/* powf.c * * Power function * * * * SYNOPSIS: * * float x, y, z, powf(); * * z = powf( x, y ); * * * * DESCRIPTION: * * Computes x raised to the yth power. Analytically, * * x**y = exp( y log(x) ). * * Following Cody and Waite, this program uses a lookup table * of 2**-i/16 and pseudo extended precision arithmetic to * obtain an extra three bits of accuracy in both the logarithm * and the exponential. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -10,10 100,000 1.4e-7 3.6e-8 * 1/10 < x < 10, x uniformly distributed. * -10 < y < 10, y uniformly distributed. * * * ERROR MESSAGES: * * message condition value returned * powf overflow x**y > MAXNUMF MAXNUMF * powf underflow x**y < 1/MAXNUMF 0.0 * powf domain x<0 and y noninteger 0.0 * */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1988 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> static char fname[] = {"powf"}; /* 2^(-i/16) * The decimal values are rounded to 24-bit precision */ static float A[] = { 1.00000000000000000000E0, 9.57603275775909423828125E-1, 9.17004048824310302734375E-1, 8.78126084804534912109375E-1, 8.40896427631378173828125E-1, 8.05245161056518554687500E-1, 7.71105408668518066406250E-1, 7.38413095474243164062500E-1, 7.07106769084930419921875E-1, 6.77127778530120849609375E-1, 6.48419797420501708984375E-1, 6.20928883552551269531250E-1, 5.94603538513183593750000E-1, 5.69394290447235107421875E-1, 5.45253872871398925781250E-1, 5.22136867046356201171875E-1, 5.00000000000000000000E-1 }; /* continuation, for even i only * 2^(i/16) = A[i] + B[i/2] */ static float B[] = { 0.00000000000000000000E0, -5.61963907099083340520586E-9, -1.23776636307969995237668E-8, 4.03545234539989593104537E-9, 1.21016171044789693621048E-8, -2.00949968760174979411038E-8, 1.89881769396087499852802E-8, -6.53877009617774467211965E-9, 0.00000000000000000000E0 }; /* 1 / A[i] * The decimal values are full precision */ static float Ainv[] = { 1.00000000000000000000000E0, 1.04427378242741384032197E0, 1.09050773266525765920701E0, 1.13878863475669165370383E0, 1.18920711500272106671750E0, 1.24185781207348404859368E0, 1.29683955465100966593375E0, 1.35425554693689272829801E0, 1.41421356237309504880169E0, 1.47682614593949931138691E0, 1.54221082540794082361229E0, 1.61049033194925430817952E0, 1.68179283050742908606225E0, 1.75625216037329948311216E0, 1.83400808640934246348708E0, 1.91520656139714729387261E0, 2.00000000000000000000000E0 }; #ifdef DEC #define MEXP 2032.0 #define MNEXP -2032.0 #else #define MEXP 2048.0 #define MNEXP -2400.0 #endif /* log2(e) - 1 */ #define LOG2EA 0.44269504088896340736F extern float MAXNUMF; #define F W #define Fa Wa #define Fb Wb #define G W #define Ga Wa #define Gb u #define H W #define Ha Wb #define Hb Wb #ifdef ANSIC float floorf( float ); float frexpf( float, int *); float ldexpf( float, int ); float powif( float, int ); #else float floorf(), frexpf(), ldexpf(), powif(); #endif /* Find a multiple of 1/16 that is within 1/16 of x. */ #define reduc(x) 0.0625 * floorf( 16 * (x) ) #ifdef ANSIC float powf( float x, float y ) #else float powf( x, y ) float x, y; #endif { float u, w, z, W, Wa, Wb, ya, yb; /* float F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ int e, i, nflg; nflg = 0; /* flag = 1 if x<0 raised to integer power */ w = floorf(y); if( w < 0 ) z = -w; else z = w; if( (w == y) && (z < 32768.0) ) { i = w; w = powif( x, i ); return( w ); } if( x <= 0.0F ) { if( x == 0.0 ) { if( y == 0.0 ) return( 1.0 ); /* 0**0 */ else return( 0.0 ); /* 0**y */ } else { if( w != y ) { /* noninteger power of negative number */ mtherr( fname, DOMAIN ); return(0.0); } nflg = 1; if( x < 0 ) x = -x; } } /* separate significand from exponent */ x = frexpf( x, &e ); /* find significand in antilog table A[] */ i = 1; if( x <= A[9] ) i = 9; if( x <= A[i+4] ) i += 4; if( x <= A[i+2] ) i += 2; if( x >= A[1] ) i = -1; i += 1; /* Find (x - A[i])/A[i] * in order to compute log(x/A[i]): * * log(x) = log( a x/a ) = log(a) + log(x/a) * * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a */ x -= A[i]; x -= B[ i >> 1 ]; x *= Ainv[i]; /* rational approximation for log(1+v): * * log(1+v) = v - 0.5 v^2 + v^3 P(v) * Theoretical relative error of the approximation is 3.5e-11 * on the interval 2^(1/16) - 1 > v > 2^(-1/16) - 1 */ z = x*x; w = (((-0.1663883081054895 * x + 0.2003770364206271) * x - 0.2500006373383951) * x + 0.3333331095506474) * x * z; w -= 0.5 * z; /* Convert to base 2 logarithm: * multiply by log2(e) */ w = w + LOG2EA * w; /* Note x was not yet added in * to above rational approximation, * so do it now, while multiplying * by log2(e). */ z = w + LOG2EA * x; z = z + x; /* Compute exponent term of the base 2 logarithm. */ w = -i; w *= 0.0625; /* divide by 16 */ w += e; /* Now base 2 log of x is w + z. */ /* Multiply base 2 log by y, in extended precision. */ /* separate y into large part ya * and small part yb less than 1/16 */ ya = reduc(y); yb = y - ya; F = z * y + w * yb; Fa = reduc(F); Fb = F - Fa; G = Fa + w * ya; Ga = reduc(G); Gb = G - Ga; H = Fb + Gb; Ha = reduc(H); w = 16 * (Ga + Ha); /* Test the power of 2 for overflow */ if( w > MEXP ) { mtherr( fname, OVERFLOW ); return( MAXNUMF ); } if( w < MNEXP ) { mtherr( fname, UNDERFLOW ); return( 0.0 ); } e = w; Hb = H - Ha; if( Hb > 0.0 ) { e += 1; Hb -= 0.0625; } /* Now the product y * log2(x) = Hb + e/16.0. * * Compute base 2 exponential of Hb, * where -0.0625 <= Hb <= 0. * Theoretical relative error of the approximation is 2.8e-12. */ /* z = 2**Hb - 1 */ z = ((( 9.416993633606397E-003 * Hb + 5.549356188719141E-002) * Hb + 2.402262883964191E-001) * Hb + 6.931471791490764E-001) * Hb; /* Express e/16 as an integer plus a negative number of 16ths. * Find lookup table entry for the fractional power of 2. */ if( e < 0 ) i = -( -e >> 4 ); else i = (e >> 4) + 1; e = (i << 4) - e; w = A[e]; z = w + w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ z = ldexpf( z, i ); /* multiply by integer power of 2 */ if( nflg ) { /* For negative x, * find out if the integer exponent * is odd or even. */ w = 2 * floorf( (float) 0.5 * w ); if( w != y ) z = -z; /* odd exponent */ } return( z ); }