/* Thread-local storage handling in the ELF dynamic linker. Generic version. Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. This file is part of the GNU C Library. The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The GNU C Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the GNU C Library; if not, see <http://www.gnu.org/licenses/>. */ #if defined SHARED || defined NOT_IN_libc # error in buildsystem: This file is for libc.a #endif #include <libintl.h> #include <signal.h> #include <stdlib.h> #include <sys/param.h> #include <tls.h> #include <dl-tls.h> #include <ldsodefs.h> #include <dl-elf.h> #include <dl-hash.h> #include <assert.h> #include <link.h> #include <string.h> #include <unistd.h> #include <stdio.h> #define _dl_malloc malloc #define _dl_memset memset #define _dl_mempcpy mempcpy #define _dl_dprintf fprintf #define _dl_debug_file stderr #define _dl_exit exit /* Amount of excess space to allocate in the static TLS area to allow dynamic loading of modules defining IE-model TLS data. */ # define TLS_STATIC_SURPLUS 64 + DL_NNS * 100 /* Value used for dtv entries for which the allocation is delayed. */ # define TLS_DTV_UNALLOCATED ((void *) -1l) /* Out-of-memory handler. */ # ifdef SHARED static void __attribute__ ((__noreturn__)) oom (void) { do { _dl_dprintf (_dl_debug_file, "cannot allocate thread-local memory: ABORT\n"); _dl_exit (127); } while (1); } # endif void *_dl_memalign(size_t alignment, size_t bytes); void *_dl_memalign(size_t alignment, size_t bytes) { return _dl_malloc(bytes); } /* * We are trying to perform a static TLS relocation in MAP, but it was * dynamically loaded. This can only work if there is enough surplus in * the static TLS area already allocated for each running thread. If this * object's TLS segment is too big to fit, we fail. If it fits, * we set MAP->l_tls_offset and return. * This function intentionally does not return any value but signals error * directly, as static TLS should be rare and code handling it should * not be inlined as much as possible. */ void internal_function __attribute_noinline__ _dl_allocate_static_tls (struct link_map *map) { /* If the alignment requirements are too high fail. */ if (map->l_tls_align > _dl_tls_static_align) { fail: _dl_dprintf(_dl_debug_file, "cannot allocate memory in static TLS block"); _dl_exit(30); } # if defined(TLS_TCB_AT_TP) size_t freebytes; size_t n; size_t blsize; freebytes = _dl_tls_static_size - _dl_tls_static_used - TLS_TCB_SIZE; blsize = map->l_tls_blocksize + map->l_tls_firstbyte_offset; if (freebytes < blsize) goto fail; n = (freebytes - blsize) / map->l_tls_align; size_t offset = _dl_tls_static_used + (freebytes - n * map->l_tls_align - map->l_tls_firstbyte_offset); map->l_tls_offset = _dl_tls_static_used = offset; # elif defined(TLS_DTV_AT_TP) size_t used; size_t check; size_t offset = roundup (_dl_tls_static_used, map->l_tls_align); used = offset + map->l_tls_blocksize; check = used; /* dl_tls_static_used includes the TCB at the beginning. */ if (check > _dl_tls_static_size) goto fail; map->l_tls_offset = offset; _dl_tls_static_used = used; # else # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" # endif /* * If the object is not yet relocated we cannot initialize the * static TLS region. Delay it. */ if (((struct elf_resolve *) map)->init_flag & RELOCS_DONE) { #ifdef SHARED /* * Update the slot information data for at least the generation of * the DSO we are allocating data for. */ if (__builtin_expect (THREAD_DTV()[0].counter != _dl_tls_generation, 0)) (void) _dl_update_slotinfo (map->l_tls_modid); #endif _dl_init_static_tls (map); } else map->l_need_tls_init = 1; } size_t internal_function _dl_next_tls_modid (void) { size_t result; if (__builtin_expect (GL(dl_tls_dtv_gaps), false)) { size_t disp = 0; struct dtv_slotinfo_list *runp = GL(dl_tls_dtv_slotinfo_list); /* Note that this branch will never be executed during program start since there are no gaps at that time. Therefore it does not matter that the dl_tls_dtv_slotinfo is not allocated yet when the function is called for the first times. NB: the offset +1 is due to the fact that DTV[0] is used for something else. */ result = GL(dl_tls_static_nelem) + 1; if (result <= GL(dl_tls_max_dtv_idx)) do { while (result - disp < runp->len) { if (runp->slotinfo[result - disp].map == NULL) break; ++result; assert (result <= GL(dl_tls_max_dtv_idx) + 1); } if (result - disp < runp->len) break; disp += runp->len; } while ((runp = runp->next) != NULL); if (result > GL(dl_tls_max_dtv_idx)) { /* The new index must indeed be exactly one higher than the previous high. */ assert (result == GL(dl_tls_max_dtv_idx) + 1); /* There is no gap anymore. */ GL(dl_tls_dtv_gaps) = false; goto nogaps; } } else { /* No gaps, allocate a new entry. */ nogaps: result = ++GL(dl_tls_max_dtv_idx); } return result; } # ifdef SHARED void internal_function _dl_determine_tlsoffset (void) { size_t max_align = TLS_TCB_ALIGN; size_t freetop = 0; size_t freebottom = 0; /* The first element of the dtv slot info list is allocated. */ assert (GL(dl_tls_dtv_slotinfo_list) != NULL); /* There is at this point only one element in the dl_tls_dtv_slotinfo_list list. */ assert (GL(dl_tls_dtv_slotinfo_list)->next == NULL); struct dtv_slotinfo *slotinfo = GL(dl_tls_dtv_slotinfo_list)->slotinfo; /* Determining the offset of the various parts of the static TLS block has several dependencies. In addition we have to work around bugs in some toolchains. Each TLS block from the objects available at link time has a size and an alignment requirement. The GNU ld computes the alignment requirements for the data at the positions *in the file*, though. I.e, it is not simply possible to allocate a block with the size of the TLS program header entry. The data is layed out assuming that the first byte of the TLS block fulfills p_vaddr mod p_align == &TLS_BLOCK mod p_align This means we have to add artificial padding at the beginning of the TLS block. These bytes are never used for the TLS data in this module but the first byte allocated must be aligned according to mod p_align == 0 so that the first byte of the TLS block is aligned according to p_vaddr mod p_align. This is ugly and the linker can help by computing the offsets in the TLS block assuming the first byte of the TLS block is aligned according to p_align. The extra space which might be allocated before the first byte of the TLS block need not go unused. The code below tries to use that memory for the next TLS block. This can work if the total memory requirement for the next TLS block is smaller than the gap. */ # if defined(TLS_TCB_AT_TP) /* We simply start with zero. */ size_t offset = 0; size_t cnt; for (cnt = 0; slotinfo[cnt].map != NULL; ++cnt) { assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset & (slotinfo[cnt].map->l_tls_align - 1)); size_t off; max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); if (freebottom - freetop >= slotinfo[cnt].map->l_tls_blocksize) { off = roundup (freetop + slotinfo[cnt].map->l_tls_blocksize - firstbyte, slotinfo[cnt].map->l_tls_align) + firstbyte; if (off <= freebottom) { freetop = off; /* XXX For some architectures we perhaps should store the negative offset. */ slotinfo[cnt].map->l_tls_offset = off; continue; } } off = roundup (offset + slotinfo[cnt].map->l_tls_blocksize - firstbyte, slotinfo[cnt].map->l_tls_align) + firstbyte; if (off > offset + slotinfo[cnt].map->l_tls_blocksize + (freebottom - freetop)) { freetop = offset; freebottom = off - slotinfo[cnt].map->l_tls_blocksize; } offset = off; /* XXX For some architectures we perhaps should store the negative offset. */ slotinfo[cnt].map->l_tls_offset = off; } GL(dl_tls_static_used) = offset; GL(dl_tls_static_size) = (roundup (offset + TLS_STATIC_SURPLUS, max_align) + TLS_TCB_SIZE); # elif defined(TLS_DTV_AT_TP) /* The TLS blocks start right after the TCB. */ size_t offset = TLS_TCB_SIZE; size_t cnt; for (cnt = 0; slotinfo[cnt].map != NULL; ++cnt) { assert (cnt < GL(dl_tls_dtv_slotinfo_list)->len); size_t firstbyte = (-slotinfo[cnt].map->l_tls_firstbyte_offset & (slotinfo[cnt].map->l_tls_align - 1)); size_t off; max_align = MAX (max_align, slotinfo[cnt].map->l_tls_align); if (slotinfo[cnt].map->l_tls_blocksize <= freetop - freebottom) { off = roundup (freebottom, slotinfo[cnt].map->l_tls_align); if (off - freebottom < firstbyte) off += slotinfo[cnt].map->l_tls_align; if (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte <= freetop) { slotinfo[cnt].map->l_tls_offset = off - firstbyte; freebottom = (off + slotinfo[cnt].map->l_tls_blocksize - firstbyte); continue; } } off = roundup (offset, slotinfo[cnt].map->l_tls_align); if (off - offset < firstbyte) off += slotinfo[cnt].map->l_tls_align; slotinfo[cnt].map->l_tls_offset = off - firstbyte; if (off - firstbyte - offset > freetop - freebottom) { freebottom = offset; freetop = off - firstbyte; } offset = off + slotinfo[cnt].map->l_tls_blocksize - firstbyte; } GL(dl_tls_static_used) = offset; GL(dl_tls_static_size) = roundup (offset + TLS_STATIC_SURPLUS, TLS_TCB_ALIGN); # else # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" # endif /* The alignment requirement for the static TLS block. */ GL(dl_tls_static_align) = max_align; } /* This is called only when the data structure setup was skipped at startup, when there was no need for it then. Now we have dynamically loaded something needing TLS, or libpthread needs it. */ int internal_function _dl_tls_setup (void) { assert (GL(dl_tls_dtv_slotinfo_list) == NULL); assert (GL(dl_tls_max_dtv_idx) == 0); const size_t nelem = 2 + TLS_SLOTINFO_SURPLUS; GL(dl_tls_dtv_slotinfo_list) = calloc (1, (sizeof (struct dtv_slotinfo_list) + nelem * sizeof (struct dtv_slotinfo))); if (GL(dl_tls_dtv_slotinfo_list) == NULL) return -1; GL(dl_tls_dtv_slotinfo_list)->len = nelem; /* Number of elements in the static TLS block. It can't be zero because of various assumptions. The one element is null. */ GL(dl_tls_static_nelem) = GL(dl_tls_max_dtv_idx) = 1; /* This initializes more variables for us. */ _dl_determine_tlsoffset (); return 0; } # endif static void * internal_function allocate_dtv (void *result) { dtv_t *dtv; size_t dtv_length; /* We allocate a few more elements in the dtv than are needed for the initial set of modules. This should avoid in most cases expansions of the dtv. */ dtv_length = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS; dtv = calloc (dtv_length + 2, sizeof (dtv_t)); if (dtv != NULL) { /* This is the initial length of the dtv. */ dtv[0].counter = dtv_length; /* The rest of the dtv (including the generation counter) is Initialize with zero to indicate nothing there. */ /* Add the dtv to the thread data structures. */ INSTALL_DTV (result, dtv); } else result = NULL; return result; } /* Get size and alignment requirements of the static TLS block. */ void internal_function _dl_get_tls_static_info (size_t *sizep, size_t *alignp) { *sizep = GL(dl_tls_static_size); *alignp = GL(dl_tls_static_align); } void * internal_function _dl_allocate_tls_storage (void) { void *result; size_t size = GL(dl_tls_static_size); # if defined(TLS_DTV_AT_TP) /* Memory layout is: [ TLS_PRE_TCB_SIZE ] [ TLS_TCB_SIZE ] [ TLS blocks ] ^ This should be returned. */ size += (TLS_PRE_TCB_SIZE + GL(dl_tls_static_align) - 1) & ~(GL(dl_tls_static_align) - 1); # endif /* Allocate a correctly aligned chunk of memory. */ result = _dl_memalign (GL(dl_tls_static_align), size); if (__builtin_expect (result != NULL, 1)) { /* Allocate the DTV. */ void *allocated = result; # if defined(TLS_TCB_AT_TP) /* The TCB follows the TLS blocks. */ result = (char *) result + size - TLS_TCB_SIZE; /* Clear the TCB data structure. We can't ask the caller (i.e. libpthread) to do it, because we will initialize the DTV et al. */ _dl_memset (result, '\0', TLS_TCB_SIZE); # elif defined(TLS_DTV_AT_TP) result = (char *) result + size - GL(dl_tls_static_size); /* Clear the TCB data structure and TLS_PRE_TCB_SIZE bytes before it. We can't ask the caller (i.e. libpthread) to do it, because we will initialize the DTV et al. */ _dl_memset ((char *) result - TLS_PRE_TCB_SIZE, '\0', TLS_PRE_TCB_SIZE + TLS_TCB_SIZE); # endif result = allocate_dtv (result); if (result == NULL) free (allocated); } return result; } void * internal_function _dl_allocate_tls_init (void *result) { if (result == NULL) /* The memory allocation failed. */ return NULL; dtv_t *dtv = GET_DTV (result); struct dtv_slotinfo_list *listp; size_t total = 0; size_t maxgen = 0; /* We have to prepare the dtv for all currently loaded modules using TLS. For those which are dynamically loaded we add the values indicating deferred allocation. */ listp = GL(dl_tls_dtv_slotinfo_list); while (1) { size_t cnt; for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) { struct link_map *map; void *dest; /* Check for the total number of used slots. */ if (total + cnt > GL(dl_tls_max_dtv_idx)) break; map = listp->slotinfo[cnt].map; if (map == NULL) /* Unused entry. */ continue; /* Keep track of the maximum generation number. This might not be the generation counter. */ maxgen = MAX (maxgen, listp->slotinfo[cnt].gen); if (map->l_tls_offset == NO_TLS_OFFSET) { /* For dynamically loaded modules we simply store the value indicating deferred allocation. */ dtv[map->l_tls_modid].pointer.val = TLS_DTV_UNALLOCATED; dtv[map->l_tls_modid].pointer.is_static = false; continue; } assert (map->l_tls_modid == cnt); assert (map->l_tls_blocksize >= map->l_tls_initimage_size); # if defined(TLS_TCB_AT_TP) assert ((size_t) map->l_tls_offset >= map->l_tls_blocksize); dest = (char *) result - map->l_tls_offset; # elif defined(TLS_DTV_AT_TP) dest = (char *) result + map->l_tls_offset; # else # error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined" # endif /* Copy the initialization image and clear the BSS part. */ dtv[map->l_tls_modid].pointer.val = dest; dtv[map->l_tls_modid].pointer.is_static = true; _dl_memset (_dl_mempcpy (dest, map->l_tls_initimage, map->l_tls_initimage_size), '\0', map->l_tls_blocksize - map->l_tls_initimage_size); } total += cnt; if (total >= GL(dl_tls_max_dtv_idx)) break; listp = listp->next; assert (listp != NULL); } /* The DTV version is up-to-date now. */ dtv[0].counter = maxgen; return result; } void * internal_function _dl_allocate_tls (void *mem) { return _dl_allocate_tls_init (mem == NULL ? _dl_allocate_tls_storage () : allocate_dtv (mem)); } void internal_function _dl_deallocate_tls (void *tcb, bool dealloc_tcb) { dtv_t *dtv = GET_DTV (tcb); size_t cnt; /* We need to free the memory allocated for non-static TLS. */ for (cnt = 0; cnt < dtv[-1].counter; ++cnt) if (! dtv[1 + cnt].pointer.is_static && dtv[1 + cnt].pointer.val != TLS_DTV_UNALLOCATED) free (dtv[1 + cnt].pointer.val); /* The array starts with dtv[-1]. */ #ifdef SHARED if (dtv != GL(dl_initial_dtv)) #endif free (dtv - 1); if (dealloc_tcb) { # if defined(TLS_TCB_AT_TP) /* The TCB follows the TLS blocks. Back up to free the whole block. */ tcb -= GL(dl_tls_static_size) - TLS_TCB_SIZE; # elif defined(TLS_DTV_AT_TP) /* Back up the TLS_PRE_TCB_SIZE bytes. */ tcb -= (TLS_PRE_TCB_SIZE + GL(dl_tls_static_align) - 1) & ~(GL(dl_tls_static_align) - 1); # endif free (tcb); } } # ifdef SHARED /* The __tls_get_addr function has two basic forms which differ in the arguments. The IA-64 form takes two parameters, the