/* sinf.c * * Circular sine * * * * SYNOPSIS: * * float x, y, sinf(); * * y = sinf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4. The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the sine is approximated by * x + x**3 P(x**2). * Between pi/4 and pi/2 the cosine is represented as * 1 - x**2 Q(x**2). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -4096,+4096 100,000 1.2e-7 3.0e-8 * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8 * * ERROR MESSAGES: * * message condition value returned * sin total loss x > 2^24 0.0 * * Partial loss of accuracy begins to occur at x = 2^13 * = 8192. Results may be meaningless for x >= 2^24 * The routine as implemented flags a TLOSS error * for x >= 2^24 and returns 0.0. */ /* cosf.c * * Circular cosine * * * * SYNOPSIS: * * float x, y, cosf(); * * y = cosf( x ); * * * * DESCRIPTION: * * Range reduction is into intervals of pi/4. The reduction * error is nearly eliminated by contriving an extended precision * modular arithmetic. * * Two polynomial approximating functions are employed. * Between 0 and pi/4 the cosine is approximated by * 1 - x**2 Q(x**2). * Between pi/4 and pi/2 the sine is represented as * x + x**3 P(x**2). * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -8192,+8192 100,000 3.0e-7 3.0e-8 */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1985, 1987, 1988, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ /* Single precision circular sine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 6.8e-8 * rms relative error: 2.6e-8 */ #include <math.h> static float FOPI = 1.27323954473516; extern float PIO4F; /* Note, these constants are for a 32-bit significand: */ /* static float DP1 = 0.7853851318359375; static float DP2 = 1.30315311253070831298828125e-5; static float DP3 = 3.03855025325309630e-11; static float lossth = 65536.; */ /* These are for a 24-bit significand: */ static float DP1 = 0.78515625; static float DP2 = 2.4187564849853515625e-4; static float DP3 = 3.77489497744594108e-8; static float lossth = 8192.; static float T24M1 = 16777215.; static float sincof[] = { -1.9515295891E-4, 8.3321608736E-3, -1.6666654611E-1 }; static float coscof[] = { 2.443315711809948E-005, -1.388731625493765E-003, 4.166664568298827E-002 }; float sinf( float xx ) { float *p; float x, y, z; register unsigned long j; register int sign; sign = 1; x = xx; if( xx < 0 ) { sign = -1; x = -xx; } if( x > T24M1 ) { mtherr( "sinf", TLOSS ); return(0.0); } j = FOPI * x; /* integer part of x/(PI/4) */ y = j; /* map zeros to origin */ if( j & 1 ) { j += 1; y += 1.0; } j &= 7; /* octant modulo 360 degrees */ /* reflect in x axis */ if( j > 3) { sign = -sign; j -= 4; } if( x > lossth ) { mtherr( "sinf", PLOSS ); x = x - y * PIO4F; } else { /* Extended precision modular arithmetic */ x = ((x - y * DP1) - y * DP2) - y * DP3; } /*einits();*/ z = x * x; if( (j==1) || (j==2) ) { /* measured relative error in +/- pi/4 is 7.8e-8 */ /* y = (( 2.443315711809948E-005 * z - 1.388731625493765E-003) * z + 4.166664568298827E-002) * z * z; */ p = coscof; y = *p++; y = y * z + *p++; y = y * z + *p++; y *= z * z; y -= 0.5 * z; y += 1.0; } else { /* Theoretical relative error = 3.8e-9 in [-pi/4, +pi/4] */ /* y = ((-1.9515295891E-4 * z + 8.3321608736E-3) * z - 1.6666654611E-1) * z * x; y += x; */ p = sincof; y = *p++; y = y * z + *p++; y = y * z + *p++; y *= z * x; y += x; } /*einitd();*/ if(sign < 0) y = -y; return( y); } /* Single precision circular cosine * test interval: [-pi/4, +pi/4] * trials: 10000 * peak relative error: 8.3e-8 * rms relative error: 2.2e-8 */ float cosf( float xx ) { float x, y, z; int j, sign; /* make argument positive */ sign = 1; x = xx; if( x < 0 ) x = -x; if( x > T24M1 ) { mtherr( "cosf", TLOSS ); return(0.0); } j = FOPI * x; /* integer part of x/PIO4 */ y = j; /* integer and fractional part modulo one octant */ if( j & 1 ) /* map zeros to origin */ { j += 1; y += 1.0; } j &= 7; if( j > 3) { j -=4; sign = -sign; } if( j > 1 ) sign = -sign; if( x > lossth ) { mtherr( "cosf", PLOSS ); x = x - y * PIO4F; } else /* Extended precision modular arithmetic */ x = ((x - y * DP1) - y * DP2) - y * DP3; z = x * x; if( (j==1) || (j==2) ) { y = (((-1.9515295891E-4 * z + 8.3321608736E-3) * z - 1.6666654611E-1) * z * x) + x; } else { y = (( 2.443315711809948E-005 * z - 1.388731625493765E-003) * z + 4.166664568298827E-002) * z * z; y -= 0.5 * z; y += 1.0; } if(sign < 0) y = -y; return( y ); }