/* exp2f.c * * Base 2 exponential function * * * * SYNOPSIS: * * float x, y, exp2f(); * * y = exp2f( x ); * * * * DESCRIPTION: * * Returns 2 raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * x k f * 2 = 2 2. * * A polynomial approximates 2**x in the basic range [-0.5, 0.5]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * IEEE -127,+127 100000 1.7e-7 2.8e-8 * * * See exp.c for comments on error amplification. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < -MAXL2 0.0 * exp overflow x > MAXL2 MAXNUMF * * For IEEE arithmetic, MAXL2 = 127. */ /* Cephes Math Library Release 2.2: June, 1992 Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ #include <math.h> static char fname[] = {"exp2f"}; static float P[] = { 1.535336188319500E-004, 1.339887440266574E-003, 9.618437357674640E-003, 5.550332471162809E-002, 2.402264791363012E-001, 6.931472028550421E-001 }; #define MAXL2 127.0 #define MINL2 -127.0 extern float MAXNUMF; float polevlf(float, float *, int), floorf(float), ldexpf(float, int); float exp2f( float xx ) { float x, px; int i0; x = xx; if( x > MAXL2) { mtherr( fname, OVERFLOW ); return( MAXNUMF ); } if( x < MINL2 ) { mtherr( fname, UNDERFLOW ); return(0.0); } /* The following is necessary because range reduction blows up: */ if( x == 0 ) return(1.0); /* separate into integer and fractional parts */ px = floorf(x); i0 = px; x = x - px; if( x > 0.5 ) { i0 += 1; x -= 1.0; } /* rational approximation * exp2(x) = 1.0 + xP(x) */ px = 1.0 + x * polevlf( x, P, 5 ); /* scale by power of 2 */ px = ldexpf( px, i0 ); return(px); }