module ID and offset. The form used, among others, on IA-32 takes a reference to a special structure which contain the same information. The second form seems to be more often used (in the moment) so we default to it. Users of the IA-64 form have to provide adequate definitions of the following macros. */ # ifndef GET_ADDR_ARGS # define GET_ADDR_ARGS tls_index *ti # endif # ifndef GET_ADDR_MODULE # define GET_ADDR_MODULE ti->ti_module # endif # ifndef GET_ADDR_OFFSET # define GET_ADDR_OFFSET ti->ti_offset # endif static void * allocate_and_init (struct link_map *map) { void *newp; newp = _dl_memalign (map->l_tls_align, map->l_tls_blocksize); if (newp == NULL) oom (); /* Initialize the memory. */ _dl_memset (_dl_mempcpy (newp, map->l_tls_initimage, map->l_tls_initimage_size), '\0', map->l_tls_blocksize - map->l_tls_initimage_size); return newp; } struct link_map * _dl_update_slotinfo (unsigned long int req_modid) { struct link_map *the_map = NULL; dtv_t *dtv = THREAD_DTV (); /* The global dl_tls_dtv_slotinfo array contains for each module index the generation counter current when the entry was created. This array never shrinks so that all module indices which were valid at some time can be used to access it. Before the first use of a new module index in this function the array was extended appropriately. Access also does not have to be guarded against modifications of the array. It is assumed that pointer-size values can be read atomically even in SMP environments. It is possible that other threads at the same time dynamically load code and therefore add to the slotinfo list. This is a problem since we must not pick up any information about incomplete work. The solution to this is to ignore all dtv slots which were created after the one we are currently interested. We know that dynamic loading for this module is completed and this is the last load operation we know finished. */ unsigned long int idx = req_modid; struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); while (idx >= listp->len) { idx -= listp->len; listp = listp->next; } if (dtv[0].counter < listp->slotinfo[idx].gen) { /* The generation counter for the slot is higher than what the current dtv implements. We have to update the whole dtv but only those entries with a generation counter <= the one for the entry we need. */ size_t new_gen = listp->slotinfo[idx].gen; size_t total = 0; /* We have to look through the entire dtv slotinfo list. */ listp = GL(dl_tls_dtv_slotinfo_list); do { size_t cnt; for (cnt = total == 0 ? 1 : 0; cnt < listp->len; ++cnt) { size_t gen = listp->slotinfo[cnt].gen; if (gen > new_gen) /* This is a slot for a generation younger than the one we are handling now. It might be incompletely set up so ignore it. */ continue; /* If the entry is older than the current dtv layout we know we don't have to handle it. */ if (gen <= dtv[0].counter) continue; /* If there is no map this means the entry is empty. */ struct link_map *map = listp->slotinfo[cnt].map; if (map == NULL) { /* If this modid was used at some point the memory might still be allocated. */ if (! dtv[total + cnt].pointer.is_static && dtv[total + cnt].pointer.val != TLS_DTV_UNALLOCATED) { free (dtv[total + cnt].pointer.val); dtv[total + cnt].pointer.val = TLS_DTV_UNALLOCATED; } continue; } /* Check whether the current dtv array is large enough. */ size_t modid = map->l_tls_modid; assert (total + cnt == modid); if (dtv[-1].counter < modid) { /* Reallocate the dtv. */ dtv_t *newp; size_t newsize = GL(dl_tls_max_dtv_idx) + DTV_SURPLUS; size_t oldsize = dtv[-1].counter; assert (map->l_tls_modid <= newsize); if (dtv == GL(dl_initial_dtv)) { /* This is the initial dtv that was allocated during rtld startup using the dl-minimal.c malloc instead of the real malloc. We can't free it, we have to abandon the old storage. */ newp = malloc ((2 + newsize) * sizeof (dtv_t)); if (newp == NULL) oom (); _dl_memcpy (newp, &dtv[-1], oldsize * sizeof (dtv_t)); } else { newp = realloc (&dtv[-1], (2 + newsize) * sizeof (dtv_t)); if (newp == NULL) oom (); } newp[0].counter = newsize; /* Clear the newly allocated part. */ _dl_memset (newp + 2 + oldsize, '\0', (newsize - oldsize) * sizeof (dtv_t)); /* Point dtv to the generation counter. */ dtv = &newp[1]; /* Install this new dtv in the thread data structures. */ INSTALL_NEW_DTV (dtv); } /* If there is currently memory allocate for this dtv entry free it. */ /* XXX Ideally we will at some point create a memory pool. */ if (! dtv[modid].pointer.is_static && dtv[modid].pointer.val != TLS_DTV_UNALLOCATED) /* Note that free is called for NULL is well. We deallocate even if it is this dtv entry we are supposed to load. The reason is that we call memalign and not malloc. */ free (dtv[modid].pointer.val); /* This module is loaded dynamically- We defer memory allocation. */ dtv[modid].pointer.is_static = false; dtv[modid].pointer.val = TLS_DTV_UNALLOCATED; if (modid == req_modid) the_map = map; } total += listp->len; } while ((listp = listp->next) != NULL); /* This will be the new maximum generation counter. */ dtv[0].counter = new_gen; } return the_map; } /* The generic dynamic and local dynamic model cannot be used in statically linked applications. */ void * __tls_get_addr (GET_ADDR_ARGS) { dtv_t *dtv = THREAD_DTV (); struct link_map *the_map = NULL; void *p; if (__builtin_expect (dtv[0].counter != GL(dl_tls_generation), 0)) the_map = _dl_update_slotinfo (GET_ADDR_MODULE); p = dtv[GET_ADDR_MODULE].pointer.val; if (__builtin_expect (p == TLS_DTV_UNALLOCATED, 0)) { /* The allocation was deferred. Do it now. */ if (the_map == NULL) { /* Find the link map for this module. */ size_t idx = GET_ADDR_MODULE; struct dtv_slotinfo_list *listp = GL(dl_tls_dtv_slotinfo_list); while (idx >= listp->len) { idx -= listp->len; listp = listp->next; } the_map = listp->slotinfo[idx].map; } p = dtv[GET_ADDR_MODULE].pointer.val = allocate_and_init (the_map); dtv[GET_ADDR_MODULE].pointer.is_static = false; } return (char *) p + GET_ADDR_OFFSET; } # endif void _dl_add_to_slotinfo (struct link_map *l); void _dl_add_to_slotinfo (struct link_map *l) { /* Now that we know the object is loaded successfully add modules containing TLS data to the dtv info table. We might have to increase its size. */ struct dtv_slotinfo_list *listp; struct dtv_slotinfo_list *prevp; size_t idx = l->l_tls_modid; /* Find the place in the dtv slotinfo list. */ listp = GL(dl_tls_dtv_slotinfo_list); prevp = NULL; /* Needed to shut up gcc. */ do { /* Does it fit in the array of this list element? */ if (idx < listp->len) break; idx -= listp->len; prevp = listp; listp = listp->next; } while (listp != NULL); if (listp == NULL) { /* When we come here it means we have to add a new element to the slotinfo list. And the new module must be in the first slot. */ assert (idx == 0); listp = prevp->next = (struct dtv_slotinfo_list *) malloc (sizeof (struct dtv_slotinfo_list) + TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); if (listp == NULL) { /* We ran out of memory. We will simply fail this call but don't undo anything we did so far. The application will crash or be terminated anyway very soon. */ /* We have to do this since some entries in the dtv slotinfo array might already point to this generation. */ ++GL(dl_tls_generation); _dl_dprintf (_dl_debug_file, "cannot create TLS data structures: ABORT\n"); _dl_exit (127); } listp->len = TLS_SLOTINFO_SURPLUS; listp->next = NULL; _dl_memset (listp->slotinfo, '\0', TLS_SLOTINFO_SURPLUS * sizeof (struct dtv_slotinfo)); } /* Add the information into the slotinfo data structure. */ listp->slotinfo[idx].map = l; listp->slotinfo[idx].gen = GL(dl_tls_generation) + 1; }