/* logl.c * * Natural logarithm, long double precision * * * * SYNOPSIS: * * long double x, y, logl(); * * y = logl( x ); * * * * DESCRIPTION: * * Returns the base e (2.718...) logarithm of x. * * The argument is separated into its exponent and fractional * parts. If the exponent is between -1 and +1, the logarithm * of the fraction is approximated by * * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). * * Otherwise, setting z = 2(x-1)/x+1), * * log(x) = z + z**3 P(z)/Q(z). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0.5, 2.0 150000 8.71e-20 2.75e-20 * IEEE exp(+-10000) 100000 5.39e-20 2.34e-20 * * In the tests over the interval exp(+-10000), the logarithms * of the random arguments were uniformly distributed over * [-10000, +10000]. * * ERROR MESSAGES: * * log singularity: x = 0; returns -INFINITYL * log domain: x < 0; returns NANL */ /* Cephes Math Library Release 2.7: May, 1998 Copyright 1984, 1990, 1998 by Stephen L. Moshier */ #include /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 2.32e-20 */ #ifdef UNK static long double P[] = { 4.5270000862445199635215E-5L, 4.9854102823193375972212E-1L, 6.5787325942061044846969E0L, 2.9911919328553073277375E1L, 6.0949667980987787057556E1L, 5.7112963590585538103336E1L, 2.0039553499201281259648E1L, }; static long double Q[] = { /* 1.0000000000000000000000E0,*/ 1.5062909083469192043167E1L, 8.3047565967967209469434E1L, 2.2176239823732856465394E2L, 3.0909872225312059774938E2L, 2.1642788614495947685003E2L, 6.0118660497603843919306E1L, }; #endif #ifdef IBMPC static short P[] = { 0x51b9,0x9cae,0x4b15,0xbde0,0x3ff0, XPD 0x19cf,0xf0d4,0xc507,0xff40,0x3ffd, XPD 0x9942,0xa7d2,0xfa37,0xd284,0x4001, XPD 0x4add,0x65ce,0x9c5c,0xef4b,0x4003, XPD 0x8445,0x619a,0x75c3,0xf3cc,0x4004, XPD 0x81ab,0x3cd0,0xacba,0xe473,0x4004, XPD 0x4cbf,0xcc18,0x016c,0xa051,0x4003, XPD }; static short Q[] = { /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/ 0xb8b7,0x81f1,0xacf4,0xf101,0x4002, XPD 0xbc31,0x09a4,0x5a91,0xa618,0x4005, XPD 0xaeec,0xe7da,0x2c87,0xddc3,0x4006, XPD 0x2bde,0x4845,0xa2ee,0x9a8c,0x4007, XPD 0x3120,0x4703,0x89f2,0xd86d,0x4006, XPD 0x7347,0x3224,0x8223,0xf079,0x4004, XPD }; #endif #ifdef MIEEE static long P[] = { 0x3ff00000,0xbde04b15,0x9cae51b9, 0x3ffd0000,0xff40c507,0xf0d419cf, 0x40010000,0xd284fa37,0xa7d29942, 0x40030000,0xef4b9c5c,0x65ce4add, 0x40040000,0xf3cc75c3,0x619a8445, 0x40040000,0xe473acba,0x3cd081ab, 0x40030000,0xa051016c,0xcc184cbf, }; static long Q[] = { /*0x3fff0000,0x80000000,0x00000000,*/ 0x40020000,0xf101acf4,0x81f1b8b7, 0x40050000,0xa6185a91,0x09a4bc31, 0x40060000,0xddc32c87,0xe7daaeec, 0x40070000,0x9a8ca2ee,0x48452bde, 0x40060000,0xd86d89f2,0x47033120, 0x40040000,0xf0798223,0x32247347, }; #endif /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), * where z = 2(x-1)/(x+1) * 1/sqrt(2) <= x < sqrt(2) * Theoretical peak relative error = 6.16e-22 */ #ifdef UNK static long double R[4] = { 1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L, 1.0777257190312272158094E1L, -3.5717684488096787370998E1L, }; static long double S[4] = { /* 1.00000000000000000000E0L,*/ -2.6201045551331104417768E1L, 1.9361891836232102174846E2L, -4.2861221385716144629696E2L, }; static