/* k0f.c * * Modified Bessel function, third kind, order zero * * * * SYNOPSIS: * * float x, y, k0f(); * * y = k0f( x ); * * * * DESCRIPTION: * * Returns modified Bessel function of the third kind * of order zero of the argument. * * The range is partitioned into the two intervals [0,8] and * (8, infinity). Chebyshev polynomial expansions are employed * in each interval. * * * * ACCURACY: * * Tested at 2000 random points between 0 and 8. Peak absolute * error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 7.8e-7 8.5e-8 * * ERROR MESSAGES: * * message condition value returned * K0 domain x <= 0 MAXNUM * */ /* k0ef() * * Modified Bessel function, third kind, order zero, * exponentially scaled * * * * SYNOPSIS: * * float x, y, k0ef(); * * y = k0ef( x ); * * * * DESCRIPTION: * * Returns exponentially scaled modified Bessel function * of the third kind of order zero of the argument. * * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE 0, 30 30000 8.1e-7 7.8e-8 * See k0(). * */ /* Cephes Math Library Release 2.0: April, 1987 Copyright 1984, 1987 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> /* Chebyshev coefficients for K0(x) + log(x/2) I0(x) * in the interval [0,2]. The odd order coefficients are all * zero; only the even order coefficients are listed. * * lim(x->0){ K0(x) + log(x/2) I0(x) } = -EUL. */ static float A[] = { 1.90451637722020886025E-9f, 2.53479107902614945675E-7f, 2.28621210311945178607E-5f, 1.26461541144692592338E-3f, 3.59799365153615016266E-2f, 3.44289899924628486886E-1f, -5.35327393233902768720E-1f }; /* Chebyshev coefficients for exp(x) sqrt(x) K0(x) * in the inverted interval [2,infinity]. * * lim(x->inf){ exp(x) sqrt(x) K0(x) } = sqrt(pi/2). */ static float B[] = { -1.69753450938905987466E-9f, 8.57403401741422608519E-9f, -4.66048989768794782956E-8f, 2.76681363944501510342E-7f, -1.83175552271911948767E-6f, 1.39498137188764993662E-5f, -1.28495495816278026384E-4f, 1.56988388573005337491E-3f, -3.14481013119645005427E-2f, 2.44030308206595545468E0f }; /* k0.c */ extern float MAXNUMF; #ifdef ANSIC float chbevlf(float, float *, int); float expf(float), i0f(float), logf(float), sqrtf(float); #else float chbevlf(), expf(), i0f(), logf(), sqrtf(); #endif float k0f( float xx ) { float x, y, z; x = xx; if( x <= 0.0f ) { mtherr( "k0f", DOMAIN ); return( MAXNUMF ); } if( x <= 2.0f ) { y = x * x - 2.0f; y = chbevlf( y, A, 7 ) - logf( 0.5f * x ) * i0f(x); return( y ); } z = 8.0f/x - 2.0f; y = expf(-x) * chbevlf( z, B, 10 ) / sqrtf(x); return(y); } float k0ef( float xx ) { float x, y; x = xx; if( x <= 0.0f ) { mtherr( "k0ef", DOMAIN ); return( MAXNUMF ); } if( x <= 2.0f ) { y = x * x - 2.0f; y = chbevlf( y, A, 7 ) - logf( 0.5f * x ) * i0f(x); return( y * expf(x) ); } y = chbevlf( 8.0f/x - 2.0f, B, 10 ) / sqrtf(x); return(y); }