/* stdtrf.c * * Student's t distribution * * * * SYNOPSIS: * * float t, stdtrf(); * short k; * * y = stdtrf( k, t ); * * * DESCRIPTION: * * Computes the integral from minus infinity to t of the Student * t distribution with integer k > 0 degrees of freedom: * * t * - * | | * - | 2 -(k+1)/2 * | ( (k+1)/2 ) | ( x ) * ---------------------- | ( 1 + --- ) dx * - | ( k ) * sqrt( k pi ) | ( k/2 ) | * | | * - * -inf. * * Relation to incomplete beta integral: * * 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) * where * z = k/(k + t**2). * * For t < -1, this is the method of computation. For higher t, * a direct method is derived from integration by parts. * Since the function is symmetric about t=0, the area under the * right tail of the density is found by calling the function * with -t instead of t. * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE +/- 100 5000 2.3e-5 2.9e-6 */ /* Cephes Math Library Release 2.2: July, 1992 Copyright 1984, 1987, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> extern float PIF, MACHEPF; #ifdef ANSIC float sqrtf(float), atanf(float), incbetf(float, float, float); #else float sqrtf(), atanf(), incbetf(); #endif float stdtrf( int k, float tt ) { float t, x, rk, z, f, tz, p, xsqk; int j; t = tt; if( k <= 0 ) { mtherr( "stdtrf", DOMAIN ); return(0.0); } if( t == 0 ) return( 0.5 ); if( t < -1.0 ) { rk = k; z = rk / (rk + t * t); p = 0.5 * incbetf( 0.5*rk, 0.5, z ); return( p ); } /* compute integral from -t to + t */ if( t < 0 ) x = -t; else x = t; rk = k; /* degrees of freedom */ z = 1.0 + ( x * x )/rk; /* test if k is odd or even */ if( (k & 1) != 0) { /* computation for odd k */ xsqk = x/sqrtf(rk); p = atanf( xsqk ); if( k > 1 ) { f = 1.0; tz = 1.0; j = 3; while( (j<=(k-2)) && ( (tz/f) > MACHEPF ) ) { tz *= (j-1)/( z * j ); f += tz; j += 2; } p += f * xsqk/z; } p *= 2.0/PIF; } else { /* computation for even k */ f = 1.0; tz = 1.0; j = 2; while( ( j <= (k-2) ) && ( (tz/f) > MACHEPF ) ) { tz *= (j - 1)/( z * j ); f += tz; j += 2; } p = f * x/sqrtf(z*rk); } /* common exit */ if( t < 0 ) p = -p; /* note destruction of relative accuracy */ p = 0.5 + 0.5 * p; return(p); }