long double C1 = 6.9314575195312500000000E-1L; static long double C2 = 1.4286068203094172321215E-6L; #endif #ifdef IBMPC static short R[] = { 0x6ef4,0xf922,0x7763,0x817b,0x3ff6, XPD 0x15fd,0x1af9,0xde8f,0xb84b,0xbffe, XPD 0x8b96,0x4f8d,0xa53c,0xac6f,0x4002, XPD 0x8932,0xb4e3,0xe8ae,0x8ede,0xc004, XPD }; static short S[] = { /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/ 0x7ce4,0x1fc9,0xbdc5,0xd19b,0xc003, XPD 0x0af3,0x0d10,0x716f,0xc19e,0x4006, XPD 0x4d7d,0x0f55,0x5d06,0xd64e,0xc007, XPD }; static short sc1[] = {0x0000,0x0000,0x0000,0xb172,0x3ffe, XPD}; #define C1 (*(long double *)sc1) static short sc2[] = {0x4f1e,0xcd5e,0x8e7b,0xbfbe,0x3feb, XPD}; #define C2 (*(long double *)sc2) #endif #ifdef MIEEE static long R[12] = { 0x3ff60000,0x817b7763,0xf9226ef4, 0xbffe0000,0xb84bde8f,0x1af915fd, 0x40020000,0xac6fa53c,0x4f8d8b96, 0xc0040000,0x8edee8ae,0xb4e38932, }; static long S[9] = { /*0x3fff0000,0x80000000,0x00000000,*/ 0xc0030000,0xd19bbdc5,0x1fc97ce4, 0x40060000,0xc19e716f,0x0d100af3, 0xc0070000,0xd64e5d06,0x0f554d7d, }; static long sc1[] = {0x3ffe0000,0xb1720000,0x00000000}; #define C1 (*(long double *)sc1) static long sc2[] = {0x3feb0000,0xbfbe8e7b,0xcd5e4f1e}; #define C2 (*(long double *)sc2) #endif #define SQRTH 0.70710678118654752440L extern long double MINLOGL; #ifdef ANSIPROT extern long double frexpl ( long double, int * ); extern long double ldexpl ( long double, int ); extern long double polevll ( long double, void *, int ); extern long double p1evll ( long double, void *, int ); extern int isnanl ( long double ); #else long double frexpl(), ldexpl(), polevll(), p1evll(), isnanl(); #endif #ifdef INFINITIES extern long double INFINITYL; #endif #ifdef NANS extern long double NANL; #endif long double logl(x) long double x; { long double y, z; int e; #ifdef NANS if( isnanl(x) ) return(x); #endif #ifdef INFINITIES if( x == INFINITYL ) return(x); #endif /* Test for domain */ if( x <= 0.0L ) { if( x == 0.0L ) { #ifdef INFINITIES return( -INFINITYL ); #else mtherr( "logl", SING ); return( MINLOGL ); #endif } else { #ifdef NANS return( NANL ); #else mtherr( "logl", DOMAIN ); return( MINLOGL ); #endif } } /* separate mantissa from exponent */ /* Note, frexp is used so that denormal numbers * will be handled properly. */ x = frexpl( x, &e ); /* logarithm using log(x) = z + z**3 P(z)/Q(z), * where z = 2(x-1)/x+1) */ if( (e > 2) || (e < -2) ) { if( x < SQRTH ) { /* 2( 2x-1 )/( 2x+1 ) */ e -= 1; z = x - 0.5L; y = 0.5L * z + 0.5L; } else { /* 2 (x-1)/(x+1) */ z = x - 0.5L; z -= 0.5L; y = 0.5L * x + 0.5L; } x = z / y; z = x*x; z = x * ( z * polevll( z, R, 3 ) / p1evll( z, S, 3 ) ); z = z + e * C2; z = z + x; z = z + e * C1; return( z ); } /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ if( x < SQRTH ) { e -= 1; x = ldexpl( x, 1 ) - 1.0L; /* 2x - 1 */ } else { x = x - 1.0L; } z = x*x; y = x * ( z * polevll( x, P, 6 ) / p1evll( x, Q, 6 ) ); y = y + e * C2; z = y - ldexpl( z, -1 ); /* y - 0.5 * z */ /* Note, the sum of above terms does not exceed x/4, * so it contributes at most about 1/4 lsb to the error. */ z = z + x; z = z + e * C1; /* This sum has an error of 1/2 lsb. */ return( z ); }