS; ++ status |= (BD_ENET_TX_TC | BD_ENET_TX_READY); ++ ++ bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE; ++ dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE; ++ if (((unsigned long)bufaddr) & fep->tx_align || ++ fep->quirks & FEC_QUIRK_SWAP_FRAME) { ++ memcpy(txq->tx_bounce[index], skb->data, hdr_len); ++ bufaddr = txq->tx_bounce[index]; ++ ++ if (fep->quirks & FEC_QUIRK_SWAP_FRAME) ++ swap_buffer(bufaddr, hdr_len); ++ ++ dmabuf = dma_map_single(&fep->pdev->dev, bufaddr, ++ hdr_len, DMA_TO_DEVICE); ++ if (dma_mapping_error(&fep->pdev->dev, dmabuf)) { ++ dev_kfree_skb_any(skb); ++ if (net_ratelimit()) ++ netdev_err(ndev, "Tx DMA memory map failed\n"); ++ return NETDEV_TX_BUSY; ++ } ++ } ++ ++ bdp->cbd_bufaddr = dmabuf; ++ bdp->cbd_datlen = hdr_len; ++ ++ if (fep->bufdesc_ex) { ++ if (fep->quirks & FEC_QUIRK_HAS_AVB) ++ estatus |= FEC_TX_BD_FTYPE(queue); ++ if (skb->ip_summed == CHECKSUM_PARTIAL) ++ estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS; ++ ebdp->cbd_bdu = 0; ++ ebdp->cbd_esc = estatus; ++ } ++ ++ bdp->cbd_sc = status; ++ ++ return 0; ++} ++ ++static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq, ++ struct sk_buff *skb, ++ struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); ++ int total_len, data_left; ++ struct bufdesc *bdp = txq->cur_tx; ++ unsigned short queue = skb_get_queue_mapping(skb); ++ struct tso_t tso; ++ unsigned int index = 0; ++ int ret; ++ ++ if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) { ++ dev_kfree_skb_any(skb); ++ if (net_ratelimit()) ++ netdev_err(ndev, "NOT enough BD for TSO!\n"); ++ return NETDEV_TX_OK; ++ } ++ ++ /* Protocol checksum off-load for TCP and UDP. */ ++ if (fec_enet_clear_csum(skb, ndev)) { ++ dev_kfree_skb_any(skb); ++ return NETDEV_TX_OK; ++ } ++ ++ /* Initialize the TSO handler, and prepare the first payload */ ++ tso_start(skb, &tso); ++ ++ total_len = skb->len - hdr_len; ++ while (total_len > 0) { ++ char *hdr; ++ ++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); ++ data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); ++ total_len -= data_left; ++ ++ /* prepare packet headers: MAC + IP + TCP */ ++ hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE; ++ tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); ++ ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index); ++ if (ret) ++ goto err_release; ++ ++ while (data_left > 0) { ++ int size; ++ ++ size = min_t(int, tso.size, data_left); ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue); ++ index = fec_enet_get_bd_index(txq->tx_bd_base, ++ bdp, fep); ++ ret = fec_enet_txq_put_data_tso(txq, skb, ndev, ++ bdp, index, ++ tso.data, size, ++ size == data_left, ++ total_len == 0); ++ if (ret) ++ goto err_release; ++ ++ data_left -= size; ++ tso_build_data(skb, &tso, size); ++ } ++ ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue); ++ } ++ ++ /* Save skb pointer */ ++ txq->tx_skbuff[index] = skb; ++ ++ skb_tx_timestamp(skb); ++ txq->cur_tx = bdp; ++ ++ /* Trigger transmission start */ ++ if (!(fep->quirks & FEC_QUIRK_ERR007885) || ++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || ++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || ++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) || ++ !readl(fep->hwp + FEC_X_DES_ACTIVE(queue))) ++ writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue)); ++ ++ return 0; ++ ++err_release: ++ /* TODO: Release all used data descriptors for TSO */ ++ return ret; ++} ++ ++static netdev_tx_t ++fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int entries_free; ++ unsigned short queue; ++ struct fec_enet_priv_tx_q *txq; ++ struct netdev_queue *nq; ++ int ret; ++ ++ queue = skb_get_queue_mapping(skb); ++ txq = fep->tx_queue[queue]; ++ nq = netdev_get_tx_queue(ndev, queue); ++ ++ if (skb_is_gso(skb)) ++ ret = fec_enet_txq_submit_tso(txq, skb, ndev); ++ else ++ ret = fec_enet_txq_submit_skb(txq, skb, ndev); ++ if (ret) ++ return ret; ++ ++ entries_free = fec_enet_get_free_txdesc_num(fep, txq); ++ if (entries_free <= txq->tx_stop_threshold) ++ netif_tx_stop_queue(nq); ++ ++ return NETDEV_TX_OK; ++} ++ ++/* Init RX & TX buffer descriptors ++ */ ++static void fec_enet_bd_init(struct net_device *dev) ++{ ++ struct fec_enet_private *fep = netdev_priv(dev); ++ struct fec_enet_priv_tx_q *txq; ++ struct fec_enet_priv_rx_q *rxq; ++ struct bufdesc *bdp; ++ unsigned int i; ++ unsigned int q; ++ ++ for (q = 0; q < fep->num_rx_queues; q++) { ++ /* Initialize the receive buffer descriptors. */ ++ rxq = fep->rx_queue[q]; ++ bdp = rxq->rx_bd_base; ++ ++ for (i = 0; i < rxq->rx_ring_size; i++) { ++ ++ /* Initialize the BD for every fragment in the page. */ ++ if (bdp->cbd_bufaddr) ++ bdp->cbd_sc = BD_ENET_RX_EMPTY; ++ else ++ bdp->cbd_sc = 0; ++ bdp = fec_enet_get_nextdesc(bdp, fep, q); ++ } ++ ++ /* Set the last buffer to wrap */ ++ bdp = fec_enet_get_prevdesc(bdp, fep, q); ++ bdp->cbd_sc |= BD_SC_WRAP; ++ ++ rxq->cur_rx = rxq->rx_bd_base; ++ } ++ ++ for (q = 0; q < fep->num_tx_queues; q++) { ++ /* ...and the same for transmit */ ++ txq = fep->tx_queue[q]; ++ bdp = txq->tx_bd_base; ++ txq->cur_tx = bdp; ++ ++ for (i = 0; i < txq->tx_ring_size; i++) { ++ /* Initialize the BD for every fragment in the page. */ ++ bdp->cbd_sc = 0; ++ if (txq->tx_skbuff[i]) { ++ dev_kfree_skb_any(txq->tx_skbuff[i]); ++ txq->tx_skbuff[i] = NULL; ++ } ++ bdp->cbd_bufaddr = 0; ++ bdp = fec_enet_get_nextdesc(bdp, fep, q); ++ } ++ ++ /* Set the last buffer to wrap */ ++ bdp = fec_enet_get_prevdesc(bdp, fep, q); ++ bdp->cbd_sc |= BD_SC_WRAP; ++ txq->dirty_tx = bdp; ++ } ++} ++ ++static void fec_enet_active_rxring(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int i; ++ ++ for (i = 0; i < fep->num_rx_queues; i++) ++ writel(0, fep->hwp + FEC_R_DES_ACTIVE(i)); ++} ++ ++static void fec_enet_enable_ring(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct fec_enet_priv_tx_q *txq; ++ struct fec_enet_priv_rx_q *rxq; ++ int i; ++ ++ for (i = 0; i < fep->num_rx_queues; i++) { ++ rxq = fep->rx_queue[i]; ++ writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i)); ++ writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i)); ++ ++ /* enable DMA1/2 */ ++ if (i) ++ writel(RCMR_MATCHEN | RCMR_CMP(i), ++ fep->hwp + FEC_RCMR(i)); ++ } ++ ++ for (i = 0; i < fep->num_tx_queues; i++) { ++ txq = fep->tx_queue[i]; ++ writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i)); ++ ++ /* enable DMA1/2 */ ++ if (i) ++ writel(DMA_CLASS_EN | IDLE_SLOPE(i), ++ fep->hwp + FEC_DMA_CFG(i)); ++ } ++} ++ ++static void fec_enet_reset_skb(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct fec_enet_priv_tx_q *txq; ++ int i, j; ++ ++ for (i = 0; i < fep->num_tx_queues; i++) { ++ txq = fep->tx_queue[i]; ++ ++ for (j = 0; j < txq->tx_ring_size; j++) { ++ if (txq->tx_skbuff[j]) { ++ dev_kfree_skb_any(txq->tx_skbuff[j]); ++ txq->tx_skbuff[j] = NULL; ++ } ++ } ++ } ++} ++ ++/* ++ * This function is called to start or restart the FEC during a link ++ * change, transmit timeout, or to reconfigure the FEC. The network ++ * packet processing for this device must be stopped before this call. ++ */ ++static void ++fec_restart(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ u32 val; ++ u32 temp_mac[2]; ++ u32 rcntl = OPT_FRAME_SIZE | 0x04; ++ u32 ecntl = 0x2; /* ETHEREN */ ++ ++ /* Whack a reset. We should wait for this. ++ * For i.MX6SX SOC, enet use AXI bus, we use disable MAC ++ * instead of reset MAC itself. ++ */ ++ if (fep->quirks & FEC_QUIRK_HAS_AVB) { ++ writel(0, fep->hwp + FEC_ECNTRL); ++ } else { ++ writel(1, fep->hwp + FEC_ECNTRL); ++ udelay(10); ++ } ++ ++ /* ++ * enet-mac reset will reset mac address registers too, ++ * so need to reconfigure it. ++ */ ++ if (fep->quirks & FEC_QUIRK_ENET_MAC) { ++ memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN); ++ writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW); ++ writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH); ++ } ++ ++ /* Clear any outstanding interrupt. */ ++ writel(0xffffffff, fep->hwp + FEC_IEVENT); ++ ++ fec_enet_bd_init(ndev); ++ ++ fec_enet_enable_ring(ndev); ++ ++ /* Reset tx SKB buffers. */ ++ fec_enet_reset_skb(ndev); ++ ++ /* Enable MII mode */ ++ if (fep->full_duplex == DUPLEX_FULL) { ++ /* FD enable */ ++ writel(0x04, fep->hwp + FEC_X_CNTRL); ++ } else { ++ /* No Rcv on Xmit */ ++ rcntl |= 0x02; ++ writel(0x0, fep->hwp + FEC_X_CNTRL); ++ } ++ ++ /* Set MII speed */ ++ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); ++ ++#if !defined(CONFIG_M5272) ++ /* set RX checksum */ ++ val = readl(fep->hwp + FEC_RACC); ++ if (fep->csum_flags & FLAG_RX_CSUM_ENABLED) ++ val |= FEC_RACC_OPTIONS; ++ else ++ val &= ~FEC_RACC_OPTIONS; ++ writel(val, fep->hwp + FEC_RACC); ++#endif ++ ++ /* ++ * The phy interface and speed need to get configured ++ * differently on enet-mac. ++ */ ++ if (fep->quirks & FEC_QUIRK_ENET_MAC) { ++ /* Enable flow control and length check */ ++ rcntl |= 0x40000000 | 0x00000020; ++ ++ /* RGMII, RMII or MII */ ++ if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII || ++ fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID || ++ fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID || ++ fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ++ rcntl |= (1 << 6); ++ else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII) ++ rcntl |= (1 << 8); ++ else ++ rcntl &= ~(1 << 8); ++ ++ /* 1G, 100M or 10M */ ++ if (fep->phy_dev) { ++ if (fep->phy_dev->speed == SPEED_1000) ++ ecntl |= (1 << 5); ++ else if (fep->phy_dev->speed == SPEED_100) ++ rcntl &= ~(1 << 9); ++ else ++ rcntl |= (1 << 9); ++ } ++ } else { ++#ifdef FEC_MIIGSK_ENR ++ if (fep->quirks & FEC_QUIRK_USE_GASKET) { ++ u32 cfgr; ++ /* disable the gasket and wait */ ++ writel(0, fep->hwp + FEC_MIIGSK_ENR); ++ while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4) ++ udelay(1); ++ ++ /* ++ * configure the gasket: ++ * RMII, 50 MHz, no loopback, no echo ++ * MII, 25 MHz, no loopback, no echo ++ */ ++ cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII) ++ ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII; ++ if (fep->phy_dev && fep->phy_dev->speed == SPEED_10) ++ cfgr |= BM_MIIGSK_CFGR_FRCONT_10M; ++ writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR); ++ ++ /* re-enable the gasket */ ++ writel(2, fep->hwp + FEC_MIIGSK_ENR); ++ } ++#endif ++ } ++ ++#if !defined(CONFIG_M5272) ++ /* enable pause frame*/ ++ if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) || ++ ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) && ++ fep->phy_dev && fep->phy_dev->pause)) { ++ rcntl |= FEC_ENET_FCE; ++ ++ /* set FIFO threshold parameter to reduce overrun */ ++ writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM); ++ writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL); ++ writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM); ++ writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL); ++ ++ /* OPD */ ++ writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD); ++ } else { ++ rcntl &= ~FEC_ENET_FCE; ++ } ++#endif /* !defined(CONFIG_M5272) */ ++ ++ writel(rcntl, fep->hwp + FEC_R_CNTRL); ++ ++ /* Setup multicast filter. */ ++ set_multicast_list(ndev); ++#ifndef CONFIG_M5272 ++ writel(0, fep->hwp + FEC_HASH_TABLE_HIGH); ++ writel(0, fep->hwp + FEC_HASH_TABLE_LOW); ++#endif ++ ++ if (fep->quirks & FEC_QUIRK_ENET_MAC) { ++ /* enable ENET endian swap */ ++ ecntl |= (1 << 8); ++ /* enable ENET store and forward mode */ ++ writel(1 << 8, fep->hwp + FEC_X_WMRK); ++ } ++ ++ if (fep->bufdesc_ex) ++ ecntl |= (1 << 4); ++ ++#ifndef CONFIG_M5272 ++ /* Enable the MIB statistic event counters */ ++ writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT); ++#endif ++ ++ /* And last, enable the transmit and receive processing */ ++ writel(ecntl, fep->hwp + FEC_ECNTRL); ++ fec_enet_active_rxring(ndev); ++ ++ if (fep->bufdesc_ex) ++ fec_ptp_start_cyclecounter(ndev); ++ ++ /* Enable interrupts we wish to service */ ++ if (fep->link) ++ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); ++ else ++ writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); ++ ++ /* Init the interrupt coalescing */ ++ fec_enet_itr_coal_init(ndev); ++ ++} ++ ++static void ++fec_stop(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct fec_platform_data *pdata = fep->pdev->dev.platform_data; ++ u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8); ++ u32 val; ++ ++ /* We cannot expect a graceful transmit stop without link !!! */ ++ if (fep->link) { ++ writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */ ++ udelay(10); ++ if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA)) ++ netdev_err(ndev, "Graceful transmit stop did not complete!\n"); ++ } ++ ++ /* Whack a reset. We should wait for this. ++ * For i.MX6SX SOC, enet use AXI bus, we use disable MAC ++ * instead of reset MAC itself. ++ */ ++ if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { ++ if (fep->quirks & FEC_QUIRK_HAS_AVB) { ++ writel(0, fep->hwp + FEC_ECNTRL); ++ } else { ++ writel(1, fep->hwp + FEC_ECNTRL); ++ udelay(10); ++ } ++ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); ++ } else { ++ writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK); ++ val = readl(fep->hwp + FEC_ECNTRL); ++ val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP); ++ writel(val, fep->hwp + FEC_ECNTRL); ++ ++ if (pdata && pdata->sleep_mode_enable) ++ pdata->sleep_mode_enable(true); ++ } ++ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); ++ ++ /* We have to keep ENET enabled to have MII interrupt stay working */ ++ if (fep->quirks & FEC_QUIRK_ENET_MAC && ++ !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) { ++ writel(2, fep->hwp + FEC_ECNTRL); ++ writel(rmii_mode, fep->hwp + FEC_R_CNTRL); ++ } ++} ++ ++ ++static void ++fec_timeout(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ fec_dump(ndev); ++ ++ ndev->stats.tx_errors++; ++ ++ schedule_work(&fep->tx_timeout_work); ++} ++ ++static void fec_enet_timeout_work(struct work_struct *work) ++{ ++ struct fec_enet_private *fep = ++ container_of(work, struct fec_enet_private, tx_timeout_work); ++ struct net_device *ndev = fep->netdev; ++ ++ rtnl_lock(); ++ if (netif_device_present(ndev) || netif_running(ndev)) { ++ napi_disable(&fep->napi); ++ netif_tx_lock_bh(ndev); ++ fec_restart(ndev); ++ netif_wake_queue(ndev); ++ netif_tx_unlock_bh(ndev); ++ napi_enable(&fep->napi); ++ } ++ rtnl_unlock(); ++} ++ ++static void ++fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts, ++ struct skb_shared_hwtstamps *hwtstamps) ++{ ++ unsigned long flags; ++ u64 ns; ++ ++ spin_lock_irqsave(&fep->tmreg_lock, flags); ++ ns = timecounter_cyc2time(&fep->tc, ts); ++ spin_unlock_irqrestore(&fep->tmreg_lock, flags); ++ ++ memset(hwtstamps, 0, sizeof(*hwtstamps)); ++ hwtstamps->hwtstamp = ns_to_ktime(ns); ++} ++ ++static void ++fec_enet_tx_queue(struct net_device *ndev, u16 queue_id) ++{ ++ struct fec_enet_private *fep; ++ struct bufdesc *bdp; ++ unsigned short status; ++ struct sk_buff *skb; ++ struct fec_enet_priv_tx_q *txq; ++ struct netdev_queue *nq; ++ int index = 0; ++ int entries_free; ++ ++ fep = netdev_priv(ndev); ++ ++ queue_id = FEC_ENET_GET_QUQUE(queue_id); ++ ++ txq = fep->tx_queue[queue_id]; ++ /* get next bdp of dirty_tx */ ++ nq = netdev_get_tx_queue(ndev, queue_id); ++ bdp = txq->dirty_tx; ++ ++ /* get next bdp of dirty_tx */ ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); ++ ++ while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) { ++ ++ /* current queue is empty */ ++ if (bdp == txq->cur_tx) ++ break; ++ ++ index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep); ++ ++ skb = txq->tx_skbuff[index]; ++ txq->tx_skbuff[index] = NULL; ++ if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr)) ++ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, ++ bdp->cbd_datlen, DMA_TO_DEVICE); ++ bdp->cbd_bufaddr = 0; ++ if (!skb) { ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); ++ continue; ++ } ++ ++ /* Check for errors. */ ++ if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC | ++ BD_ENET_TX_RL | BD_ENET_TX_UN | ++ BD_ENET_TX_CSL)) { ++ ndev->stats.tx_errors++; ++ if (status & BD_ENET_TX_HB) /* No heartbeat */ ++ ndev->stats.tx_heartbeat_errors++; ++ if (status & BD_ENET_TX_LC) /* Late collision */ ++ ndev->stats.tx_window_errors++; ++ if (status & BD_ENET_TX_RL) /* Retrans limit */ ++ ndev->stats.tx_aborted_errors++; ++ if (status & BD_ENET_TX_UN) /* Underrun */ ++ ndev->stats.tx_fifo_errors++; ++ if (status & BD_ENET_TX_CSL) /* Carrier lost */ ++ ndev->stats.tx_carrier_errors++; ++ } else { ++ ndev->stats.tx_packets++; ++ ndev->stats.tx_bytes += skb->len; ++ } ++ ++ if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) && ++ fep->bufdesc_ex) { ++ struct skb_shared_hwtstamps shhwtstamps; ++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ++ ++ fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps); ++ skb_tstamp_tx(skb, &shhwtstamps); ++ } ++ ++ /* Deferred means some collisions occurred during transmit, ++ * but we eventually sent the packet OK. ++ */ ++ if (status & BD_ENET_TX_DEF) ++ ndev->stats.collisions++; ++ ++ /* Free the sk buffer associated with this last transmit */ ++ dev_kfree_skb_any(skb); ++ ++ txq->dirty_tx = bdp; ++ ++ /* Update pointer to next buffer descriptor to be transmitted */ ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); ++ ++ /* Since we have freed up a buffer, the ring is no longer full ++ */ ++ if (netif_queue_stopped(ndev)) { ++ entries_free = fec_enet_get_free_txdesc_num(fep, txq); ++ if (entries_free >= txq->tx_wake_threshold) ++ netif_tx_wake_queue(nq); ++ } ++ } ++ ++ /* ERR006538: Keep the transmitter going */ ++ if (bdp != txq->cur_tx && ++ readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0) ++ writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id)); ++} ++ ++static void ++fec_enet_tx(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ u16 queue_id; ++ /* First process class A queue, then Class B and Best Effort queue */ ++ for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) { ++ clear_bit(queue_id, &fep->work_tx); ++ fec_enet_tx_queue(ndev, queue_id); ++ } ++ return; ++} ++ ++static int ++fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int off; ++ ++ off = ((unsigned long)skb->data) & fep->rx_align; ++ if (off) ++ skb_reserve(skb, fep->rx_align + 1 - off); ++ ++ bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data, ++ FEC_ENET_RX_FRSIZE - fep->rx_align, ++ DMA_FROM_DEVICE); ++ if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) { ++ if (net_ratelimit()) ++ netdev_err(ndev, "Rx DMA memory map failed\n"); ++ return -ENOMEM; ++ } ++ ++ return 0; ++} ++ ++static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb, ++ struct bufdesc *bdp, u32 length, bool swap) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct sk_buff *new_skb; ++ ++ if (length > fep->rx_copybreak) ++ return false; ++ ++ new_skb = netdev_alloc_skb(ndev, length); ++ if (!new_skb) ++ return false; ++ ++ dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr, ++ FEC_ENET_RX_FRSIZE - fep->rx_align, ++ DMA_FROM_DEVICE); ++ if (!swap) ++ memcpy(new_skb->data, (*skb)->data, length); ++ else ++ swap_buffer2(new_skb->data, (*skb)->data, length); ++ *skb = new_skb; ++ ++ return true; ++} ++ ++/* During a receive, the cur_rx points to the current incoming buffer. ++ * When we update through the ring, if the next incoming buffer has ++ * not been given to the system, we just set the empty indicator, ++ * effectively tossing the packet. ++ */ ++static int ++fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct fec_enet_priv_rx_q *rxq; ++ struct bufdesc *bdp; ++ unsigned short status; ++ struct sk_buff *skb_new = NULL; ++ struct sk_buff *skb; ++ ushort pkt_len; ++ __u8 *data; ++ int pkt_received = 0; ++ struct bufdesc_ex *ebdp = NULL; ++ bool vlan_packet_rcvd = false; ++ u16 vlan_tag; ++ int index = 0; ++ bool is_copybreak; ++ bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME; ++ ++#ifdef CONFIG_M532x ++ flush_cache_all(); ++#endif ++ queue_id = FEC_ENET_GET_QUQUE(queue_id); ++ rxq = fep->rx_queue[queue_id]; ++ ++ /* First, grab all of the stats for the incoming packet. ++ * These get messed up if we get called due to a busy condition. ++ */ ++ bdp = rxq->cur_rx; ++ ++ while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) { ++ ++ if (pkt_received >= budget) ++ break; ++ pkt_received++; ++ ++ /* Since we have allocated space to hold a complete frame, ++ * the last indicator should be set. ++ */ ++ if ((status & BD_ENET_RX_LAST) == 0) ++ netdev_err(ndev, "rcv is not +last\n"); ++ ++ writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT); ++ ++ /* Check for errors. */ ++ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | ++ BD_ENET_RX_CR | BD_ENET_RX_OV)) { ++ ndev->stats.rx_errors++; ++ if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { ++ /* Frame too long or too short. */ ++ ndev->stats.rx_length_errors++; ++ } ++ if (status & BD_ENET_RX_NO) /* Frame alignment */ ++ ndev->stats.rx_frame_errors++; ++ if (status & BD_ENET_RX_CR) /* CRC Error */ ++ ndev->stats.rx_crc_errors++; ++ if (status & BD_ENET_RX_OV) /* FIFO overrun */ ++ ndev->stats.rx_fifo_errors++; ++ } ++ ++ /* Report late collisions as a frame error. ++ * On this error, the BD is closed, but we don't know what we ++ * have in the buffer. So, just drop this frame on the floor. ++ */ ++ if (status & BD_ENET_RX_CL) { ++ ndev->stats.rx_errors++; ++ ndev->stats.rx_frame_errors++; ++ goto rx_processing_done; ++ } ++ ++ /* Process the incoming frame. */ ++ ndev->stats.rx_packets++; ++ pkt_len = bdp->cbd_datlen; ++ ndev->stats.rx_bytes += pkt_len; ++ ++ index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep); ++ skb = rxq->rx_skbuff[index]; ++ ++ /* The packet length includes FCS, but we don't want to ++ * include that when passing upstream as it messes up ++ * bridging applications. ++ */ ++ is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4, ++ need_swap); ++ if (!is_copybreak) { ++ skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); ++ if (unlikely(!skb_new)) { ++ ndev->stats.rx_dropped++; ++ goto rx_processing_done; ++ } ++ dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr, ++ FEC_ENET_RX_FRSIZE - fep->rx_align, ++ DMA_FROM_DEVICE); ++ } ++ ++ prefetch(skb->data - NET_IP_ALIGN); ++ skb_put(skb, pkt_len - 4); ++ data = skb->data; ++ if (!is_copybreak && need_swap) ++ swap_buffer(data, pkt_len); ++ ++ /* Extract the enhanced buffer descriptor */ ++ ebdp = NULL; ++ if (fep->bufdesc_ex) ++ ebdp = (struct bufdesc_ex *)bdp; ++ ++ /* If this is a VLAN packet remove the VLAN Tag */ ++ vlan_packet_rcvd = false; ++ if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) && ++ fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) { ++ /* Push and remove the vlan tag */ ++ struct vlan_hdr *vlan_header = ++ (struct vlan_hdr *) (data + ETH_HLEN); ++ vlan_tag = ntohs(vlan_header->h_vlan_TCI); ++ ++ vlan_packet_rcvd = true; ++ ++ memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2); ++ skb_pull(skb, VLAN_HLEN); ++ } ++ ++ skb->protocol = eth_type_trans(skb, ndev); ++ ++ /* Get receive timestamp from the skb */ ++ if (fep->hwts_rx_en && fep->bufdesc_ex) ++ fec_enet_hwtstamp(fep, ebdp->ts, ++ skb_hwtstamps(skb)); ++ ++ if (fep->bufdesc_ex && ++ (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) { ++ if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) { ++ /* don't check it */ ++ skb->ip_summed = CHECKSUM_UNNECESSARY; ++ } else { ++ skb_checksum_none_assert(skb); ++ } ++ } ++ ++ /* Handle received VLAN packets */ ++ if (vlan_packet_rcvd) ++ __vlan_hwaccel_put_tag(skb, ++ htons(ETH_P_8021Q), ++ vlan_tag); ++ ++ napi_gro_receive(&fep->napi, skb); ++ ++ if (is_copybreak) { ++ dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr, ++ FEC_ENET_RX_FRSIZE - fep->rx_align, ++ DMA_FROM_DEVICE); ++ } else { ++ rxq->rx_skbuff[index] = skb_new; ++ fec_enet_new_rxbdp(ndev, bdp, skb_new); ++ } ++ ++rx_processing_done: ++ /* Clear the status flags for this buffer */ ++ status &= ~BD_ENET_RX_STATS; ++ ++ /* Mark the buffer empty */ ++ status |= BD_ENET_RX_EMPTY; ++ bdp->cbd_sc = status; ++ ++ if (fep->bufdesc_ex) { ++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ++ ++ ebdp->cbd_esc = BD_ENET_RX_INT; ++ ebdp->cbd_prot = 0; ++ ebdp->cbd_bdu = 0; ++ } ++ ++ /* Update BD pointer to next entry */ ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue_id); ++ ++ /* Doing this here will keep the FEC running while we process ++ * incoming frames. On a heavily loaded network, we should be ++ * able to keep up at the expense of system resources. ++ */ ++ writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id)); ++ } ++ rxq->cur_rx = bdp; ++ return pkt_received; ++} ++ ++static int ++fec_enet_rx(struct net_device *ndev, int budget) ++{ ++ int pkt_received = 0; ++ u16 queue_id; ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) { ++ clear_bit(queue_id, &fep->work_rx); ++ pkt_received += fec_enet_rx_queue(ndev, ++ budget - pkt_received, queue_id); ++ } ++ return pkt_received; ++} ++ ++static bool ++fec_enet_collect_events(struct fec_enet_private *fep, uint int_events) ++{ ++ if (int_events == 0) ++ return false; ++ ++ if (int_events & FEC_ENET_RXF) ++ fep->work_rx |= (1 << 2); ++ if (int_events & FEC_ENET_RXF_1) ++ fep->work_rx |= (1 << 0); ++ if (int_events & FEC_ENET_RXF_2) ++ fep->work_rx |= (1 << 1); ++ ++ if (int_events & FEC_ENET_TXF) ++ fep->work_tx |= (1 << 2); ++ if (int_events & FEC_ENET_TXF_1) ++ fep->work_tx |= (1 << 0); ++ if (int_events & FEC_ENET_TXF_2) ++ fep->work_tx |= (1 << 1); ++ ++ return true; ++} ++ ++static irqreturn_t ++fec_enet_interrupt(int irq, void *dev_id) ++{ ++ struct net_device *ndev = dev_id; ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ uint int_events; ++ irqreturn_t ret = IRQ_NONE; ++ ++ int_events = readl(fep->hwp + FEC_IEVENT); ++ writel(int_events, fep->hwp + FEC_IEVENT); ++ fec_enet_collect_events(fep, int_events); ++ ++ if ((fep->work_tx || fep->work_rx) && fep->link) { ++ ret = IRQ_HANDLED; ++ ++ if (napi_schedule_prep(&fep->napi)) { ++ /* Disable the NAPI interrupts */ ++ writel(FEC_ENET_MII, fep->hwp + FEC_IMASK); ++ __napi_schedule(&fep->napi); ++ } ++ } ++ ++ if (int_events & FEC_ENET_MII) { ++ ret = IRQ_HANDLED; ++ complete(&fep->mdio_done); ++ } ++ ++ if (fep->ptp_clock) ++ fec_ptp_check_pps_event(fep); ++ ++ return ret; ++} ++ ++static int fec_enet_rx_napi(struct napi_struct *napi, int budget) ++{ ++ struct net_device *ndev = napi->dev; ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int pkts; ++ ++ pkts = fec_enet_rx(ndev, budget); ++ ++ fec_enet_tx(ndev); ++ ++ if (pkts < budget) { ++ napi_complete(napi); ++ writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK); ++ } ++ return pkts; ++} ++ ++/* ------------------------------------------------------------------------- */ ++static void fec_get_mac(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev); ++ unsigned char *iap, tmpaddr[ETH_ALEN]; ++ ++ /* ++ * try to get mac address in following order: ++ * ++ * 1) module parameter via kernel command line in form ++ * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0 ++ */ ++ iap = macaddr; ++ ++ /* ++ * 2) from device tree data ++ */ ++ if (!is_valid_ether_addr(iap)) { ++ struct device_node *np = fep->pdev->dev.of_node; ++ if (np) { ++ const char *mac = of_get_mac_address(np); ++ if (mac) ++ iap = (unsigned char *) mac; ++ } ++ } ++ ++ /* ++ * 3) from flash or fuse (via platform data) ++ */ ++ if (!is_valid_ether_addr(iap)) { ++#ifdef CONFIG_M5272 ++ if (FEC_FLASHMAC) ++ iap = (unsigned char *)FEC_FLASHMAC; ++#else ++ if (pdata) ++ iap = (unsigned char *)&pdata->mac; ++#endif ++ } ++ ++ /* ++ * 4) FEC mac registers set by bootloader ++ */ ++ if (!is_valid_ether_addr(iap)) { ++ *((__be32 *) &tmpaddr[0]) = ++ cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW)); ++ *((__be16 *) &tmpaddr[4]) = ++ cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16); ++ iap = &tmpaddr[0]; ++ } ++ ++ /* ++ * 5) random mac address ++ */ ++ if (!is_valid_ether_addr(iap)) { ++ /* Report it and use a random ethernet address instead */ ++ netdev_err(ndev, "Invalid MAC address: %pM\n", iap); ++ eth_hw_addr_random(ndev); ++ netdev_info(ndev, "Using random MAC address: %pM\n", ++ ndev->dev_addr); ++ return; ++ } ++ ++ memcpy(ndev->dev_addr, iap, ETH_ALEN); ++ ++ /* Adjust MAC if using macaddr */ ++ if (iap == macaddr) ++ ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id; ++} ++ ++/* ------------------------------------------------------------------------- */ ++ ++/* ++ * Phy section ++ */ ++static void fec_enet_adjust_link(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct phy_device *phy_dev = fep->phy_dev; ++ int status_change = 0; ++ ++ /* Prevent a state halted on mii error */ ++ if (fep->mii_timeout && phy_dev->state == PHY_HALTED) { ++ phy_dev->state = PHY_RESUMING; ++ return; ++ } ++ ++ /* ++ * If the netdev is down, or is going down, we're not interested ++ * in link state events, so just mark our idea of the link as down ++ * and ignore the event. ++ */ ++ if (!netif_running(ndev) || !netif_device_present(ndev)) { ++ fep->link = 0; ++ } else if (phy_dev->link) { ++ if (!fep->link) { ++ fep->link = phy_dev->link; ++ status_change = 1; ++ } ++ ++ if (fep->full_duplex != phy_dev->duplex) { ++ fep->full_duplex = phy_dev->duplex; ++ status_change = 1; ++ } ++ ++ if (phy_dev->speed != fep->speed) { ++ fep->speed = phy_dev->speed; ++ status_change = 1; ++ } ++ ++ /* if any of the above changed restart the FEC */ ++ if (status_change) { ++ napi_disable(&fep->napi); ++ netif_tx_lock_bh(ndev); ++ fec_restart(ndev); ++ netif_wake_queue(ndev); ++ netif_tx_unlock_bh(ndev); ++ napi_enable(&fep->napi); ++ } ++ } else { ++ if (fep->link) { ++ napi_disable(&fep->napi); ++ netif_tx_lock_bh(ndev); ++ fec_stop(ndev); ++ netif_tx_unlock_bh(ndev); ++ napi_enable(&fep->napi); ++ fep->link = phy_dev->link; ++ status_change = 1; ++ } ++ } ++ ++ if (status_change) ++ phy_print_status(phy_dev); ++} ++ ++static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum) ++{ ++ struct fec_enet_private *fep = bus->priv; ++ unsigned long time_left; ++ ++ fep->mii_timeout = 0; ++ init_completion(&fep->mdio_done); ++ ++ /* start a read op */ ++ writel(FEC_MMFR_ST | FEC_MMFR_OP_READ | ++ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | ++ FEC_MMFR_TA, fep->hwp + FEC_MII_DATA); ++ ++ /* wait for end of transfer */ ++ time_left = wait_for_completion_timeout(&fep->mdio_done, ++ usecs_to_jiffies(FEC_MII_TIMEOUT)); ++ if (time_left == 0) { ++ fep->mii_timeout = 1; ++ netdev_err(fep->netdev, "MDIO read timeout\n"); ++ return -ETIMEDOUT; ++ } ++ ++ /* return value */ ++ return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA)); ++} ++ ++static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum, ++ u16 value) ++{ ++ struct fec_enet_private *fep = bus->priv; ++ unsigned long time_left; ++ ++ fep->mii_timeout = 0; ++ init_completion(&fep->mdio_done); ++ ++ /* start a write op */ ++ writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE | ++ FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) | ++ FEC_MMFR_TA | FEC_MMFR_DATA(value), ++ fep->hwp + FEC_MII_DATA); ++ ++ /* wait for end of transfer */ ++ time_left = wait_for_completion_timeout(&fep->mdio_done, ++ usecs_to_jiffies(FEC_MII_TIMEOUT)); ++ if (time_left == 0) { ++ fep->mii_timeout = 1; ++ netdev_err(fep->netdev, "MDIO write timeout\n"); ++ return -ETIMEDOUT; ++ } ++ ++ return 0; ++} ++ ++static int fec_enet_clk_enable(struct net_device *ndev, bool enable) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int ret; ++ ++ if (enable) { ++ ret = clk_prepare_enable(fep->clk_ahb); ++ if (ret) ++ return ret; ++ ret = clk_prepare_enable(fep->clk_ipg); ++ if (ret) ++ goto failed_clk_ipg; ++ if (fep->clk_enet_out) { ++ ret = clk_prepare_enable(fep->clk_enet_out); ++ if (ret) ++ goto failed_clk_enet_out; ++ } ++ if (fep->clk_ptp) { ++ mutex_lock(&fep->ptp_clk_mutex); ++ ret = clk_prepare_enable(fep->clk_ptp); ++ if (ret) { ++ mutex_unlock(&fep->ptp_clk_mutex); ++ goto failed_clk_ptp; ++ } else { ++ fep->ptp_clk_on = true; ++ } ++ mutex_unlock(&fep->ptp_clk_mutex); ++ } ++ if (fep->clk_ref) { ++ ret = clk_prepare_enable(fep->clk_ref); ++ if (ret) ++ goto failed_clk_ref; ++ } ++ } else { ++ clk_disable_unprepare(fep->clk_ahb); ++ clk_disable_unprepare(fep->clk_ipg); ++ if (fep->clk_enet_out) ++ clk_disable_unprepare(fep->clk_enet_out); ++ if (fep->clk_ptp) { ++ mutex_lock(&fep->ptp_clk_mutex); ++ clk_disable_unprepare(fep->clk_ptp); ++ fep->ptp_clk_on = false; ++ mutex_unlock(&fep->ptp_clk_mutex); ++ } ++ if (fep->clk_ref) ++ clk_disable_unprepare(fep->clk_ref); ++ } ++ ++ return 0; ++ ++failed_clk_ref: ++ if (fep->clk_ref) ++ clk_disable_unprepare(fep->clk_ref); ++failed_clk_ptp: ++ if (fep->clk_enet_out) ++ clk_disable_unprepare(fep->clk_enet_out); ++failed_clk_enet_out: ++ clk_disable_unprepare(fep->clk_ipg); ++failed_clk_ipg: ++ clk_disable_unprepare(fep->clk_ahb); ++ ++ return ret; ++} ++ ++static int fec_enet_mii_probe(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct phy_device *phy_dev = NULL; ++ char mdio_bus_id[MII_BUS_ID_SIZE]; ++ char phy_name[MII_BUS_ID_SIZE + 3]; ++ int phy_id; ++ int dev_id = fep->dev_id; ++ ++ fep->phy_dev = NULL; ++ ++ if (fep->phy_node) { ++ phy_dev = of_phy_connect(ndev, fep->phy_node, ++ &fec_enet_adjust_link, 0, ++ fep->phy_interface); ++ if (!phy_dev) ++ return -ENODEV; ++ } else { ++ /* check for attached phy */ ++ for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) { ++ if ((fep->mii_bus->phy_mask & (1 << phy_id))) ++ continue; ++ if (fep->mii_bus->phy_map[phy_id] == NULL) ++ continue; ++ if (fep->mii_bus->phy_map[phy_id]->phy_id == 0) ++ continue; ++ if (dev_id--) ++ continue; ++ strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE); ++ break; ++ } ++ ++ if (phy_id >= PHY_MAX_ADDR) { ++ netdev_info(ndev, "no PHY, assuming direct connection to switch\n"); ++ strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE); ++ phy_id = 0; ++ } ++ ++ snprintf(phy_name, sizeof(phy_name), ++ PHY_ID_FMT, mdio_bus_id, phy_id); ++ phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, ++ fep->phy_interface); ++ } ++ ++ if (IS_ERR(phy_dev)) { ++ netdev_err(ndev, "could not attach to PHY\n"); ++ return PTR_ERR(phy_dev); ++ } ++ ++ /* mask with MAC supported features */ ++ if (fep->quirks & FEC_QUIRK_HAS_GBIT) { ++ phy_dev->supported &= PHY_GBIT_FEATURES; ++ phy_dev->supported &= ~SUPPORTED_1000baseT_Half; ++#if !defined(CONFIG_M5272) ++ phy_dev->supported |= SUPPORTED_Pause; ++#endif ++ } ++ else ++ phy_dev->supported &= PHY_BASIC_FEATURES; ++ ++ phy_dev->advertising = phy_dev->supported; ++ ++ fep->phy_dev = phy_dev; ++ fep->link = 0; ++ fep->full_duplex = 0; ++ ++ netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n", ++ fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev), ++ fep->phy_dev->irq); ++ ++ return 0; ++} ++ ++static int fec_enet_mii_init(struct platform_device *pdev) ++{ ++ static struct mii_bus *fec0_mii_bus; ++ struct net_device *ndev = platform_get_drvdata(pdev); ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct device_node *node; ++ int err = -ENXIO, i; ++ u32 mii_speed, holdtime; ++ ++ /* ++ * The i.MX28 dual fec interfaces are not equal. ++ * Here are the differences: ++ * ++ * - fec0 supports MII & RMII modes while fec1 only supports RMII ++ * - fec0 acts as the 1588 time master while fec1 is slave ++ * - external phys can only be configured by fec0 ++ * ++ * That is to say fec1 can not work independently. It only works ++ * when fec0 is working. The reason behind this design is that the ++ * second interface is added primarily for Switch mode. ++ * ++ * Because of the last point above, both phys are attached on fec0 ++ * mdio interface in board design, and need to be configured by ++ * fec0 mii_bus. ++ */ ++ if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) { ++ /* fec1 uses fec0 mii_bus */ ++ if (mii_cnt && fec0_mii_bus) { ++ fep->mii_bus = fec0_mii_bus; ++ mii_cnt++; ++ return 0; ++ } ++ return -ENOENT; ++ } ++ ++ fep->mii_timeout = 0; ++ ++ /* ++ * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed) ++ * ++ * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while ++ * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28 ++ * Reference Manual has an error on this, and gets fixed on i.MX6Q ++ * document. ++ */ ++ mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000); ++ if (fep->quirks & FEC_QUIRK_ENET_MAC) ++ mii_speed--; ++ if (mii_speed > 63) { ++ dev_err(&pdev->dev, ++ "fec clock (%lu) to fast to get right mii speed\n", ++ clk_get_rate(fep->clk_ipg)); ++ err = -EINVAL; ++ goto err_out; ++ } ++ ++ /* ++ * The i.MX28 and i.MX6 types have another filed in the MSCR (aka ++ * MII_SPEED) register that defines the MDIO output hold time. Earlier ++ * versions are RAZ there, so just ignore the difference and write the ++ * register always. ++ * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. ++ * HOLDTIME + 1 is the number of clk cycles the fec is holding the ++ * output. ++ * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). ++ * Given that ceil(clkrate / 5000000) <= 64, the calculation for ++ * holdtime cannot result in a value greater than 3. ++ */ ++ holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1; ++ ++ fep->phy_speed = mii_speed << 1 | holdtime << 8; ++ ++ writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED); ++ ++ fep->mii_bus = mdiobus_alloc(); ++ if (fep->mii_bus == NULL) { ++ err = -ENOMEM; ++ goto err_out; ++ } ++ ++ fep->mii_bus->name = "fec_enet_mii_bus"; ++ fep->mii_bus->read = fec_enet_mdio_read; ++ fep->mii_bus->write = fec_enet_mdio_write; ++ snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x", ++ pdev->name, fep->dev_id + 1); ++ fep->mii_bus->priv = fep; ++ fep->mii_bus->parent = &pdev->dev; ++ ++ fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); ++ if (!fep->mii_bus->irq) { ++ err = -ENOMEM; ++ goto err_out_free_mdiobus; ++ } ++ ++ for (i = 0; i < PHY_MAX_ADDR; i++) ++ fep->mii_bus->irq[i] = PHY_POLL; ++ ++ node = of_get_child_by_name(pdev->dev.of_node, "mdio"); ++ if (node) { ++ err = of_mdiobus_register(fep->mii_bus, node); ++ of_node_put(node); ++ } else { ++ err = mdiobus_register(fep->mii_bus); ++ } ++ ++ if (err) ++ goto err_out_free_mdio_irq; ++ ++ mii_cnt++; ++ ++ /* save fec0 mii_bus */ ++ if (fep->quirks & FEC_QUIRK_SINGLE_MDIO) ++ fec0_mii_bus = fep->mii_bus; ++ ++ return 0; ++ ++err_out_free_mdio_irq: ++ kfree(fep->mii_bus->irq); ++err_out_free_mdiobus: ++ mdiobus_free(fep->mii_bus); ++err_out: ++ return err; ++} ++ ++static void fec_enet_mii_remove(struct fec_enet_private *fep) ++{ ++ if (--mii_cnt == 0) { ++ mdiobus_unregister(fep->mii_bus); ++ kfree(fep->mii_bus->irq); ++ mdiobus_free(fep->mii_bus); ++ } ++} ++ ++static int fec_enet_get_settings(struct net_device *ndev, ++ struct ethtool_cmd *cmd) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct phy_device *phydev = fep->phy_dev; ++ ++ if (!phydev) ++ return -ENODEV; ++ ++ return phy_ethtool_gset(phydev, cmd); ++} ++ ++static int fec_enet_set_settings(struct net_device *ndev, ++ struct ethtool_cmd *cmd) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct phy_device *phydev = fep->phy_dev; ++ ++ if (!phydev) ++ return -ENODEV; ++ ++ return phy_ethtool_sset(phydev, cmd); ++} ++ ++static void fec_enet_get_drvinfo(struct net_device *ndev, ++ struct ethtool_drvinfo *info) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ strlcpy(info->driver, fep->pdev->dev.driver->name, ++ sizeof(info->driver)); ++ strlcpy(info->version, "Revision: 1.0", sizeof(info->version)); ++ strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info)); ++} ++ ++static int fec_enet_get_ts_info(struct net_device *ndev, ++ struct ethtool_ts_info *info) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ if (fep->bufdesc_ex) { ++ ++ info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | ++ SOF_TIMESTAMPING_RX_SOFTWARE | ++ SOF_TIMESTAMPING_SOFTWARE | ++ SOF_TIMESTAMPING_TX_HARDWARE | ++ SOF_TIMESTAMPING_RX_HARDWARE | ++ SOF_TIMESTAMPING_RAW_HARDWARE; ++ if (fep->ptp_clock) ++ info->phc_index = ptp_clock_index(fep->ptp_clock); ++ else ++ info->phc_index = -1; ++ ++ info->tx_types = (1 << HWTSTAMP_TX_OFF) | ++ (1 << HWTSTAMP_TX_ON); ++ ++ info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | ++ (1 << HWTSTAMP_FILTER_ALL); ++ return 0; ++ } else { ++ return ethtool_op_get_ts_info(ndev, info); ++ } ++} ++ ++#if !defined(CONFIG_M5272) ++ ++static void fec_enet_get_pauseparam(struct net_device *ndev, ++ struct ethtool_pauseparam *pause) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0; ++ pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0; ++ pause->rx_pause = pause->tx_pause; ++} ++ ++static int fec_enet_set_pauseparam(struct net_device *ndev, ++ struct ethtool_pauseparam *pause) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ if (!fep->phy_dev) ++ return -ENODEV; ++ ++ if (pause->tx_pause != pause->rx_pause) { ++ netdev_info(ndev, ++ "hardware only support enable/disable both tx and rx"); ++ return -EINVAL; ++ } ++ ++ fep->pause_flag = 0; ++ ++ /* tx pause must be same as rx pause */ ++ fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0; ++ fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0; ++ ++ if (pause->rx_pause || pause->autoneg) { ++ fep->phy_dev->supported |= ADVERTISED_Pause; ++ fep->phy_dev->advertising |= ADVERTISED_Pause; ++ } else { ++ fep->phy_dev->supported &= ~ADVERTISED_Pause; ++ fep->phy_dev->advertising &= ~ADVERTISED_Pause; ++ } ++ ++ if (pause->autoneg) { ++ if (netif_running(ndev)) ++ fec_stop(ndev); ++ phy_start_aneg(fep->phy_dev); ++ } ++ if (netif_running(ndev)) { ++ napi_disable(&fep->napi); ++ netif_tx_lock_bh(ndev); ++ fec_restart(ndev); ++ netif_wake_queue(ndev); ++ netif_tx_unlock_bh(ndev); ++ napi_enable(&fep->napi); ++ } ++ ++ return 0; ++} ++ ++static const struct fec_stat { ++ char name[ETH_GSTRING_LEN]; ++ u16 offset; ++} fec_stats[] = { ++ /* RMON TX */ ++ { "tx_dropped", RMON_T_DROP }, ++ { "tx_packets", RMON_T_PACKETS }, ++ { "tx_broadcast", RMON_T_BC_PKT }, ++ { "tx_multicast", RMON_T_MC_PKT }, ++ { "tx_crc_errors", RMON_T_CRC_ALIGN }, ++ { "tx_undersize", RMON_T_UNDERSIZE }, ++ { "tx_oversize", RMON_T_OVERSIZE }, ++ { "tx_fragment", RMON_T_FRAG }, ++ { "tx_jabber", RMON_T_JAB }, ++ { "tx_collision", RMON_T_COL }, ++ { "tx_64byte", RMON_T_P64 }, ++ { "tx_65to127byte", RMON_T_P65TO127 }, ++ { "tx_128to255byte", RMON_T_P128TO255 }, ++ { "tx_256to511byte", RMON_T_P256TO511 }, ++ { "tx_512to1023byte", RMON_T_P512TO1023 }, ++ { "tx_1024to2047byte", RMON_T_P1024TO2047 }, ++ { "tx_GTE2048byte", RMON_T_P_GTE2048 }, ++ { "tx_octets", RMON_T_OCTETS }, ++ ++ /* IEEE TX */ ++ { "IEEE_tx_drop", IEEE_T_DROP }, ++ { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK }, ++ { "IEEE_tx_1col", IEEE_T_1COL }, ++ { "IEEE_tx_mcol", IEEE_T_MCOL }, ++ { "IEEE_tx_def", IEEE_T_DEF }, ++ { "IEEE_tx_lcol", IEEE_T_LCOL }, ++ { "IEEE_tx_excol", IEEE_T_EXCOL }, ++ { "IEEE_tx_macerr", IEEE_T_MACERR }, ++ { "IEEE_tx_cserr", IEEE_T_CSERR }, ++ { "IEEE_tx_sqe", IEEE_T_SQE }, ++ { "IEEE_tx_fdxfc", IEEE_T_FDXFC }, ++ { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK }, ++ ++ /* RMON RX */ ++ { "rx_packets", RMON_R_PACKETS }, ++ { "rx_broadcast", RMON_R_BC_PKT }, ++ { "rx_multicast", RMON_R_MC_PKT }, ++ { "rx_crc_errors", RMON_R_CRC_ALIGN }, ++ { "rx_undersize", RMON_R_UNDERSIZE }, ++ { "rx_oversize", RMON_R_OVERSIZE }, ++ { "rx_fragment", RMON_R_FRAG }, ++ { "rx_jabber", RMON_R_JAB }, ++ { "rx_64byte", RMON_R_P64 }, ++ { "rx_65to127byte", RMON_R_P65TO127 }, ++ { "rx_128to255byte", RMON_R_P128TO255 }, ++ { "rx_256to511byte", RMON_R_P256TO511 }, ++ { "rx_512to1023byte", RMON_R_P512TO1023 }, ++ { "rx_1024to2047byte", RMON_R_P1024TO2047 }, ++ { "rx_GTE2048byte", RMON_R_P_GTE2048 }, ++ { "rx_octets", RMON_R_OCTETS }, ++ ++ /* IEEE RX */ ++ { "IEEE_rx_drop", IEEE_R_DROP }, ++ { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK }, ++ { "IEEE_rx_crc", IEEE_R_CRC }, ++ { "IEEE_rx_align", IEEE_R_ALIGN }, ++ { "IEEE_rx_macerr", IEEE_R_MACERR }, ++ { "IEEE_rx_fdxfc", IEEE_R_FDXFC }, ++ { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK }, ++}; ++ ++static void fec_enet_get_ethtool_stats(struct net_device *dev, ++ struct ethtool_stats *stats, u64 *data) ++{ ++ struct fec_enet_private *fep = netdev_priv(dev); ++ int i; ++ ++ for (i = 0; i < ARRAY_SIZE(fec_stats); i++) ++ data[i] = readl(fep->hwp + fec_stats[i].offset); ++} ++ ++static void fec_enet_get_strings(struct net_device *netdev, ++ u32 stringset, u8 *data) ++{ ++ int i; ++ switch (stringset) { ++ case ETH_SS_STATS: ++ for (i = 0; i < ARRAY_SIZE(fec_stats); i++) ++ memcpy(data + i * ETH_GSTRING_LEN, ++ fec_stats[i].name, ETH_GSTRING_LEN); ++ break; ++ } ++} ++ ++static int fec_enet_get_sset_count(struct net_device *dev, int sset) ++{ ++ switch (sset) { ++ case ETH_SS_STATS: ++ return ARRAY_SIZE(fec_stats); ++ default: ++ return -EOPNOTSUPP; ++ } ++} ++#endif /* !defined(CONFIG_M5272) */ ++ ++static int fec_enet_nway_reset(struct net_device *dev) ++{ ++ struct fec_enet_private *fep = netdev_priv(dev); ++ struct phy_device *phydev = fep->phy_dev; ++ ++ if (!phydev) ++ return -ENODEV; ++ ++ return genphy_restart_aneg(phydev); ++} ++ ++/* ITR clock source is enet system clock (clk_ahb). ++ * TCTT unit is cycle_ns * 64 cycle ++ * So, the ICTT value = X us / (cycle_ns * 64) ++ */ ++static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ return us * (fep->itr_clk_rate / 64000) / 1000; ++} ++ ++/* Set threshold for interrupt coalescing */ ++static void fec_enet_itr_coal_set(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int rx_itr, tx_itr; ++ ++ if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) ++ return; ++ ++ /* Must be greater than zero to avoid unpredictable behavior */ ++ if (!fep->rx_time_itr || !fep->rx_pkts_itr || ++ !fep->tx_time_itr || !fep->tx_pkts_itr) ++ return; ++ ++ /* Select enet system clock as Interrupt Coalescing ++ * timer Clock Source ++ */ ++ rx_itr = FEC_ITR_CLK_SEL; ++ tx_itr = FEC_ITR_CLK_SEL; ++ ++ /* set ICFT and ICTT */ ++ rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr); ++ rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr)); ++ tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr); ++ tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr)); ++ ++ rx_itr |= FEC_ITR_EN; ++ tx_itr |= FEC_ITR_EN; ++ ++ writel(tx_itr, fep->hwp + FEC_TXIC0); ++ writel(rx_itr, fep->hwp + FEC_RXIC0); ++ writel(tx_itr, fep->hwp + FEC_TXIC1); ++ writel(rx_itr, fep->hwp + FEC_RXIC1); ++ writel(tx_itr, fep->hwp + FEC_TXIC2); ++ writel(rx_itr, fep->hwp + FEC_RXIC2); ++} ++ ++static int ++fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) ++ return -EOPNOTSUPP; ++ ++ ec->rx_coalesce_usecs = fep->rx_time_itr; ++ ec->rx_max_coalesced_frames = fep->rx_pkts_itr; ++ ++ ec->tx_coalesce_usecs = fep->tx_time_itr; ++ ec->tx_max_coalesced_frames = fep->tx_pkts_itr; ++ ++ return 0; ++} ++ ++static int ++fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ unsigned int cycle; ++ ++ if (!