/* asinhl.c * * Inverse hyperbolic sine, long double precision * * * * SYNOPSIS: * * long double x, y, asinhl(); * * y = asinhl( x ); * * * * DESCRIPTION: * * Returns inverse hyperbolic sine of argument. * * If |x| < 0.5, the function is approximated by a rational * form x + x**3 P(x)/Q(x). Otherwise, * * asinh(x) = log( x + sqrt(1 + x*x) ). * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -3,3 30000 1.7e-19 3.5e-20 * */ /* Cephes Math Library Release 2.7: May, 1998 Copyright 1984, 1991, 1998 by Stephen L. Moshier */ #include <math.h> #ifdef UNK static long double P[] = { -7.2157234864927687427374E-1L, -1.3005588097490352458918E1L, -5.9112383795679709212744E1L, -9.5372702442289028811361E1L, -4.9802880260861844539014E1L, }; static long double Q[] = { /* 1.0000000000000000000000E0L,*/ 2.8754968540389640419671E1L, 2.0990255691901160529390E2L, 5.9265075560893800052658E2L, 7.0670399135805956780660E2L, 2.9881728156517107462943E2L, }; #endif #ifdef IBMPC static short P[] = { 0x8f42,0x2584,0xf727,0xb8b8,0xbffe, XPD 0x9d56,0x7f7c,0xe38b,0xd016,0xc002, XPD 0xc518,0xdc2d,0x14bc,0xec73,0xc004, XPD 0x99fe,0xc18a,0xd2da,0xbebe,0xc005, XPD 0xb46c,0x3c05,0x263e,0xc736,0xc004, XPD }; static short Q[] = { /*0x0000,0x0000,0x0000,0x8000,0x3fff,*/ 0xdfed,0x33db,0x2cf2,0xe60a,0x4003, XPD 0xf109,0x61ee,0x0df8,0xd1e7,0x4006, XPD 0xf21e,0xda84,0xa5fa,0x9429,0x4008, XPD 0x13fc,0xc4e2,0x0e31,0xb0ad,0x4008, XPD 0x485c,0xad04,0x9cae,0x9568,0x4007, XPD }; #endif #ifdef MIEEE static long P[] = { 0xbffe0000,0xb8b8f727,0x25848f42, 0xc0020000,0xd016e38b,0x7f7c9d56, 0xc0040000,0xec7314bc,0xdc2dc518, 0xc0050000,0xbebed2da,0xc18a99fe, 0xc0040000,0xc736263e,0x3c05b46c, }; static long Q[] = { /*0x3fff0000,0x80000000,0x00000000,*/ 0x40030000,0xe60a2cf2,0x33dbdfed, 0x40060000,0xd1e70df8,0x61eef109, 0x40080000,0x9429a5fa,0xda84f21e, 0x40080000,0xb0ad0e31,0xc4e213fc, 0x40070000,0x95689cae,0xad04485c, }; #endif extern long double LOGE2L; #ifdef INFINITIES extern long double INFINITYL; #endif #ifdef ANSIPROT extern long double logl ( long double ); extern long double sqrtl ( long double ); extern long double polevll ( long double, void *, int ); extern long double p1evll ( long double, void *, int ); extern int isnanl ( long double ); extern int isfinitel ( long double ); #else long double logl(), sqrtl(), polevll(), p1evll(), isnanl(), isfinitel(); #endif long double asinhl(x) long double x; { long double a, z; int sign; #ifdef NANS if( isnanl(x) ) return(x); #endif #ifdef MINUSZERO if( x == 0.0L ) return(x); #endif #ifdef INFINITIES if( !isfinitel(x) ) return(x); #endif if( x < 0.0L ) { sign = -1; x = -x; } else sign = 1; if( x > 1.0e10L ) { return( sign * (logl(x) + LOGE2L) ); } z = x * x; if( x < 0.5L ) { a = ( polevll(z, P, 4)/p1evll(z, Q, 5) ) * z; a = a * x + x; if( sign < 0 ) a = -a; return(a); } a = sqrtl( z + 1.0L ); return( sign * logl(x + a) ); }