(fep->quirks & FEC_QUIRK_HAS_AVB)) ++ return -EOPNOTSUPP; ++ ++ if (ec->rx_max_coalesced_frames > 255) { ++ pr_err("Rx coalesced frames exceed hardware limiation"); ++ return -EINVAL; ++ } ++ ++ if (ec->tx_max_coalesced_frames > 255) { ++ pr_err("Tx coalesced frame exceed hardware limiation"); ++ return -EINVAL; ++ } ++ ++ cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr); ++ if (cycle > 0xFFFF) { ++ pr_err("Rx coalesed usec exceeed hardware limiation"); ++ return -EINVAL; ++ } ++ ++ cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr); ++ if (cycle > 0xFFFF) { ++ pr_err("Rx coalesed usec exceeed hardware limiation"); ++ return -EINVAL; ++ } ++ ++ fep->rx_time_itr = ec->rx_coalesce_usecs; ++ fep->rx_pkts_itr = ec->rx_max_coalesced_frames; ++ ++ fep->tx_time_itr = ec->tx_coalesce_usecs; ++ fep->tx_pkts_itr = ec->tx_max_coalesced_frames; ++ ++ fec_enet_itr_coal_set(ndev); ++ ++ return 0; ++} ++ ++static void fec_enet_itr_coal_init(struct net_device *ndev) ++{ ++ struct ethtool_coalesce ec; ++ ++ ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; ++ ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; ++ ++ ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT; ++ ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT; ++ ++ fec_enet_set_coalesce(ndev, &ec); ++} ++ ++static int fec_enet_get_tunable(struct net_device *netdev, ++ const struct ethtool_tunable *tuna, ++ void *data) ++{ ++ struct fec_enet_private *fep = netdev_priv(netdev); ++ int ret = 0; ++ ++ switch (tuna->id) { ++ case ETHTOOL_RX_COPYBREAK: ++ *(u32 *)data = fep->rx_copybreak; ++ break; ++ default: ++ ret = -EINVAL; ++ break; ++ } ++ ++ return ret; ++} ++ ++static int fec_enet_set_tunable(struct net_device *netdev, ++ const struct ethtool_tunable *tuna, ++ const void *data) ++{ ++ struct fec_enet_private *fep = netdev_priv(netdev); ++ int ret = 0; ++ ++ switch (tuna->id) { ++ case ETHTOOL_RX_COPYBREAK: ++ fep->rx_copybreak = *(u32 *)data; ++ break; ++ default: ++ ret = -EINVAL; ++ break; ++ } ++ ++ return ret; ++} ++ ++static void ++fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) { ++ wol->supported = WAKE_MAGIC; ++ wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0; ++ } else { ++ wol->supported = wol->wolopts = 0; ++ } ++} ++ ++static int ++fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET)) ++ return -EINVAL; ++ ++ if (wol->wolopts & ~WAKE_MAGIC) ++ return -EINVAL; ++ ++ device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC); ++ if (device_may_wakeup(&ndev->dev)) { ++ fep->wol_flag |= FEC_WOL_FLAG_ENABLE; ++ if (fep->irq[0] > 0) ++ enable_irq_wake(fep->irq[0]); ++ } else { ++ fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE); ++ if (fep->irq[0] > 0) ++ disable_irq_wake(fep->irq[0]); ++ } ++ ++ return 0; ++} ++ ++static const struct ethtool_ops fec_enet_ethtool_ops = { ++ .get_settings = fec_enet_get_settings, ++ .set_settings = fec_enet_set_settings, ++ .get_drvinfo = fec_enet_get_drvinfo, ++ .nway_reset = fec_enet_nway_reset, ++ .get_link = ethtool_op_get_link, ++ .get_coalesce = fec_enet_get_coalesce, ++ .set_coalesce = fec_enet_set_coalesce, ++#ifndef CONFIG_M5272 ++ .get_pauseparam = fec_enet_get_pauseparam, ++ .set_pauseparam = fec_enet_set_pauseparam, ++ .get_strings = fec_enet_get_strings, ++ .get_ethtool_stats = fec_enet_get_ethtool_stats, ++ .get_sset_count = fec_enet_get_sset_count, ++#endif ++ .get_ts_info = fec_enet_get_ts_info, ++ .get_tunable = fec_enet_get_tunable, ++ .set_tunable = fec_enet_set_tunable, ++ .get_wol = fec_enet_get_wol, ++ .set_wol = fec_enet_set_wol, ++}; ++ ++static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct phy_device *phydev = fep->phy_dev; ++ ++ if (!netif_running(ndev)) ++ return -EINVAL; ++ ++ if (!phydev) ++ return -ENODEV; ++ ++ if (fep->bufdesc_ex) { ++ if (cmd == SIOCSHWTSTAMP) ++ return fec_ptp_set(ndev, rq); ++ if (cmd == SIOCGHWTSTAMP) ++ return fec_ptp_get(ndev, rq); ++ } ++ ++ return phy_mii_ioctl(phydev, rq, cmd); ++} ++ ++static void fec_enet_free_buffers(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ unsigned int i; ++ struct sk_buff *skb; ++ struct bufdesc *bdp; ++ struct fec_enet_priv_tx_q *txq; ++ struct fec_enet_priv_rx_q *rxq; ++ unsigned int q; ++ ++ for (q = 0; q < fep->num_rx_queues; q++) { ++ rxq = fep->rx_queue[q]; ++ bdp = rxq->rx_bd_base; ++ for (i = 0; i < rxq->rx_ring_size; i++) { ++ skb = rxq->rx_skbuff[i]; ++ rxq->rx_skbuff[i] = NULL; ++ if (skb) { ++ dma_unmap_single(&fep->pdev->dev, ++ bdp->cbd_bufaddr, ++ FEC_ENET_RX_FRSIZE - fep->rx_align, ++ DMA_FROM_DEVICE); ++ dev_kfree_skb(skb); ++ } ++ bdp = fec_enet_get_nextdesc(bdp, fep, q); ++ } ++ } ++ ++ for (q = 0; q < fep->num_tx_queues; q++) { ++ txq = fep->tx_queue[q]; ++ bdp = txq->tx_bd_base; ++ for (i = 0; i < txq->tx_ring_size; i++) { ++ kfree(txq->tx_bounce[i]); ++ txq->tx_bounce[i] = NULL; ++ skb = txq->tx_skbuff[i]; ++ txq->tx_skbuff[i] = NULL; ++ dev_kfree_skb(skb); ++ } ++ } ++} ++ ++static void fec_enet_free_queue(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int i; ++ struct fec_enet_priv_tx_q *txq; ++ ++ for (i = 0; i < fep->num_tx_queues; i++) ++ if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) { ++ txq = fep->tx_queue[i]; ++ dma_free_coherent(NULL, ++ txq->tx_ring_size * TSO_HEADER_SIZE, ++ txq->tso_hdrs, ++ txq->tso_hdrs_dma); ++ } ++ ++ for (i = 0; i < fep->num_rx_queues; i++) ++ kfree(fep->rx_queue[i]); ++ for (i = 0; i < fep->num_tx_queues; i++) ++ kfree(fep->tx_queue[i]); ++} ++ ++static int fec_enet_alloc_queue(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int i; ++ int ret = 0; ++ struct fec_enet_priv_tx_q *txq; ++ ++ for (i = 0; i < fep->num_tx_queues; i++) { ++ txq = kzalloc(sizeof(*txq), GFP_KERNEL); ++ if (!txq) { ++ ret = -ENOMEM; ++ goto alloc_failed; ++ } ++ ++ fep->tx_queue[i] = txq; ++ txq->tx_ring_size = TX_RING_SIZE; ++ fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size; ++ ++ txq->tx_stop_threshold = FEC_MAX_SKB_DESCS; ++ txq->tx_wake_threshold = ++ (txq->tx_ring_size - txq->tx_stop_threshold) / 2; ++ ++ txq->tso_hdrs = dma_alloc_coherent(NULL, ++ txq->tx_ring_size * TSO_HEADER_SIZE, ++ &txq->tso_hdrs_dma, ++ GFP_KERNEL); ++ if (!txq->tso_hdrs) { ++ ret = -ENOMEM; ++ goto alloc_failed; ++ } ++ } ++ ++ for (i = 0; i < fep->num_rx_queues; i++) { ++ fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]), ++ GFP_KERNEL); ++ if (!fep->rx_queue[i]) { ++ ret = -ENOMEM; ++ goto alloc_failed; ++ } ++ ++ fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE; ++ fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size; ++ } ++ return ret; ++ ++alloc_failed: ++ fec_enet_free_queue(ndev); ++ return ret; ++} ++ ++static int ++fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ unsigned int i; ++ struct sk_buff *skb; ++ struct bufdesc *bdp; ++ struct fec_enet_priv_rx_q *rxq; ++ ++ rxq = fep->rx_queue[queue]; ++ bdp = rxq->rx_bd_base; ++ for (i = 0; i < rxq->rx_ring_size; i++) { ++ skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE); ++ if (!skb) ++ goto err_alloc; ++ ++ if (fec_enet_new_rxbdp(ndev, bdp, skb)) { ++ dev_kfree_skb(skb); ++ goto err_alloc; ++ } ++ ++ rxq->rx_skbuff[i] = skb; ++ bdp->cbd_sc = BD_ENET_RX_EMPTY; ++ ++ if (fep->bufdesc_ex) { ++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ++ ebdp->cbd_esc = BD_ENET_RX_INT; ++ } ++ ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue); ++ } ++ ++ /* Set the last buffer to wrap. */ ++ bdp = fec_enet_get_prevdesc(bdp, fep, queue); ++ bdp->cbd_sc |= BD_SC_WRAP; ++ return 0; ++ ++ err_alloc: ++ fec_enet_free_buffers(ndev); ++ return -ENOMEM; ++} ++ ++static int ++fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ unsigned int i; ++ struct bufdesc *bdp; ++ struct fec_enet_priv_tx_q *txq; ++ ++ txq = fep->tx_queue[queue]; ++ bdp = txq->tx_bd_base; ++ for (i = 0; i < txq->tx_ring_size; i++) { ++ txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL); ++ if (!txq->tx_bounce[i]) ++ goto err_alloc; ++ ++ bdp->cbd_sc = 0; ++ bdp->cbd_bufaddr = 0; ++ ++ if (fep->bufdesc_ex) { ++ struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp; ++ ebdp->cbd_esc = BD_ENET_TX_INT; ++ } ++ ++ bdp = fec_enet_get_nextdesc(bdp, fep, queue); ++ } ++ ++ /* Set the last buffer to wrap. */ ++ bdp = fec_enet_get_prevdesc(bdp, fep, queue); ++ bdp->cbd_sc |= BD_SC_WRAP; ++ ++ return 0; ++ ++ err_alloc: ++ fec_enet_free_buffers(ndev); ++ return -ENOMEM; ++} ++ ++static int fec_enet_alloc_buffers(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ unsigned int i; ++ ++ for (i = 0; i < fep->num_rx_queues; i++) ++ if (fec_enet_alloc_rxq_buffers(ndev, i)) ++ return -ENOMEM; ++ ++ for (i = 0; i < fep->num_tx_queues; i++) ++ if (fec_enet_alloc_txq_buffers(ndev, i)) ++ return -ENOMEM; ++ return 0; ++} ++ ++static int ++fec_enet_open(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ int ret; ++ ++ pinctrl_pm_select_default_state(&fep->pdev->dev); ++ ret = fec_enet_clk_enable(ndev, true); ++ if (ret) ++ return ret; ++ ++ /* I should reset the ring buffers here, but I don't yet know ++ * a simple way to do that. ++ */ ++ ++ ret = fec_enet_alloc_buffers(ndev); ++ if (ret) ++ goto err_enet_alloc; ++ ++ /* Probe and connect to PHY when open the interface */ ++ ret = fec_enet_mii_probe(ndev); ++ if (ret) ++ goto err_enet_mii_probe; ++ ++ fec_restart(ndev); ++ napi_enable(&fep->napi); ++ phy_start(fep->phy_dev); ++ netif_tx_start_all_queues(ndev); ++ ++ device_set_wakeup_enable(&ndev->dev, fep->wol_flag & ++ FEC_WOL_FLAG_ENABLE); ++ ++ return 0; ++ ++err_enet_mii_probe: ++ fec_enet_free_buffers(ndev); ++err_enet_alloc: ++ fec_enet_clk_enable(ndev, false); ++ pinctrl_pm_select_sleep_state(&fep->pdev->dev); ++ return ret; ++} ++ ++static int ++fec_enet_close(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ phy_stop(fep->phy_dev); ++ ++ if (netif_device_present(ndev)) { ++ napi_disable(&fep->napi); ++ netif_tx_disable(ndev); ++ fec_stop(ndev); ++ } ++ ++ phy_disconnect(fep->phy_dev); ++ fep->phy_dev = NULL; ++ ++ fec_enet_clk_enable(ndev, false); ++ pinctrl_pm_select_sleep_state(&fep->pdev->dev); ++ fec_enet_free_buffers(ndev); ++ ++ return 0; ++} ++ ++/* Set or clear the multicast filter for this adaptor. ++ * Skeleton taken from sunlance driver. ++ * The CPM Ethernet implementation allows Multicast as well as individual ++ * MAC address filtering. Some of the drivers check to make sure it is ++ * a group multicast address, and discard those that are not. I guess I ++ * will do the same for now, but just remove the test if you want ++ * individual filtering as well (do the upper net layers want or support ++ * this kind of feature?). ++ */ ++ ++#define HASH_BITS 6 /* #bits in hash */ ++#define CRC32_POLY 0xEDB88320 ++ ++static void set_multicast_list(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct netdev_hw_addr *ha; ++ unsigned int i, bit, data, crc, tmp; ++ unsigned char hash; ++ ++ if (ndev->flags & IFF_PROMISC) { ++ tmp = readl(fep->hwp + FEC_R_CNTRL); ++ tmp |= 0x8; ++ writel(tmp, fep->hwp + FEC_R_CNTRL); ++ return; ++ } ++ ++ tmp = readl(fep->hwp + FEC_R_CNTRL); ++ tmp &= ~0x8; ++ writel(tmp, fep->hwp + FEC_R_CNTRL); ++ ++ if (ndev->flags & IFF_ALLMULTI) { ++ /* Catch all multicast addresses, so set the ++ * filter to all 1's ++ */ ++ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); ++ writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW); ++ ++ return; ++ } ++ ++ /* Clear filter and add the addresses in hash register ++ */ ++ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); ++ writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW); ++ ++ netdev_for_each_mc_addr(ha, ndev) { ++ /* calculate crc32 value of mac address */ ++ crc = 0xffffffff; ++ ++ for (i = 0; i < ndev->addr_len; i++) { ++ data = ha->addr[i]; ++ for (bit = 0; bit < 8; bit++, data >>= 1) { ++ crc = (crc >> 1) ^ ++ (((crc ^ data) & 1) ? CRC32_POLY : 0); ++ } ++ } ++ ++ /* only upper 6 bits (HASH_BITS) are used ++ * which point to specific bit in he hash registers ++ */ ++ hash = (crc >> (32 - HASH_BITS)) & 0x3f; ++ ++ if (hash > 31) { ++ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH); ++ tmp |= 1 << (hash - 32); ++ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH); ++ } else { ++ tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW); ++ tmp |= 1 << hash; ++ writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW); ++ } ++ } ++} ++ ++/* Set a MAC change in hardware. */ ++static int ++fec_set_mac_address(struct net_device *ndev, void *p) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct sockaddr *addr = p; ++ ++ if (addr) { ++ if (!is_valid_ether_addr(addr->sa_data)) ++ return -EADDRNOTAVAIL; ++ memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len); ++ } ++ ++ writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) | ++ (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24), ++ fep->hwp + FEC_ADDR_LOW); ++ writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24), ++ fep->hwp + FEC_ADDR_HIGH); ++ return 0; ++} ++ ++#ifdef CONFIG_NET_POLL_CONTROLLER ++/** ++ * fec_poll_controller - FEC Poll controller function ++ * @dev: The FEC network adapter ++ * ++ * Polled functionality used by netconsole and others in non interrupt mode ++ * ++ */ ++static void fec_poll_controller(struct net_device *dev) ++{ ++ int i; ++ struct fec_enet_private *fep = netdev_priv(dev); ++ ++ for (i = 0; i < FEC_IRQ_NUM; i++) { ++ if (fep->irq[i] > 0) { ++ disable_irq(fep->irq[i]); ++ fec_enet_interrupt(fep->irq[i], dev); ++ enable_irq(fep->irq[i]); ++ } ++ } ++} ++#endif ++ ++#define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM ++static inline void fec_enet_set_netdev_features(struct net_device *netdev, ++ netdev_features_t features) ++{ ++ struct fec_enet_private *fep = netdev_priv(netdev); ++ netdev_features_t changed = features ^ netdev->features; ++ ++ netdev->features = features; ++ ++ /* Receive checksum has been changed */ ++ if (changed & NETIF_F_RXCSUM) { ++ if (features & NETIF_F_RXCSUM) ++ fep->csum_flags |= FLAG_RX_CSUM_ENABLED; ++ else ++ fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED; ++ } ++} ++ ++static int fec_set_features(struct net_device *netdev, ++ netdev_features_t features) ++{ ++ struct fec_enet_private *fep = netdev_priv(netdev); ++ netdev_features_t changed = features ^ netdev->features; ++ ++ if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) { ++ napi_disable(&fep->napi); ++ netif_tx_lock_bh(netdev); ++ fec_stop(netdev); ++ fec_enet_set_netdev_features(netdev, features); ++ fec_restart(netdev); ++ netif_tx_wake_all_queues(netdev); ++ netif_tx_unlock_bh(netdev); ++ napi_enable(&fep->napi); ++ } else { ++ fec_enet_set_netdev_features(netdev, features); ++ } ++ ++ return 0; ++} ++ ++static const struct net_device_ops fec_netdev_ops = { ++ .ndo_open = fec_enet_open, ++ .ndo_stop = fec_enet_close, ++ .ndo_start_xmit = fec_enet_start_xmit, ++ .ndo_set_rx_mode = set_multicast_list, ++ .ndo_change_mtu = eth_change_mtu, ++ .ndo_validate_addr = eth_validate_addr, ++ .ndo_tx_timeout = fec_timeout, ++ .ndo_set_mac_address = fec_set_mac_address, ++ .ndo_do_ioctl = fec_enet_ioctl, ++#ifdef CONFIG_NET_POLL_CONTROLLER ++ .ndo_poll_controller = fec_poll_controller, ++#endif ++ .ndo_set_features = fec_set_features, ++}; ++ ++ /* ++ * XXX: We need to clean up on failure exits here. ++ * ++ */ ++static int fec_enet_init(struct net_device *ndev) ++{ ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct fec_enet_priv_tx_q *txq; ++ struct fec_enet_priv_rx_q *rxq; ++ struct bufdesc *cbd_base; ++ dma_addr_t bd_dma; ++ int bd_size; ++ unsigned int i; ++ ++#if defined(CONFIG_ARM) ++ fep->rx_align = 0xf; ++ fep->tx_align = 0xf; ++#else ++ fep->rx_align = 0x3; ++ fep->tx_align = 0x3; ++#endif ++ ++ fec_enet_alloc_queue(ndev); ++ ++ if (fep->bufdesc_ex) ++ fep->bufdesc_size = sizeof(struct bufdesc_ex); ++ else ++ fep->bufdesc_size = sizeof(struct bufdesc); ++ bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * ++ fep->bufdesc_size; ++ ++ /* Allocate memory for buffer descriptors. */ ++ cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma, ++ GFP_KERNEL); ++ if (!cbd_base) { ++ return -ENOMEM; ++ } ++ ++ memset(cbd_base, 0, bd_size); ++ ++ /* Get the Ethernet address */ ++ fec_get_mac(ndev); ++ /* make sure MAC we just acquired is programmed into the hw */ ++ fec_set_mac_address(ndev, NULL); ++ ++ /* Set receive and transmit descriptor base. */ ++ for (i = 0; i < fep->num_rx_queues; i++) { ++ rxq = fep->rx_queue[i]; ++ rxq->index = i; ++ rxq->rx_bd_base = (struct bufdesc *)cbd_base; ++ rxq->bd_dma = bd_dma; ++ if (fep->bufdesc_ex) { ++ bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size; ++ cbd_base = (struct bufdesc *) ++ (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size); ++ } else { ++ bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size; ++ cbd_base += rxq->rx_ring_size; ++ } ++ } ++ ++ for (i = 0; i < fep->num_tx_queues; i++) { ++ txq = fep->tx_queue[i]; ++ txq->index = i; ++ txq->tx_bd_base = (struct bufdesc *)cbd_base; ++ txq->bd_dma = bd_dma; ++ if (fep->bufdesc_ex) { ++ bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size; ++ cbd_base = (struct bufdesc *) ++ (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size); ++ } else { ++ bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size; ++ cbd_base += txq->tx_ring_size; ++ } ++ } ++ ++ ++ /* The FEC Ethernet specific entries in the device structure */ ++ ndev->watchdog_timeo = TX_TIMEOUT; ++ ndev->netdev_ops = &fec_netdev_ops; ++ ndev->ethtool_ops = &fec_enet_ethtool_ops; ++ ++ writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK); ++ netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT); ++ ++ if (fep->quirks & FEC_QUIRK_HAS_VLAN) ++ /* enable hw VLAN support */ ++ ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; ++ ++ if (fep->quirks & FEC_QUIRK_HAS_CSUM) { ++ ndev->gso_max_segs = FEC_MAX_TSO_SEGS; ++ ++ /* enable hw accelerator */ ++ ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM ++ | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO); ++ fep->csum_flags |= FLAG_RX_CSUM_ENABLED; ++ } ++ ++ if (fep->quirks & FEC_QUIRK_HAS_AVB) { ++ fep->tx_align = 0; ++ fep->rx_align = 0x3f; ++ } ++ ++ ndev->hw_features = ndev->features; ++ ++ fec_restart(ndev); ++ ++ return 0; ++} ++ ++#ifdef CONFIG_OF ++static void fec_reset_phy(struct platform_device *pdev) ++{ ++ int err, phy_reset; ++ int msec = 1; ++ struct device_node *np = pdev->dev.of_node; ++ ++ if (!np) ++ return; ++ ++ of_property_read_u32(np, "phy-reset-duration", &msec); ++ /* A sane reset duration should not be longer than 1s */ ++ if (msec > 1000) ++ msec = 1; ++ ++ phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0); ++ if (!gpio_is_valid(phy_reset)) ++ return; ++ ++ err = devm_gpio_request_one(&pdev->dev, phy_reset, ++ GPIOF_OUT_INIT_LOW, "phy-reset"); ++ if (err) { ++ dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err); ++ return; ++ } ++ msleep(msec); ++ gpio_set_value(phy_reset, 1); ++} ++#else /* CONFIG_OF */ ++static void fec_reset_phy(struct platform_device *pdev) ++{ ++ /* ++ * In case of platform probe, the reset has been done ++ * by machine code. ++ */ ++} ++#endif /* CONFIG_OF */ ++ ++static void ++fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx) ++{ ++ struct device_node *np = pdev->dev.of_node; ++ int err; ++ ++ *num_tx = *num_rx = 1; ++ ++ if (!np || !of_device_is_available(np)) ++ return; ++ ++ /* parse the num of tx and rx queues */ ++ err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx); ++ if (err) ++ *num_tx = 1; ++ ++ err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx); ++ if (err) ++ *num_rx = 1; ++ ++ if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) { ++ dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n", ++ *num_tx); ++ *num_tx = 1; ++ return; ++ } ++ ++ if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) { ++ dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n", ++ *num_rx); ++ *num_rx = 1; ++ return; ++ } ++ ++} ++ ++static int ++fec_probe(struct platform_device *pdev) ++{ ++ struct fec_enet_private *fep; ++ struct fec_platform_data *pdata; ++ struct net_device *ndev; ++ int i, irq, ret = 0; ++ struct resource *r; ++ const struct of_device_id *of_id; ++ static int dev_id; ++ struct device_node *np = pdev->dev.of_node, *phy_node; ++ int num_tx_qs; ++ int num_rx_qs; ++ ++ fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs); ++ ++ /* Init network device */ ++ ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private), ++ num_tx_qs, num_rx_qs); ++ if (!ndev) ++ return -ENOMEM; ++ ++ SET_NETDEV_DEV(ndev, &pdev->dev); ++ ++ /* setup board info structure */ ++ fep = netdev_priv(ndev); ++ ++ of_id = of_match_device(fec_dt_ids, &pdev->dev); ++ if (of_id) ++ pdev->id_entry = of_id->data; ++ fep->quirks = pdev->id_entry->driver_data; ++ ++ fep->netdev = ndev; ++ fep->num_rx_queues = num_rx_qs; ++ fep->num_tx_queues = num_tx_qs; ++ ++#if !defined(CONFIG_M5272) ++ /* default enable pause frame auto negotiation */ ++ if (fep->quirks & FEC_QUIRK_HAS_GBIT) ++ fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG; ++#endif ++ ++ /* Select default pin state */ ++ pinctrl_pm_select_default_state(&pdev->dev); ++ ++ r = platform_get_resource(pdev, IORESOURCE_MEM, 0); ++ fep->hwp = devm_ioremap_resource(&pdev->dev, r); ++ if (IS_ERR(fep->hwp)) { ++ ret = PTR_ERR(fep->hwp); ++ goto failed_ioremap; ++ } ++ ++ fep->pdev = pdev; ++ fep->dev_id = dev_id++; ++ ++ platform_set_drvdata(pdev, ndev); ++ ++ if (of_get_property(np, "fsl,magic-packet", NULL)) ++ fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET; ++ ++ phy_node = of_parse_phandle(np, "phy-handle", 0); ++ if (!phy_node && of_phy_is_fixed_link(np)) { ++ ret = of_phy_register_fixed_link(np); ++ if (ret < 0) { ++ dev_err(&pdev->dev, ++ "broken fixed-link specification\n"); ++ goto failed_phy; ++ } ++ phy_node = of_node_get(np); ++ } ++ fep->phy_node = phy_node; ++ ++ ret = of_get_phy_mode(pdev->dev.of_node); ++ if (ret < 0) { ++ pdata = dev_get_platdata(&pdev->dev); ++ if (pdata) ++ fep->phy_interface = pdata->phy; ++ else ++ fep->phy_interface = PHY_INTERFACE_MODE_MII; ++ } else { ++ fep->phy_interface = ret; ++ } ++ ++ fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg"); ++ if (IS_ERR(fep->clk_ipg)) { ++ ret = PTR_ERR(fep->clk_ipg); ++ goto failed_clk; ++ } ++ ++ fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); ++ if (IS_ERR(fep->clk_ahb)) { ++ ret = PTR_ERR(fep->clk_ahb); ++ goto failed_clk; ++ } ++ ++ fep->itr_clk_rate = clk_get_rate(fep->clk_ahb); ++ ++ /* enet_out is optional, depends on board */ ++ fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out"); ++ if (IS_ERR(fep->clk_enet_out)) ++ fep->clk_enet_out = NULL; ++ ++ fep->ptp_clk_on = false; ++ mutex_init(&fep->ptp_clk_mutex); ++ ++ /* clk_ref is optional, depends on board */ ++ fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref"); ++ if (IS_ERR(fep->clk_ref)) ++ fep->clk_ref = NULL; ++ ++ fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX; ++ fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp"); ++ if (IS_ERR(fep->clk_ptp)) { ++ fep->clk_ptp = NULL; ++ fep->bufdesc_ex = false; ++ } ++ ++ ret = fec_enet_clk_enable(ndev, true); ++ if (ret) ++ goto failed_clk; ++ ++ fep->reg_phy = devm_regulator_get(&pdev->dev, "phy"); ++ if (!IS_ERR(fep->reg_phy)) { ++ ret = regulator_enable(fep->reg_phy); ++ if (ret) { ++ dev_err(&pdev->dev, ++ "Failed to enable phy regulator: %d\n", ret); ++ goto failed_regulator; ++ } ++ } else { ++ fep->reg_phy = NULL; ++ } ++ ++ fec_reset_phy(pdev); ++ ++ if (fep->bufdesc_ex) ++ fec_ptp_init(pdev); ++ ++ ret = fec_enet_init(ndev); ++ if (ret) ++ goto failed_init; ++ ++ for (i = 0; i < FEC_IRQ_NUM; i++) { ++ irq = platform_get_irq(pdev, i); ++ if (irq < 0) { ++ if (i) ++ break; ++ ret = irq; ++ goto failed_irq; ++ } ++ ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt, ++ 0, pdev->name, ndev); ++ if (ret) ++ goto failed_irq; ++ ++ fep->irq[i] = irq; ++ } ++ ++ init_completion(&fep->mdio_done); ++ ret = fec_enet_mii_init(pdev); ++ if (ret) ++ goto failed_mii_init; ++ ++ /* Carrier starts down, phylib will bring it up */ ++ netif_carrier_off(ndev); ++ fec_enet_clk_enable(ndev, false); ++ pinctrl_pm_select_sleep_state(&pdev->dev); ++ ++ ret = register_netdev(ndev); ++ if (ret) ++ goto failed_register; ++ ++ device_init_wakeup(&ndev->dev, fep->wol_flag & ++ FEC_WOL_HAS_MAGIC_PACKET); ++ ++ if (fep->bufdesc_ex && fep->ptp_clock) ++ netdev_info(ndev, "registered PHC device %d\n", fep->dev_id); ++ ++ fep->rx_copybreak = COPYBREAK_DEFAULT; ++ INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work); ++ return 0; ++ ++failed_register: ++ fec_enet_mii_remove(fep); ++failed_mii_init: ++failed_irq: ++failed_init: ++ if (fep->reg_phy) ++ regulator_disable(fep->reg_phy); ++failed_regulator: ++ fec_enet_clk_enable(ndev, false); ++failed_clk: ++failed_phy: ++ of_node_put(phy_node); ++failed_ioremap: ++ free_netdev(ndev); ++ ++ return ret; ++} ++ ++static int ++fec_drv_remove(struct platform_device *pdev) ++{ ++ struct net_device *ndev = platform_get_drvdata(pdev); ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ cancel_delayed_work_sync(&fep->time_keep); ++ cancel_work_sync(&fep->tx_timeout_work); ++ unregister_netdev(ndev); ++ fec_enet_mii_remove(fep); ++ if (fep->reg_phy) ++ regulator_disable(fep->reg_phy); ++ if (fep->ptp_clock) ++ ptp_clock_unregister(fep->ptp_clock); ++ of_node_put(fep->phy_node); ++ free_netdev(ndev); ++ ++ return 0; ++} ++ ++static int __maybe_unused fec_suspend(struct device *dev) ++{ ++ struct net_device *ndev = dev_get_drvdata(dev); ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ ++ rtnl_lock(); ++ if (netif_running(ndev)) { ++ if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) ++ fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON; ++ phy_stop(fep->phy_dev); ++ napi_disable(&fep->napi); ++ netif_tx_lock_bh(ndev); ++ netif_device_detach(ndev); ++ netif_tx_unlock_bh(ndev); ++ fec_stop(ndev); ++ fec_enet_clk_enable(ndev, false); ++ if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) ++ pinctrl_pm_select_sleep_state(&fep->pdev->dev); ++ } ++ rtnl_unlock(); ++ ++ if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) ++ regulator_disable(fep->reg_phy); ++ ++ /* SOC supply clock to phy, when clock is disabled, phy link down ++ * SOC control phy regulator, when regulator is disabled, phy link down ++ */ ++ if (fep->clk_enet_out || fep->reg_phy) ++ fep->link = 0; ++ ++ return 0; ++} ++ ++static int __maybe_unused fec_resume(struct device *dev) ++{ ++ struct net_device *ndev = dev_get_drvdata(dev); ++ struct fec_enet_private *fep = netdev_priv(ndev); ++ struct fec_platform_data *pdata = fep->pdev->dev.platform_data; ++ int ret; ++ int val; ++ ++ if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) { ++ ret = regulator_enable(fep->reg_phy); ++ if (ret) ++ return ret; ++ } ++ ++ rtnl_lock(); ++ if (netif_running(ndev)) { ++ ret = fec_enet_clk_enable(ndev, true); ++ if (ret) { ++ rtnl_unlock(); ++ goto failed_clk; ++ } ++ if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) { ++ if (pdata && pdata->sleep_mode_enable) ++ pdata->sleep_mode_enable(false); ++ val = readl(fep->hwp + FEC_ECNTRL); ++ val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP); ++ writel(val, fep->hwp + FEC_ECNTRL); ++ fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON; ++ } else { ++ pinctrl_pm_select_default_state(&fep->pdev->dev); ++ } ++ fec_restart(ndev); ++ netif_tx_lock_bh(ndev); ++ netif_device_attach(ndev); ++ netif_tx_unlock_bh(ndev); ++ napi_enable(&fep->napi); ++ phy_start(fep->phy_dev); ++ } ++ rtnl_unlock(); ++ ++ return 0; ++ ++failed_clk: ++ if (fep->reg_phy) ++ regulator_disable(fep->reg_phy); ++ return ret; ++} ++ ++static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume); ++ ++static struct platform_driver fec_driver = { ++ .driver = { ++ .name = DRIVER_NAME, ++ .pm = &fec_pm_ops, ++ .of_match_table = fec_dt_ids, ++ }, ++ .id_table = fec_devtype, ++ .probe = fec_probe, ++ .remove = fec_drv_remove, ++}; ++ ++module_platform_driver(fec_driver); ++ ++MODULE_ALIAS("platform:"DRIVER_NAME); ++MODULE_LICENSE("GPL"); |